
Supplementary Material:
Small-Variance Nonparametric Clustering on the Hypersphere

Julian Straub Trevor Campbell Jonathan P. How John W. Fisher III
CSAIL and LIDS, Massachusetts Institute of Technology

{jstraub, fisher}@csail.mit.edu, {tdjc, jhow}@.mit.edu

1. Dirichlet von-Mises-Fisher Mixture Model
A finite mixture of K vMF distributions with known concentration τ may be obtained by placing a Dirichlet distribution

prior Dir(α) on the mixture weights π, and a vMF prior on the mean directions µ,

π ∼ Dir(α), µk ∼ vMF(µ0, τ0)∀k ∈ {1, . . . ,K}
zi ∼ Cat(π), xi ∼ vMF(µzi , τ)∀i ∈ {1, . . . , N} .

(1)

Let z = {zi}Ni=1, and µ = {µk}Kk=1. Further, let negative subscript j, u−j = u \ uj denote removal of item j from a set, and
Ik denote the set {i : zi = k}. The Gibbs sampling inference algorithm for the finite vMF mixture iterates between sampling
the label zi given {z−i,µ} and the mean direction µk given {z,µ−k}. These two steps are summarized as

p(zi = k|z−i,µ, x) ∝ E [πk|z−i] vMF(xi;µk, τ) , (2)

where E [πk|z−i] = |Ik|+αk

N−1+
∑

k αk
and

p(µk|z,µ−k, x) = vMF(µk; ϑk

‖ϑk‖2 , ‖ϑk‖2) , (3)

where ϑk = τ0µ0 + τ
∑
i∈Ik xi.

Parallel to the connection between k-means and the Gaussian mixture model in the small-variance asymptotic limit [2],
taking τ →∞ yields deterministic updates as also previously noted in [1]:

lim
τ→∞

p(zi = k|z−i,µ, x)

= lim
τ→∞

E [πk|z−i] vMF(xi;µk, τ)∑K
κ=1 E [πκ|z−i] vMF(xi;µκ, τ)

= lim
τ→∞

E [πκ|z−i] exp(τµTk xi)∑K
k=1 E [πκ|z−i] exp(τµTk xi)

=

{
1 xTi µk ≥ xTi µκ ∀κ ∈ {1, . . . ,K}
0 otherwise

(4)

and

lim
τ→∞

p(µk|z,µ−k, x) = δ
(
µk =

∑
i∈Ik

xi

‖
∑

i∈Ik
xi‖2

)
. (5)

These two updates together form the spherical k-means algorithm [1],

zi ← arg max
k

µTk xi ∀i ∈ {1, . . . , N}

µk ←
∑
i∈Ik xi

‖
∑
i∈Ik xi‖2

∀k ∈ {1, . . . ,K} .
(6)

1

2. Proof of Theorem 1
Lemma 1 (Integration on a Manifold). SupposeM ⊂ Rn is anm-dimensional differentiable manifold given by the paramet-
ric form g : Rm → Rn, where g ∈ C1, and g(A) = M for some measurable A ⊂ Rm, and let f : Rn → R be an integrable
function on M . Then ∫

M

f(x) =

∫
A

f(g(a))
√

detDgTDg

Dg =


∂g1
∂a1

. . . ∂g1
∂am

. . .
. . .

∂gn
∂a1

. . . ∂gn
∂am

 .

(7)

Theorem 1 (Manifold Laplace Approximation). Suppose M ⊂ Rn is a bounded m-dimensional differentiable manifold and
f : Rn → R is a smooth function on M . Further, suppose f has a unique global maximum on M , x? = arg maxx∈M f(x).
Then

lim
τ→∞

∫
M
eτf(x)(

2π
τ

)m |detUT∇2
xf(x?)U |

1
2 eτf(x?)

= 1 (8)

where U ∈ Rn×m is a matrix whose columns are an orthonormal basis for Tx?M .

Proof. Suppose {ui}mi=1, ui ∈ Rn is an orthonormal basis for Tx?M , and add to it any orthonormal completion {ui}ni=m+1

to Rn. Then U =
[
u1 . . . um

]
∈ Rn×m is a matrix that maps Rm → Tx?M . Finally, define g : V → M as the

transformed exponential map g(v) = expx?(Uv), where UV ⊂ Tx?M is the local domain of validity of the exponential
map. Then by Lemma 1,∫

M

eτf(x) =

∫
g(V)

eτf(x) +

∫
M\g(V)

eτf(x) =

∫
V

eτh(v)
√

detDgTDg +

∫
M\g(V)

eτf(x). (9)

where h(v) ≡ f(g(v)). First, note that

[Dg]ij(0) =
∂gi
∂vj

(0) = lim
h→0

expx?(U1jh)− expx?(0)

h
(10)

= lim
h→0

expx?(ujh)− expx?(0)

h
(11)

= Uij , (12)

and thus by the fact that U is unitary and hence UTU = I ,
√

detDg(0)TDg(0) = 1. Next, using a second-order Taylor
expansion of h,

h(v) ' h(0) +∇vh(0)T v +
1

2
vT∇2

vh(0)v (13)

Note that h(0) = f(x?),

∂h

∂vj

∣∣∣∣
0

=

n∑
k=1

∂f

∂xk

∂gk
∂vj

∣∣∣∣∣
0

=

n∑
k=1

Ukj
∂f

∂xk

∣∣∣∣∣
x?

= uTj ∇xf(x?) (14)

and since f reaches a maximum at x? on M , and uj span Tx?M ,

∇vh(0) = 0. (15)

Further,

∂2h

∂vivj
=

n∑
k=1

∂f

∂xk

∂2gk
∂vivj

+

n∑
l=1

∂2f

∂xkxl

∂gk
∂vj

∂gl
∂vi

(16)

mk

µk0

···
µk∆tk

x̄k

||x̄k||2

θ
φ
···
φ

η

ζ

Figure 1: Geometry of the maximum likelihood setting of µk0, µk1, . . . , µk∆tk for the transition distribution.

once again, since f reaches a maximum at x? on M , and ∂2gk
∂vivj

has columns contained in Tx?M , the first term is zero and
thus

∂2h

∂vivj

∣∣∣∣
0

=

n∑
k=1

n∑
l=1

∂2f

∂xkxl
UkjUli

∣∣∣∣∣
x?

(17)

so

∇2
vh(0) = UT∇2

xf(x?)U. (18)

Returning to the integral from earlier,

lim
τ→∞

∫
M
eτf(x)(

2π
τ

)m |detUT∇2
xf(x?)U |

1
2 eτf(x?)

(19)

= lim
τ→∞

∫
V
eτh(v)

√
detDgTDg +

∫
M\g(V)

eτf(x)(
2π
τ

)m |detUT∇2
xf(x?)U |

1
2 eτf(x?)

(20)

= lim
τ→∞

∫
V
eτ(h(v)−f(x?))

√
detDgTDg +

∫
M\g(V)

eτ(f(x)−f(x?))(
2π
τ

)m |detUT∇2
xf(x?)U |

1
2

. (21)

By assumption, maxx∈M\g(V) f(x) ≤ f(x?) − ε for some ε > 0, so using the Laplace approximation for multivariate
Euclidean spaces,

lim
τ→∞

∫
M
eτf(x)

. . .
≤ lim
τ→∞

∫
V
eτ(h(v)−f(x?))

√
detDgTDg + vol (M \ g(V)) e−τε(

2π
τ

)m |detUT∇2
xf(x?)U |

1
2

(22)

= lim
τ→∞

(
2π
τ

)m ∣∣detUT∇2
xf(x?)U

∣∣ 12 √detDg(0)TDg(0)(
2π
τ

)m |detUT∇2
xf(x?)U |

1
2

(23)

= 1 (24)

and since
∫
M\g(V)

eτf(x) ≥ 0, the lower bound is also 1, and the result follows.

3. Solving for State Transition Geometry
As depicted in Fig. 1 the setting of µk0, µk1, . . . , µk∆tk for the transition distribution can be described in terms of the

angles φ, η, and θ. As derived in the paper the maximum likelihood parameters φ?, η? and θ? for the transition distribution
satisfy the following equations:

wk sin(θ?) = β sin(φ?) = ||x̄k||2 sin(η?)

ζ = θ? + ∆tkφ
? + η? = arccos

(
mT
k

x̄k
||x̄k||2

)
(25)

where ζ is defined as the full angle between x̄k

||x̄k||2 and mk. Note that for the label assignment x̄k = xi while for the weight
update x̄k =

∑
i∈Ik xi.

This set of equations can be solved exactly and efficiently using Euler’s method which in practice converges very quickly
for this problem. Starting from φ = 0, Euler’s method iterates over the following steps until convergence of φ:

1. compute f(φ) = arcsin
(
β
wk

sin(φ)
)

+ ∆tkφ+ arcsin
(

β
||x̄k||2 sin(φ)

)
− ζ

2. compute df(φ) = ∂f(φ)
∂φ = ∆tk + β cos(φ)√

||x̄k||22−β2 sin2(φ)
+ β cos(φ)√

w2
k−β2 sin2(φ)

3. φ← φ− f(φ)
df(φ)

A second faster but approximate approach is to assume that all angles are small. For a small angle α the following
approximation is often used sin(α) ≈ α. With this we obtain the following closed form solutions:

φ? ≈ ζ
[
β

(
1 +

1

wk

)
+ ∆tk

]−1

(26)

θ? ≈ ζ
[
1 + wk

(
1 +

∆tk
β

)]−1

(27)

η? ≈ ζ
[
1 +

1

wk
+

∆tk
β

]−1

(28)

4. DP-vMF-means algorithm
The DP-vMF-means algorithm is given in full detail in Alg. 1. For the label assignment step both algorithms 2 and 3 can

be used. The sequential label assignment algorithm 2 is directly derived from the Gibbs sampling posterior. Alg. 3 details
the optimistic iterated restarts (OIR) algorithm which can be massively parallelized both in CPU and GPU.

Algorithm 1 DP-vMF-means algorithm

1: JDP-vMF ←∞
2: µ← ∅
3: while JDP-vMF not converged do
4: {zi}Ni=1,µ←DP-VMF-MEANSLABELASSIGNMENTS({xi}Ni=1,µ, λ)
5: for k ∈ {1, . . . , |µ|} do
6: if nk > 0 then
7: µk ←

∑
Ik
xi

||
∑

Ik
xi||2

8: else
9: µ← µ \ µk . remove cluster k

10: end if
11: end for
12: JDP-vMF ←

∑|µ|
k=1

∑
i∈Ik x

T
i µk + λ|µ|

13: end while

5. DDP-vMF-means algorithm
Algorithm 4 outlines the necessary operations of the DDP-vMF-means algorithm per timestep. The sequential label

assignment algorithm for DDP-vMF-means is shown in Alg. 5. The OIR label assignment algorithm for DDP-vMF-means
follows the same pattern as Alg. 3 with the additional possibility of reviving a cluster. Reviving a cluster changes the number
of active clusters and thus requires a restart as well.

References
[1] A. Banerjee, I. S. Dhillon, J. Ghosh, S. Sra, and G. Ridgeway. Clustering on the unit hypersphere using von Mises-Fisher distributions.

JMLR, 6(9), 2005.
[2] B. Kulis and M. I. Jordan. Revisiting k-means: New algorithms via Bayesian nonparametrics. In ICML, 2012.

Algorithm 2 DP-vMF-means sequential label assignments algorithm

1: function DP-VMF-MEANSSEQUENTIALLABELASSIGNMENT({xi}Ni=1,µ, λ)
2: for i ∈ {1, . . . , N} do

3: zi ← arg max
k∈{1,...,|µ|+1}

{
xTi µk k ≤ |µ| and |Ik \ zi| > 0
λ+ 1 k = |µ|+ 1

. only consider clusters that contain more than xi

4: if zi = |µ|+ 1 then
5: µ← µ ∪ {µ|µ|+1 ← xi} . add cluster K + 1 and initialize to xi
6: end if
7: end for
8: return {zi}Ni=1,µ
9: end function

Algorithm 3 DP-vMF-means OIR label assignments algorithm

1: function DP-VMF-MEANSOIRLABELASSIGNMENT({xi}Ni=1,µ, λ)
2: I ← N
3: repeat
4: for i ∈ {I, . . . , N} in parallel do

5: zi ← arg max
k∈{1,...,|µ|+1}

{
xTi µk k ≤ |µ| and |Ik \ zi| > 0
λ+ 1 k = |µ|+ 1

. only consider clusters that contain more than xi

6: if zi = |µ|+ 1 or any(|Ik| = 0) then
7: atomic: I = min(I, i) . obtain the first index of cluster number change
8: end if
9: end for

10: if I < N then
11: if zI = |µ|+ 1 then
12: µ← µ ∪ {µ|µ|+1 ← xI} . add cluster K + 1 and initialize to xI
13: else
14: µ← µ \ µk:|Ik|=0 . remove empty cluster
15: end if
16: end if
17: until I = N
18: return {zi}Ni=1,µ
19: end function

Algorithm 4 DDP-vMF-means algorithm for a single time-step

1: µ← ∅
2: {zi}Ni=1 ← unassigned
3: while not converged do
4: {zi}Ni=1,µ←DDP-VMF-MEANSLABELASSIGNMENTS({xi}Ni=1,µ, λ)
5: for k ∈ {1, . . . , |µ|} do
6: if |Ik| > 0 then . if cluster is instantiated in current timestep
7: if k < µt−1 then . cluster is not a novel cluster from this timestep
8: µk ← R(η?) x̄k

||x̄k||2 . reinstantiate the cluster
9: else

10: µk ←
∑

Ik
xi

||
∑

Ik
xi||2 . update the cluster center of the novel cluster

11: end if
12: end if
13: end for
14: end while
15: for k ∈ {1, . . . , |µ|} do
16: if |Izi | > 0 then . if cluster is instantiated in current timestep
17: Solve for φ?, θ?, η? in Eq. (25) with x̄k =

∑
i∈Ik xi as described in Sec. 3

18: wk = wk cos(θ?) + β∆tk cos(φ?) + ||x̄k||2 cos(η?) . update weight
19: end if
20: if Q∆tk < λ then . cluster cannot be revived again
21: µ← µ \ µk . remove the cluster
22: end if
23: end for

Algorithm 5 DDP-vMF-means sequential label assignments

1: function DDP-VMF-MEANSSEQUENTIALLABELASSIGNMENT({xi}Ni=1,µ, λ)
2: for i ∈ {1, . . . , N} do
3: Solve for φ?, θ?, η? in Eq. (25) with x̄k = xi as described in Sec. 3

4: zi ← arg max
k∈{1,...,|µ|+1}


λ+ 1 k = |µ|+ 1
µTk xi k ≤ |µ|, |Ik \ zi| > 0

∆tkβ(cos(φ?)− 1) + ∆tkQ
+wk(cos(θ?)− 1) + cos(η?)

k ≤ |µ|, |Ik| = 0 .

5: if zi = |µ|+ 1 then
6: µ← µ ∪ {µ|µ|+1 ← xi} . add cluster K + 1 and initialize to xi
7: else
8: if |Izi | = 0 then . cluster zi is not instantiated yet since it does not have data associated
9: µk ← R(η?)xi . reinstantiate the cluster

10: end if
11: end if
12: end for
13: return {zi}Ni=1,µ
14: end function

