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1. Dirichlet von-Mises-Fisher Mixture Model

A finite mixture of K vMF distributions with known concentration 7 may be obtained by placing a Dirichlet distribution
prior Dir(«) on the mixture weights 7, and a vVMF prior on the mean directions i,

7 ~ Dir(a), pr ~ VMF(ug, 70)Vk € {1,..., K}

1
z; ~ Cat(m), z; ~ VMF(u,,, 7)Vi€ {1,...,N}. M

Letz = {z}N,,and p = { Hk}kK:1~ Further, let negative subscript j, u_; = u \ u; denote removal of item j from a set, and
7y, denote the set {7 : z; = k}. The Gibbs sampling inference algorithm for the finite vMF mixture iterates between sampling
the label z; given {z_;, u} and the mean direction py, given {z, pu_; }. These two steps are summarized as

p(zi = kl|z—;, p,X) o< E [m|z—;] VMF(x;; g, 7) ()
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where E [m;|z_;] =

Pz, g, X) = VMF (i s [0k]12) 3)

where 9, = Touo + 7 Zielk Z;.
Parallel to the connection between k-means and the Gaussian mixture model in the small-variance asymptotic limit [2],
taking 7 — oo yields deterministic updates as also previously noted in [1]:
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These two updates together form the spherical k-means algorithm [1],
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2. Proof of Theorem 1

Lemma 1 (Integration on a Manifold). Suppose M C R" is an m-dimensional differentiable manifold given by the paramet-
ric form g : R™ — R™, where g € C*, and g(A) = M for some measurable A C R™, and let f : R™ — R be an integrable

function on M. Then
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Theorem 1 (Manifold Laplace Approximation). Suppose M C R™ is a bounded m-dimensional differentiable manifold and
f:R™ = R is a smooth function on M. Further, suppose f has a unique global maximum on M, x* = argmax,¢; f(2).
Then
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700 (22)7 |det UTV2 f(z*)U|? e/ (=)
where U € R™™ ™ js a matrix whose columns are an orthonormal basis for T« M.

Proof. Suppose {u;}i”, u; € R™ is an orthonormal basis for 77~ M, and add to it any orthonormal completion {u;}i, 4
to R™. Then U = [ul um] € R™ ™ is a matrix that maps R™ — T,«M. Finally, define g : V' — M as the
transformed exponential map g(v) = exp,.(Uv), where UV C T, M is the local domain of validity of the exponential
map. Then by Lemma 1,
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where h(v) = f(g(v)). First, note that

iy 0g; .. exp.. (Uljh) —exp,.(0)
[Dg]” (0) = v, (0) = }ng% A (10)
. expg. (u;h) —exp,.(0)
- i av
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and thus by the fact that U is unitary and hence UTU = I, y/det Dg(0)TDg(0) = 1. Next, using a second-order Taylor
expansion of h,

1
h(v) =~ h(0) + V,h(0)Tv + iuTvgh(O)u (13)
Note that 2(0) = f(z*),
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and since f reaches a maximum at * on M, and u; span T« M,
V,h(0) = 0. (15)
Further,
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Figure 1: Geometry of the maximum likelihood setting of pixo, k1, - - - , k¢, for the transition distribution.

once again, since f reaches a maximum at z* on M, and gjgj’? has columns contained in 7}« M, the first term is zero and
thus
d?h "L 9%f
= Uk;Ui (17)
dviv; |, ; lz:; 0z o
)
V2h(0) = UTV2 f(2*)U. (18)
Returning to the integral from earlier,
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By assumption, max,enn g(v) f(z) < f(z*) — € for some € > 0, so using the Laplace approximation for multivariate
Euclidean spaces,
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and since fM\q(V) e™/(@) > (), the lower bound is also 1, and the result follows. O

3. Solving for State Transition Geometry

As depicted in Fig. 1 the setting of pxo, ftk1,- - ., A, for the transition distribution can be described in terms of the

angles ¢, 1, and 6. As derived in the paper the maximum likelihood parameters ¢*, n* and 6* for the transition distribution
satisfy the following equations:

wg sin(0%) = Bsin(¢*) = ||Zk||2 sin(n™)
Ty, > (25

¢ = 0" + Atp¢* +n* = arccos <m£
||Zk]2



where ( is defined as the full angle between W and myg. Note that for the label assignment Z;, = x; while for the weight

update T, = D ;7 T
This set of equations can be solved exactly and efficiently using Euler’s method which in practice converges very quickly
for this problem. Starting from ¢ = 0, Euler’s method iterates over the following steps until convergence of ¢:

1. compute f(¢) = arcsin (w% sin(qﬁ)) + At + arcsin (Hw B bm(fb)) —C

05 (0) B eos(4) 8 cos(9)
2. compute df (¢) = 55 = = At T e T e T

3.6+ - 45

A second faster but approximate approach is to assume that all angles are small. For a small angle « the following
approximation is often used sin(«) & «. With this we obtain the following closed form solutions:
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4. DP-vMF-means algorithm

The DP-vMF-means algorithm is given in full detail in Alg. 1. For the label assignment step both algorithms 2 and 3 can
be used. The sequential label assignment algorithm 2 is directly derived from the Gibbs sampling posterior. Alg. 3 details
the optimistic iterated restarts (OIR) algorithm which can be massively parallelized both in CPU and GPU.

Algorithm 1 DP-vMF-means algorithm

1: Jpp-yMF ¢ 00

2 0
3: while Jpp.ymr not converged do
4 {z}Y,, p +<DP-VMF-MEANSLABELASSIGNMENTS({z; }¥ |, , \)
5 fork € {1,...,|u|} do
6 if n; > 0 then
ZI Li
L e = s, =il
8 else
9: o\ p > remove cluster k
10: end if
11: end for
12 Jopwe < S0 Sier, @ + Al

13: end while

S. DDP-vMF-means algorithm

Algorithm 4 outlines the necessary operations of the DDP-vMF-means algorithm per timestep. The sequential label
assignment algorithm for DDP-vMF-means is shown in Alg. 5. The OIR label assignment algorithm for DDP-vMF-means
follows the same pattern as Alg. 3 with the additional possibility of reviving a cluster. Reviving a cluster changes the number
of active clusters and thus requires a restart as well.
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Algorithm 2 DP-vMF-means sequential label assignments algorithm

1: function DP-VMF-MEANSSEQUENTIALLABELASSIGNMENT({xi}{Vzl, m, \)
2: fori e {1,...,N} do

T < 7 ; . .
3: Zi ¢ argmax vi pe k< |pland |\ 2] > 0 > only consider clusters that contain more than x;
A+1 k=|p|+1
kE{L .., |pl+1} =K
4 if z; = |p| + 1 then
5: B U {1 < @i} > add cluster K + 1 and initialize to x;
6: end if
7 end for
8 return {2} Y . p
9: end function

Algorithm 3 DP-vMF-means OIR label assignments algorithm

1: function DP-VMF-MEANSOIRLABELASSIGNMENT({x; } ¥, p, \)

2: I+~ N
3: repeat
4 fori € {I,..., N} in parallel do
T
5: zj < argmax { i e K é |l and |7, 2] > 0 > only consider clusters that contain more than z;
kel julty L A+TL k=|p[+1
6 if z; = |p| + 1 or any(|Z| = 0) then
7: atomic: [ = min(/, ) > obtain the first index of cluster number change
8 end if
9 end for
10: if I < N then
11: if z; = |p| + 1 then
12: B U {41 < 21} > add cluster K + 1 and initialize to z;
13: else
14: B 1\ Bz =0 > remove empty cluster
15: end if
16: end if
17: until I = N
18:  return {z;}Y  u

19: end function




Algorithm 4 DDP-vMF-means algorithm for a single time-step

10
2 {2}, « unassigned
3: while not converged do

4 {2}, p <+ DDP-VMF-MEANSLABELASSIGNMENTS({z; } |, 1, \)

5 fork € {1,...,|p|} do

6: if |Z);| > O then > if cluster is instantiated in current timestep
7 if k < p,_, then > cluster is not a novel cluster from this timestep
8 L R(n*)ﬁ > reinstantiate the cluster
9 else
10: Wi HXZZII% > update the cluster center of the novel cluster
11: end if
12: end if

13: end for

14: end while
15: for k € {1,...,|u|} do

16: if |Z.,| > 0 then > if cluster is instantiated in current timestep
17: Solve for ¢*, 0%, n* in Eq. (25) with T}, = Ziezk x; as described in Sec. 3

18: wy, = wy cos(0*) + AL cos(¢*) + ||Zk||2 cos(n*) > update weight
19: end if

20: if QAt; < A then > cluster cannot be revived again
21: TR AN > remove the cluster
22: end if

23: end for

Algorithm 5 DDP-vMF-means sequential label assignments

1: function DDP-VMF-MEANSSEQUENTIALLABELASSIGNMENT({xi}f\il, A
22 forie{l,...,N}do

3 Solve for ¢*, 0%, n* in Eq. (25) with Z;, = x; as described in Sec. 3
A+1 k=|pl+1
T, < 4
4: z; < argmax i i k<|p|,|Ty \ zi| >0

Aty B(cos(¢*) — 1) + At Q
ke{l,...,|p|+1} k _
: +wg (cos(6*) — 1) + cos(n*) k< |pl,|Zx] = 0.

5 if z; = |pu| + 1 then

6: B U {1 < 23} > add cluster K + 1 and initialize to z;
7: else

8 if |Z,,] = 0 then > cluster z; is not instantiated yet since it does not have data associated
9: pr — R(n*)z; > reinstantiate the cluster
10: end if
11: end if
12: end for

13 return {z;}Y  u

14: end function




