
1×1 2×2 3×3 6×6
40

50

60

70

80

90

100

Spatial Pooling Grid

Performance

Holidays

Paris

Sculpture

UKB

Oxford

Figure 7: Spatial Pooling: In order to obtain meaningful results for

retrieval with representations from convolutional layers we applied spatial

pooling of different sizes for different tasks. Objects of more complex

structures such as sculptures and buildings need more spatial resolution

for optimal performance.

Classification Attribute Fine-grained Retrieval

Dataset VOC07 MIT H3D UIUC Pet Flower Oxf. Scul.

SUN 57.8 62.6 45.0 86.3 45.0 75.9 64.5 39.2

Places 68.5 69.3 49.9 88.8 49.9 82.4 70.0 44.2

Table 7: Additional data (source task): Results with the ConvNet

representation optimized for different amount of training data. First row

shows the results when the network is trained on scene recognition dataset

of SUN397 [40] dataset with 100K images. The second row corresponds

to the network trained on Places dataset [47] with 2.5M images annotated

with similar categories. In all cases the ConvNet trained on Places dataset

outperforms the one trained on SUN.

6.0.5 Spatial Pooling

In the last subsection, we observed that the best represen-

tation for retrieval tasks is the first fully connected layer by

a significant margin. We further examined using the last

convolutional layer in its original form as the representation

for retrieval in a simplified scenario but achieved relatively

poor results. In order to make the convolutional layer suit-

able, in this experiment, spatial pooling is applied to the

last convolutional layers output. We use max pooling in

this experiment. An spatial pooling with a grid of 1times1

is equivalent to a soft bag of words representation over the

whole image, where words are convolutional kernels. Fig-

ure 7 shows the results of different pooling grids for all the

retrieval tasks. For the retrieval tasks, where the shapes are

more complicated like sculptures and historical buildings,

a higher resolution of pooling is necessary. When we op-

timize each factor during training and post-processing, see

final results Table 6, using spatial pooling on the last convo-

lutional layer gave the best performance for retrieval tasks.

5 10 20 50 100 200 500 1,000 2,000
0

10

20

30

40

50

60

70

80

90

100

of dims

Performance

VOC07

MIT

H3D

UIUC

Pet

CUB

Flowers

VOC action

Stanf. Act

Holidays

Sculptures

Oxford

(a) Effective Dimensionality: It can be observed that almost all tasks

reach their maximum performance at an dimensionality of below 500 indi-

cating a low (class-conditional) effective dimensionality of ConvNet rep-

resentations. The accuracy of all tasks for dimensions under 50 are sur-

prisingly high. Thus, he fact that these transformations are obtained using

a linear transform supports capability of ConvNet in generalization by dis-

entangling underlying generating factors.

5 10 20 50 100 200 300 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of dims

Relative Performance

VOC07

MIT

5 10 20 50 100 200 300 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of dims

Relative Performance

Pet

CUB

Flowers

5 10 20 50 100 200 300 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of dims

Relative Performance

VOC action

Stanf. Act

5 10 20 50 100 200 300 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of dims

Relative Performance

Holidays

Sculptures

Oxford

(b) Saturation: As we move further from the original task more dimen-

sions, performance saturation happens with slightly more dimensions. The

accuracy values of each task are divided by the maximum value for these

plots.

Figure 8: Dimensionality Reduction: We use Principal Component

Analysis (PCA) to linearly transform the ConvNet representations ob-

tained from first fully connected layer (4096 dimensional) into a lower

dimensional space for various tasks.

978-1-4673-6759-2/15/$31.00 ©2015 IEEE

Table 8: Wider Networks: Size details of the different ConvNet widths used in our experiments.

Convolutional layers FC layers

Network NT # nk per layer kernel sizes per layer output dimensions # nh per layer

Tiny 14M 5 (24, 64, 96, 96, 64) (11×11, 5×5, 3×3, 3×3, 3×3) 6×6×64 3 (4096, 1024, 1000)

Small 29M 5 (48, 128, 192, 192, 128) (11×11, 5×5, 3×3, 3×3, 3×3) 6×6×128 3 (4096, 2048, 1000)

Medium 59M 5 (96, 256, 384, 384, 256) (11×11, 5×5, 3×3, 3×3, 3×3) 6×6×256 3 (4096, 4096, 1000)

Large 138M 6 (96, 256, 512, 512, 1024, 1024) (7×7, 7×7, 3×3, 3×3, 3×3, 3×3) 5×5×1024 3 (4096, 4096, 1000)

The description of the notation in the table: NT is the total number of weights parameters in the network, nk is the number of kernels at a convolutional

layer and nh is the number of nodes in a fully connected layer. For each network the output layer applies a SoftMax function and has 1000 output nodes.

The networks are ordered w.r.t. their total number of parameters.

Table 9: Deeper Networks: Size details of the different ConvNet depths used in our experiments.

Convolutional layers FC layers

Network NT # nl × nk per layer kernel sizes per layer output dimensions # nh per layer

Deep8 85M 5 (1× 64, 2× 128, 2× 256) (3×3, 3×3, 3×3, 3×3) 8×8×256 3 (4096, 4096, 1000)

Deep11 86M 8 (1× 64, 3× 128, 4× 256) (3×3, 3×3, 3×3, 3×3) 8×8×256 3 (4096, 4096, 1000)

Deep13 86M 10 (2× 64, 4× 128, 4× 256) (3×3, 3×3, 3×3, 3×3) 8×8×256 3 (4096, 4096, 1000)

Deep16 87M 13 (2× 64, 5× 128, 6× 256) (3×3, 3×3, 3×3, 3×3) 8×8×256 3 (4096, 4096, 1000)

The description of the notation in the table: NT is the total number of weights parameters in the network, nk is the number of kernels at a convolutional

layer, nl is the number of layers with nk kernels, and nh is the number of nodes in a fully connected layer. For each network the output layer applies a

SoftMax function and has 1000 output nodes. The networks are ordered w.r.t. their total number of parameters. Note that these networks are re-trained for

our experiments and the model might differ from that of [34], for instance we do not use multi-scale input and our input image size is 227x227, we do

random cropping as implemented in Caffe, etc.

