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Content of this supplementary material

1. The generation of larger segments in Sec. 4.2.

2. Geometric-preserving cropping for data augmentation in Sec. 6.

3. The details about the weight matrix in Sec.2 and Eqn. (5).

4. Our semantic label mapping in the experiment section.

5. Additional qualitative results.

6. A video giving an application demo of lens blur.

1. Generating larger segments for context.
In Sec. 4.2, to reduce ambiguity of local region appearance, we perform semantic and depth regression over larger seg-

ments sL, instead of directly on superpixels. For generating the segments, we consider the multi-level segmentation, which is
an important strategy to obtain different level of context. To generate compact, semantic meaningful segments, we consider
the information including the metric from appearance, semantic edges and spatial relationships. Formally, kernel k-means is
performed to cluster the superpixels {si}Ni=1 into multiple levels, consisting of 30, 50, 100 segments in our experiments (as
stated in Sec. 4.2), using the same distance metric as in Eqn. (4),

dista(s, t) = distg(s, t) + λa‖fs − ft‖, where distg(s, t) = min
P∈Pst

∑
p∈P

de(p, p+ 1). (1)

distg(s, t) is the minimum distance over all possible path Pst from superpixel s to t. Here, de(p, p + 1) is the summed
edge map value (produced by by [2]) over the connecting boundary of the two adjacent superpixels p and p + 1. fs is a 12
dimensional vector describing the local appearance feature of the superpixel s. It is composed of the mean and covariance of
the pixels rgb values inside the superpixel s.

2. Geometric-preserving cropping for RGB-D images
Cropping the image is a major data augmentation strategy to generate more training data for the CNN learning. However

in depth estimation, as stated in [1], cropping does not preserve the geometry property of the original depth image. In [1],
the method divided the original depth by the value s which is the percentage of the cropped image area over the entire image.
However, this operation also does not respect the geometry and might bring further distortion.

Here, we propose a geometric-preserving cropping strategy in which the new depth values in the cropped regions keep the
original geometry properties.

Proposition 1. With known camera parameter, given a RGB-D image, for the image cropping operation keeping the aspect
ratio, the new camera center and the depth after cropping can be inferred.
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Figure 1. Ilustration of the proof.

Proof: As showed in Fig. 1, cropping operation is equiv-
alent to moving the camera closer with no rotation. Here,
for simplicity, we use a normalized camera matrix for

this proof, i.e. C =

1 0 0
0 1 0
0 0 1

f

, and assume we know

the focal length f . It is easy to extend this approach
to other general camera matrix cases. For a pixel x =
{u, v} in an image, given its depth d, we are able to get
the 3D coordination of the pixel in the camera coordi-
nate system, i.e. x3 = d vx

‖vx‖ = {x1, x2, x3}, where
vx = {u, v, f} is in the ray direction from camera cen-
ter to the pixel. After cropping, suppose the new camera
center is translated to c = {c1, c2, c3, 1}T in the original
camera coordinate system, which is the unknown vari-
ables. Meanwhile, on the cropped image, we know the new location of the pixel x, which is x′ = {u′, v′}. Then, the
new camera center c should locate at the line passing point x3 with the direction {u′, v′, f}. This constraint provides two
equations for the new camera center c as the collinearity of c and x3 withholds, i.e.

c1 − x1
u′

=
c2 − x2
v′

=
c3 − x3
f

⇒ Axc = 0; where Ax =

( 1
u′ − 1

v′ 0 −x1

u′ +
x2

v′
1
u′ 0 − 1

f −x1

u′ +
x3

f

)
Thus, by considering all the pixels within the cropped image, we can find the optimal c through minimizing Ac = 0 where A
is the matrix concatenating all the constraints from pixels. This is a standard least square problem and can be solved through
SVD or any matrix decomposition method. In practical, we can solve this simply by evenly sampling 200 pixels from the
cropped image.

At last, in data augmentation for the global CNN with joint depth and semantic training, in addition to the crop size of
[228, 304], we add one extra crop size [261, 196], and resize the cropped images to [228, 304].

3. Weight matrix for the edge potential

In Eqn. (5), we have a semantic weight w(ls, lt) as a function weighting the depth smoothness between two adjacent
segments s, t when their semantic labels are ls, lt. All the semantic weights form a weight matrix W, which is a k × k
matrix where k is the number of semantic labels (k = 5 in our case). The intuition is that the depth smoothness between two
adjacent segments should vary in terms of their semantic labels. For example, depth smoothness might be highly required
for the segment pairs within ground regions, but might not be necessary for adjacent segments between ground and object
regions.

In our approach, we propose to learn the matrix W through sampling adjacent segment pairs with different semantic
labels. For getting the weight of a particular semantic label pair, we compute the average depth gradient value along the
overlapping edge from all the corresponding pairs. Formally, the weight w(lm, ln) is computed as,

w(lm, ln) = exp

−
 1

N

N∑
j=1

∑
i∈sj∩tj

|∇Dj(i)|

 /σw


where sj , tj are the jth superpixel pair that having lsj = lm and ltj = ln or the other way around. N is number of the
superpixel pairs. i is the pixel index. Dj is the depth map including the superpixel pair sj , tj . σw is a scale parameter which
is set to be the average overlapping boundary length of all the superpixels pairs. We set the weight within the same class as
one except the class of objects as its high variance. Some label pairs never appear in two adjacent segments in the training
data (e.g., Ground and Ceiling). For the weight of these pairs, we set it to be a very large value wmax = 1000 to avoid
labelling two adjacent segments with those label pairs that rarely occur.

Finally, after computed the score, we normalize the weight in the range of [0.2, 1] without considering wmax, resulting in
a final weight matrix as,



Ground Vertical Ceiling Furnitures Objects
Ground 1 0.812 1000 0.453 0.335
Vertical 0.812 1 0.891 0.719 0.651
Ceiling 1000 0.891 1 1000 0.2
Furnitures 0.453 0.719 1000 1 0.412
Objects 0.335 0.651 0.2 0.412 0.4

In the weight matrix, we see a high smoothness is required for class among Ground, Vertical and Ceiling, while a relative
low weight for class between Ground and Objects.

4. The semantic label mapping
The following table shows the label mapping from the original semantic labels in the NYU v2 dataset to our defined five

labels.

Our Label Original Label
Ground floor, floor mat
Vertical classroom board, blinds, window cover, door frame, door curtain, wardrobe, garage door,

cabinet, wall, wall decoration, wall stand, dishwasher, door, projector screen,
mirror, mailshelf, bookshelf, storage shelvesbooks, refrigerator

Ceiling ceiling,roof
Furnitures table, desk, bed, coffee table, mattress, sofa
Objects All the rest

5. Additional qualitative results
In Fig. 2, we show more comparison results with the two state-of-the-art methods, i.e. DC Depth [3] and Depth CNN [1].

In Fig. 3 and Fig. 4, we show additional qualitative results by our algorithm including the semantic and depth output from the
global CNN, and the joint HCRF combing both global and local inference. We can see that the results of joint HCRF contain
much more fine-level details and structures than the global results.

6. An application demo of depth filter for lens blur
In the attached video, we provide a demo showing a potential application of our estimated depth map, i.e. depth filter for

lens blur. At Left-top, we show the original image, and at bottom row, we show our segmented results and estimated depth
map. By clicking at the focusing location on the original image, we show the lens blurred results at the right top. Users may
generate their favourite results by choosing different focusing locations or selecting different sizes of the blur kernels.

We also uploaded a high quality video onto YouTube at https://www.youtube.com/watch?v=v6---biFPds&
feature=youtu.be in case you can not open the video.

https://www.youtube.com/watch?v=v6---biFPds&feature=youtu.be
https://www.youtube.com/watch?v=v6---biFPds&feature=youtu.be


Image DC Depth [3] D. CNN [1] Ours depth Depth GT Ours semantic Semantic GT.

Figure 2. Additional qualitative comparison with other approaches. Depth maps are normalized by respective max depth (Best view in
color).



Image Global CNN HCRF Depth Depth GT Global Semantics HCRF Semantic GT.

Figure 3. Additional qualitative results.



Image Global CNN HCRF Depth Depth GT Global Semantics HCRF Semantic GT.

Figure 4. Additional qualitative results.
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