Performance

100 |- -
Holidays
o s ©- Holidays
[0~ Paris
90| e o
[} e ® A~ Sculpture
C 3
= = o~ UKB
80| e |
°© ©- Oxford
701
]
i A
60 |-
X
50|
A
. : ‘ ‘ Spatial Pooling Grid
40 Ix1 2%2 3x3 6%6

Figure 7: Spatial Pooling: In order to obtain meaningful results for
retrieval with representations from convolutional layers we applied spatial
pooling of different sizes for different tasks. Objects of more complex
structures such as sculptures and buildings need more spatial resolution
for optimal performance.

Classification ~ Attribute Fine-grained
Dataset VOC07 MIT H3D UIUC Pet Flower Oxfjcul.
SUN 57.8 62.6 450 863 450 759 64.5 392
Places 68.5 69.3 499 888 499 824 70.0 44.2

Table 7: Additional data (source task): Results with the ConvNet
representation optimized for different amount of training data. First row
shows the results when the network is trained on scene recognition dataset
of SUN397 [40] dataset with 100K images. The second row corresponds
to the network trained on Places dataset [47] with 2.5M images annotated
with similar categories. In all cases the ConvNet trained on Places dataset
outperforms the one trained on SUN.

6.0.5 Spatial Pooling

In the last subsection, we observed that the best represen-
tation for retrieval tasks is the first fully connected layer by
a significant margin. We further examined using the last
convolutional layer in its original form as the representation
for retrieval in a simplified scenario but achieved relatively
poor results. In order to make the convolutional layer suit-
able, in this experiment, spatial pooling is applied to the
last convolutional layers output. We use max pooling in
this experiment. An spatial pooling with a grid of 1timesl
is equivalent to a soft bag of words representation over the
whole image, where words are convolutional kernels. Fig-
ure 7 shows the results of different pooling grids for all the
retrieval tasks. For the retrieval tasks, where the shapes are
more complicated like sculptures and historical buildings,
a higher resolution of pooling is necessary. When we op-
timize each factor during training and post-processing, see
final results Table 6, using spatial pooling on the last convo-
lutional layer gave the best performance for retrieval tasks.

978-1-4673-6759-2/15/$31.00 ©2015 IEEE

yPerformance
100 |-

-@- VOC07

- MIT

-@- H3D

-~ UIUC

-@— Pet

- CUB

=&~ Flowers
VOC action
Stanf. Act
Holidays
Sculptures

Oxford

‘# of dims

L L
20 50 100 200

L L
500 1,000 2,000

(a) Effective Dimensionality: It can be observed that almost all tasks
reach their maximum performance at an dimensionality of below 500 indi-
cating a low (class-conditional) effective dimensionality of ConvNet rep-
resentations. The accuracy of all tasks for dimensions under 50 are sur-
prisingly high. Thus, he fact that these transformations are obtained using
a linear transform supports capability of ConvNet in generalization by dis-
entangling underlying generating factors.

Relative Performance Relative Performance

Voo
09 a0
08 0s
07 07
06 06
05 0
04 04
03 03
02 02
01 01
of dims # of dims
T— 50020 300 50 EE U 5010020 30 50
Relative Performance Relative Performance
' s o9 8- 80®
09 e X o o s
08 & E
5 e »
o7 o
o
06 . | 4 0.6 i
05 054
] «
01 p 04
03 0.3 e
02 & 0214

01 01
of dims
0 2 50 100 200 300 500 5 0 20 50 100 200 300 500

of dims

(b) Saturation: As we move further from the original task more dimen-
sions, performance saturation happens with slightly more dimensions. The
accuracy values of each task are divided by the maximum value for these
plots.

Figure 8: Dimensionality Reduction: We use Principal Component
Analysis (PCA) to linearly transform the ConvNet representations ob-
tained from first fully connected layer (4096 dimensional) into a lower
dimensional space for various tasks.

Table 8: Wider Networks: Size details of the different ConvNet widths used in our experiments.

Convolutional layers FC layers
Network Np # nyg per layer kernel sizes per layer output dimensions ~ # ny, per layer
Tiny 14M 5 (24,64, 96,96, 64) (11x11,5%5,3%3,3x3,3%3) 6x6x64 3 (4096, 1024, 1000)
Small 29M 5 (48,128,192, 192, 128) (11x11,5%5,3x3,3x%3,3x%x3) 6x6x128 3 (4096, 2048, 1000)
Medium 59M 5 (96,256, 384, 384, 256) (11x11,5%5,3x3,3%x3,3%x3) 6x6x256 3 (4096, 4096, 1000)
Large 138M 6 (96,256,512,512,1024,1024) (7x7,7x7,3%3,3x3,3%3,3%x3) 5x5x1024 3 (4096, 4096, 1000)

The description of the notation in the table: N7 is the total number of weights parameters in the network, n, is the number of kernels at a convolutional
layer and ny, is the number of nodes in a fully connected layer. For each network the output layer applies a SoftMax function and has 1000 output nodes.
The networks are ordered w.r.t. their total number of parameters.

Table 9: Deeper Networks: Size details of the different ConvNet depths used in our experiments.

Convolutional layers FC layers

Network Nt # ny X ng per layer kernel sizes per layer output dimensions np, per layer

#

Deep8 8M 5 (1 x64,2x128,2 x256) (3x3,3%x3,3x3,3x3) 8x8x256 3 (4096, 4096, 1000)
3
3

Deepl 1 86M 8 (1 x64,3 x128,4 x 256) (3x3,3%x3,3%x3,3x3) 8x8x256 (4096, 4096, 1000)
Deepl3 86M 10 (2 x 64,4 x128,4 x256) (3x3,3x3,3%x3,3x3) 8x8x256 (4096, 4096, 1000)
Deepl6 87M 13 (2x64,5x128,6 x 256) (3x3,3x3,3%x3,3%x3) 8x8x256 3 (4096, 4096, 1000)

The description of the notation in the table: N is the total number of weights parameters in the network, n, is the number of kernels at a convolutional
layer, n; is the number of layers with n, kernels, and ny, is the number of nodes in a fully connected layer. For each network the output layer applies a
SoftMax function and has 1000 output nodes. The networks are ordered w.r.t. their total number of parameters. Note that these networks are re-trained for
our experiments and the model might differ from that of [34], for instance we do not use multi-scale input and our input image size is 227x227, we do
random cropping as implemented in Caf fe, etc.

