
A. Supplementary Appendix

In this appendix, we provide details on the derivation of

the mathematics and the implementations used in the exper-

iments.

A.1. Spatial and Fourier Domain Loss Functions

In the objective function of Eq. (2), it is easier to compute

the shape regularizer loss Lc(ω) in the Fourier domain, as

it becomes a quadratic. Here we explain how we convert

other loss functions to the Fourier domain as well for easy

optimization.

In case of functions which are formed using inner prod-

ucts, the loss function can be easily converted from spatial

domain to Fourier domain and vice versa. Due to Parseval’s

theorem, inner product is preserved between two spaces

with proper normalisation. In other words,

w
⊤

nmx = W
⊤

nmX. (9)

Applying this to Eq. (1) gives,

F(x;ω) =

N
∑

n=1

δn
M

max
m=1

W
⊤

nmX , (10)

Thus, we can easily obtain Eq. (3) and (8) in the Fourier

domain by substitution.

After going to the Fourier domain, we do a simple fea-

ture mapping [2] to avoid the problem of dealing with com-

plex numbers. This feature mapping again leverages the

fact that the inner product is preserved between the spatial

domain and the Fourier domain, and thus the inner product

of two real signals in the Fourier domain are also real. The

feature mapping is simply concatenating the real and imag-

inary components to form a real vector. If we denote this

feature mapping as Φ (x)

Φ (x) =

[

Re (x)
Im (x)

]

. (11)

With this feature mapping any conventional solver designed

for real numbers can be used.

A.2. Derivation of the Shape Regularizor Loss

Derivation of the shape regularizor loss in the Fourier

domain (Eq. (6)) is straightforward. From the convolution

theorem we have

wnηi(n) ∗ xi = Wnηi(n) ◦Xi (12)

= W
⊤

nηi(n)
diag (Xi) , (13)

where ◦ denotes the Hadamard product. Thus the
∥

∥

∥
wnηi(n) ∗ xi −w

⊤

nηi(n)
xihi

∥

∥

∥

2

2
term in the spatial domain

shape regularizor loss in Eq. (5) becomes

∥

∥

∥
wnηi(n) ∗ xi −w

⊤

nηi(n)
xihi

∥

∥

∥

2

2
(14)

=
∥

∥

∥
W

⊤

nηi(n)
diag (Xi)−W

⊤

nηi(n)
XiHi

∥

∥

∥

2

2
(15)

=
∥

∥

∥
W

⊤

nηi(n)
(diag (Xi)−XiHi)

∥

∥

∥

2

2
(16)

= W
⊤

nηi(n)
S
⊤

i SiWnηi(n) , (17)

where

Si = (diag (Xi)−XiHi)
⊤
. (18)

In our case we deal with multichannel images and we

sum the convolution results for each channel to get the

final response. If we denote this summation as a ma-

trix E, we can simply substitute W
⊤

nηi(n)
diag (Xi) to

W
⊤

nηi(n)
diag (Xi)E and obtain the equation for multi-

channel image. This gives us

Si = (diag (Xi)E−XiHi)
⊤

. (19)

Note that in Rodriguez et al.’s [26] work they restricted

the desired shape h as the delta function. However, the re-

striction is not necessary as it does not affect any mathe-

matical derivation. Furthermore the original derivation only

considered single channel images.

A.3. Implementations of the Methods

Compared Methods For each method we sort the de-

tected keypoints according to their respective response

scores and keep the best keypoints. For MSER, we used

the difference of Gaussian scores according to its scale as

the sorting score.

Details for the implementations of the compared meth-

ods are as follows:

• SIFT: OpenCV library – http://opencv.org/

downloads.html;

• SURF: OpenCV library – http://opencv.org/

downloads.html;

• SFOP: Provided by the authors – http://www.

ipb.uni-bonn.de/sfop/

• WADE: Provided by the authors – http:

//vision.deis.unibo.it/ssalti/?page_

id=169

• MSER: Provided by the authors – http:

//www.robots.ox.ac.uk/œvgg/research/

affine/

• FAST-9: Provided by the authors – http://www.

edwardrosten.com/work/fast.html

978-1-4673-6964-0/15/$31.00 ©2015 IEEE

Table 2: Shape parameters

TILDE-GB TILDE-CNN TILDE-P

α 6 12 12

β 10.5 31.5 31.5

Patch Size 21× 21 28× 28 21× 21

• LCF: Provided by the authors –

http://chardson.com/papers/

icra2013richardson.html

• SIFER: Publically available reference implemen-

tation – http://dev.ipol.im/˜reyotero/

comparing_20140906.tar.gz

• TaSK: Our implementation with SIFT keypoints as

base keypoints.

Our Methods Table 2 shows the parameters used for the

positive shapes in Eq. (4) and the patch size of the input

image patch.

Details for the implementation of our methods are as fol-

lows:

• TILDE-CNN: We used the Python Theano library for

implementation – http://deeplearning.net/

software/theano/

• TILDE-GB: We used the same parameters as the

work of Sironi et al. [31] and his implementation

for the regressor. – http://cvlab.epfl.ch/

software/centerline-detection

• TILDE-P: We implemented our method with MAT-

LAB for learning and C for testing. We adapted the

TRON solver [19] included in LibLinear library [9]

to our problem. – http://www.csie.ntu.edu.

tw/˜cjlin/liblinear/

A.4. Number of Keypoints Used for Random 2%

The number of keypoints we used for obtaining 2% re-

peatability for all sequences are shown in Table 3. For both

datasets we randomly sampled keypoint locations from im-

ages and increased the number of keypoints until we ob-

tained 2% repeatability. Note that the numbers vary signifi-

cantly for each sequence as the image sizes vary.

Table 3: Number of keypoints used for each sequence for

evaluating Repeatability (Random 2%).

Oxford Webcam

Sequence # Keypoints Sequence # Keypoints

Bark 50 Mexico 85

Bikes 174 Chamonix 122

Boat 65 Courbevoie 95

Graffiti 101 Frankfurt 204

Leuven 141 Panorama 161

Trees 175 StLouis 114

UBC 150

Wall 175

