
Memory Efficient Max Flow for Multi-label Submodular MRFs

Thalaiyasingam Ajanthan, Richard Hartley

Australian National University & NICTA∗

Canberra, Australia

Mathieu Salzmann

CVLAB, EPFL

Lausanne, Switzerland

Abstract

Multi-label submodular Markov Random Fields (MRFs)

have been shown to be solvable using max-flow based on an

encoding of the labels proposed by Ishikawa, in which each

variable Xi is represented by ℓ nodes (where ℓ is the num-

ber of labels) arranged in a column. However, this method

in general requires 2 ℓ2 edges for each pair of neighbouring

variables. This makes it inapplicable to realistic problems

with many variables and labels, due to excessive memory

requirement. In this paper, we introduce a variant of the

max-flow algorithm that requires much less storage. Conse-

quently, our algorithm makes it possible to optimally solve

multi-label submodular problems involving large numbers

of variables and labels on a standard computer.

1. Introduction

Ishikawa [13] introduced a max-flow-based method to

globally minimize the energy of multi-label MRFs with

convex edge terms. In [22], this method was extended

to energy functions satisfying the multi-label submodular-

ity condition, analogous to the submodularity condition for

MRFs with binary labels. In the general case, however,

this method requires 2 ℓ2 directed edges for each pair of

neighbouring variables. For instance, for a 1000× 1000, 4-

connected image with 256 labels, it would require approxi-

mately 1000×1000×2×2562×2×4 ≈ 1000 GB of memory

to store the edges (assuming 4 bytes per edge). Clearly, this

is beyond the storage capacity of most computers.

In this paper, we introduce a variant of the max-flow al-

gorithm that requires storing only two ℓ-dimensional vec-

tors per variable pair instead of the 2 ℓ2 edge capacities

of the standard max-flow algorithm. In the example dis-

cussed above, our algorithm would therefore use only 4 GB

of memory for the edges. As a result, our approach lets us

optimally solve much larger problems.

More specifically, in contrast to the usual augmenting

path algorithm [8], we do not store the residual edge ca-

pacities at each iteration. Instead, our algorithm records

∗NICTA is funded by the Australian Government as represented by the

Department of Broadband, Communications and the Digital Economy and

the ARC through the ICT Centre of Excellence program.

two ℓ-dimensional flow-related quantities for every pair of

neighbouring variables. We show that, at any stage of the al-

gorithm, the residual edge capacities can be computed from

these flow-related quantities and the initial edge capacities.

This, of course, assumes that the initial capacities can be

computed by some memory-efficient routine, which is al-

most always the case in computer vision.

The optimality of Ishikawa’s formalism made it a

method of choice as a subroutine in many approxi-

mate energy minimization algorithms, such as multi-label

moves [26, 27] and IRGC [1]. Since our approach can

simply replace the standard max-flow algorithm [5] in

Ishikawa-type graphs, it also allows us to minimize the en-

ergy of much larger non-submodular MRFs in such approx-

imate techniques. Furthermore, due to the similarity to stan-

dard max-flow, our algorithm can easily be extended to han-

dle dynamic MRFs [16] and also be accelerated using the

parallel max-flow technique [24].

We demonstrate the effectiveness of our algorithm on

the problems of stereo correspondence estimation and im-

age inpainting. Our experimental evaluation shows that

our method can solve much larger problems than stan-

dard max-flow on a standard computer and is an order of

magnitude faster than state-of-the-art message-passing al-

gorithms [17, 18, 19]. Our code is available at https:

//github.com/tajanthan/memf.

2. Preliminaries
Let Xi be a random variable taking label xi ∈ L. A

pairwise MRF defined over a set of such random variables

can be represented by an energy of the form

E(x) =
∑

i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) , (1)

where θi and θij denote the unary potentials (i.e., data costs)

and pairwise potentials (i.e., interaction costs), respectively.

Here, V is the set of vertices, e.g., corresponding to pixels

or superpixels in an image, and E is the set of edges in the

MRF, e.g., encoding a 4-connected or 8-connected grid over

the image pixels.

In this work, we consider a pairwise MRF with an or-

dered label set L = {0, 1, · · · , ℓ − 1}, and we assume that

15867

https://github.com/tajanthan/memf
https://github.com/tajanthan/memf


Figure 1: Example of an Ishikawa graph. The graph in-

corporate edges with infinite capacity from Ui:λ to Ui:λ+1,

not shown in the graph. Here the cut corresponds to the

labeling x = {1, 2} where the label set L = {0, 1, 2, 3}.

the pairwise terms are multi-label submodular [22]:

θij(λ
′, µ) + θij(λ, µ

′)− θij(λ, µ)− θij(λ
′, µ′) ≥ 0 , (2)

for all λ, λ′, µ, µ′ ∈ L, where λ < λ′ and µ < µ′. Further-

more, we assume that the pairwise potentials can be com-

puted either by some routine or can be stored in an efficient

manner. In other words, we assume that we do not need to

store each individual pairwise term. Note that, in computer

vision, this comes at virtually no loss of generality.

2.1. The Ishikawa graph

Ishikawa [13] introduced a method to represent the

multi-label energy function (1) in a graph. The basic idea

behind the Ishikawa construction is to encode the label

Xi = xi of a vertex i ∈ V using binary-valued random vari-

ables Ui:λ, one for each λ ∈ {1, · · · , ℓ − 1}. In particular,

the encoding is defined as ui:λ = 1 if and only if xi ≥ λ,

and 0 otherwise. The Ishikawa graph is then an st-graph

Ĝ = (V̂ ∪ {0, 1}, Ê), consisting of one node for each Ui:λ,

along with source and terminal nodes1, with edges joining

neighbouring nodes, as shown in Fig. 1. Note that the nodes

Ui:ℓ and Ui:0 are identified with node 0 and node 1 respec-

tively. We denote the Ishikawa edges by eij:λµ ∈ Ê (con-

tains edges in both directions) and their capacities by φij:λµ.

We also denote by ei:λ the downward edge Ui:λ+1 → Ui:λ.

In an st-graph, a labeling x is represented by a “cut”

in the graph (a “cut” partitions the nodes into two disjoint

subsets V̂0 and V̂1, with 0 ∈ V̂0 and 1 ∈ V̂1). Then, the

value of the energy function E(x) is equal to the sum of the

capacities on the edges from V̂0 to V̂1. In an Ishikawa graph,

if the edge ei:λ is in the “cut”, then vertex i takes label λ.

Since each vertex i takes exactly one label xi, exactly one

edge ei:λ must be in the min-cut. This is ensured by having

infinite capacity for each upward edge Ui:λ → Ui:λ+1 in

each column i.

1We denote them by 0 and 1, but some authors denote them by s and t.

Finding the minimum energy labeling is a min-cut prob-

lem, which can be solved optimally using max-flow [8]

when the edge capacities are non-negative. As shown

in [22], a multi-label submodular function can be repre-

sented by an Ishikawa graph with non-negative edge capaci-

ties and can therefore be minimized optimally by max-flow.

2.2. Max flow

The most popular max-flow algorithm in computer vi-

sion [5] is an augmenting path algorithm that finds a path

from node 0 to node 1 through positive edges (called an aug-

menting path) and then pushes the maximum flow without

exceeding the edge capacities (called augmentation). The

augmentation operation changes the edge capacities in the

graph, and therefore, the residual graph needs to be stored.

That is, when applied to the Ishikawa graph, the max-flow

algorithm stores 2 ℓ2 values per pair of neighbouring vari-

ables. For large numbers of labels and of variables, the

memory requirement is high and, in many practical prob-

lems, exceeds the capacity of most computers.

2.3. Our idea

Let us assume that the max-flow algorithm is applied to

the Ishikawa graph. As the algorithm proceeds, the capac-

ities on the edges in the graph change in response to the

flow. Here, instead of storing the residual graph, we pro-

pose recording the flow that has been applied to the graph.

However, since storing the flow would also require

2 ℓ2 values per variable pair, we propose recording two ℓ-

dimensional quantities related to the flow between a pair of

variables. More precisely, for each directed edge2 (i, j) ∈
E+, we record the sum of outgoing flows from each node

Ui:λ to the nodes Uj:µ for all µ ∈ {1, · · · , ℓ − 1}. We call

this quantity an exit-flow, denoted by Σij:λ (defined below

in Eq. 4). We show that these exit-flows allow us to recon-

struct a permissible flow (defined below in Def. 3.2), which

in turn lets us compute the residual edge capacities from the

initial ones. Importantly, while flow reconstruction is not

unique, we show that all such reconstructions are equiva-

lent up to a null flow (Def. 3.3), which does not affect the

energy function. Note that this idea can be applied to any

augmenting path algorithm, as long as the residual graph

can be rapidly constructed.

For increased efficiency, we then show how finding an

augmenting path can be achieved in a simplified Ishikawa

graph that amalgamates the nodes in each column into

blocks. We then perform augmentation, which translates to

updating our exit-flows, in this simplified graph. As a side

effect, since an augmenting path in our simplified graph cor-

responds to a collection of augmenting paths in the Ishikawa

graph, our algorithm converges in fewer iterations than the

standard max-flow implementation of [5].

2E+ denotes the set of directed edges between the vertices in the MRF,

i.e., if (i, j) ∈ E then, (i, j) ∈ E+ and (j, i) ∈ E+.

5868



3. Memory efficient max flow

We now introduce our memory efficient max flow algo-

rithm, which minimizes multi-label submodular MRF en-

ergies with pairwise interactions. As mentioned in Sec-

tion 2.3, our algorithm is also an augmenting path algo-

rithm. However, instead of storing the residual graph, we

propose storing exit-flows, which, at any stage of the algo-

rithm, would allow us to compute the residual graph. In the

remainder of this section, we first show how the cumula-

tive flow can be stored in a memory efficient manner, and

then turn to the problem of finding an augmenting path and

performing augmentation.

3.1. Memory efficient flow encoding

Let us assume that the max-flow algorithm is applied to

the Ishikawa graph. At some point in the algorithm, flow

has passed along many of the edges of the graph.

Definition 3.1. A flow is a mapping ψ : Ê → IR, de-

noted by ψij:λµ for the edges eij:λµ, that satisfies the anti-

symmetry condition ψij:λµ = −ψji:µλ for all eij:λµ ∈ Ê .

A flow is called conservative3 if the total flow into a node

is zero for all nodes, except for the source and the terminal,

i.e., ∑

j,µ|eji:µλ∈Ê

ψji:µλ = 0 ∀Ui:λ ∈ V̂ . (3)

Given ψ, the residual capacities of the Ishikawa graph

are updated as φ = φ0 − ψ, where φ0 represents the initial

edge capacities. Furthermore, we call the flow restricted to

each column column-flows, which we denote by ψi:λ ; i ∈
V, λ ∈ L.

At first sight, it might seem that, to apply the max-

flow algorithm, it is necessary to keep track of all the val-

ues ψij:λµ, which would require the same order of storage

as recording all the edge capacities. Below, however, we

show that it is necessary to store only O(ℓ) values for each

(i, j) ∈ E , instead of O(ℓ2).
To this end, for each (i, j) ∈ E+ and λ ∈ {1, · · · , ℓ−1},

we define an exit-flow as

Σij:λ =
∑

µ

ψij:λµ . (4)

We will show that these exit-flows permit the flow ψ to be

reconstructed up to equivalence.

Now, let us define some additional properties of flow,

which will be useful in our exposition.

Definition 3.2. A flow ψ is called permissible if φ0ij:λµ −

ψij:λµ ≥ 0 for all eij:λµ ∈ Ê .

3A conservative flow is often referred to as a flow in the literature.

(a) ψ (b) ψ′ (c) ψ ≡ ψ′

Figure 2: An example of two equivalent flow representations

with the same exit-flows. Note that each red arrow repre-

sents the value ψij:λµ and the opposite arrows ψji:µλ are

not shown. Furthermore, the exit-flows Σ are shown next to

the nodes and the initial edges φ0 are not shown. In (c), the

flow ψ′ is obtained from ψ by passing flow around a loop.

Definition 3.3. A flow ψ is called null if the total flow into

a node is zero for all nodes including the source and the

terminal, i.e., satisfies Eq. 3 for all Ui:λ ∈ V̂ ∪ {0, 1}.
Note that a null flow does not change the energy function

represented by the st-graph and it is identical to passing

flow around loops. Also, if ψ is a null flow then so is −ψ.

Furthermore, note that the energy function encoded by

an st-graph is a quadratic pseudo-boolean function [4], and

a reparametrization of such a function is identical to a null

flow in the corresponding st-graph.

Lemma 3.1. Two sets of capacities φ and φ′ represent the

same energy function exactly (not up to a constant), written

as Eφ ≡ Eφ′ , if and only if φ′ − φ is a null flow.

Proof. This lemma is a restatement of the reparametrization

lemma of [17, 31] in the context of st-graphs.

Let φ and φ′ be two sets of residual capacities obtained

from an initial set of capacities φ0 by passing two flows ψ

and ψ′, i.e., φ = φ0 − ψ and φ′ = φ0 − ψ′. If φ and φ′ are

equivalent, then, by Lemma 3.1, (φ0 − ψ) − (φ0 − ψ′) =
ψ′ − ψ is a null flow. Hence ψ′ can be obtained from ψ by

passing flow around loops in the graph. See Fig. 2.

We can now state our main theorem.

Theorem 3.1. Let φ0 be the initial capacities of an

Ishikawa graph, and let Σ be a set of exit-flows. Suppose

that ψ and ψ′ are two flows compatible with Σ, meaning

that (4) holds for both ψ and ψ′, and that ψ and ψ′ have

identical column-flows. Then Eφ0−ψ ≡ Eφ0−ψ′ .

The idea is then as follows. If a permissible conservative

flow ψ is obtained during an augmenting path flow algo-

rithm, but only the exit-flows Σij:λ are retained for each

(i, j) ∈ E+ and label λ, then one wishes, when required, to

reconstruct the flow ψ on a given edge (i, j) ∈ E . Although

the reconstructed flow ψ′ may not be identical with the flow

ψ, the two will result in equivalent energy functions (not

just equal up to a constant, but exactly equal for all assign-

ments). In the augmenting path algorithm, the current flow

5869



Algorithm 1 Flow reconstruction

Require: Given a directed edge (i, j) ∈ E+

for λ← ℓ− 1 to 1 do

if Σij:λ ≥ 0 then

for µ← ℓ− 1 to 1 do

if Σji:µ ≤ 0 then

ψ′
ij:λµ ← min(|Σij:λ|, φ

0
ij:λµ, |Σji:µ|)

ψ′
ji:µλ ← −ψ

′
ij:λµ

Σji:µ ← Σji:µ − ψ
′
ji:µλ

Σij:λ ← Σij:λ − ψ
′
ij:λµ

if Σij:λ = 0 then

break

Figure 3: Given φ0 and Σ (left), flow reconstruction is for-

mulated as a max-flow problem (right). Here the nodes with

positive exit-flows are connected to the source (0) and those

with negative exit-flows are connected to the terminal (1).

values are only needed temporarily, one edge at a time, to

find a new augmenting path, and hence do not need to be

stored, as long as they can be rapidly computed.

Now we prove Theorem 3.1.

Proof. Given a flow ψ, let us denote its restriction to the

edges eij:λµ for all λ, µ ∈ {1, . . . , ℓ−1} for some (i, j) ∈ E
by ψij , i.e. restriction to cross edges only. Since both ψij
and ψ′

ij satisfy Eq. 4, ψ′
ij −ψij is a null flow. Furthermore,

since both ψ and ψ′ have identical column-flows, ψ′−ψ =
(φ0 − ψ) − (φ0 − ψ′) is a null flow and, by Lemma 3.1,

Eφ0−ψ ≡ Eφ0−ψ′ .

3.1.1 Flow reconstruction

Given the set of exit-flows Σ, the objective of the flow re-

construction problem is to find a permissible flowψ′ satisfy-

ing Eq. 4. Note that there exists a permissible conservative

flow ψ compatible with Σ and hence we find ψ′ such that

ψ′ − ψ is a null flow. We do this by considering one edge

(i, j) ∈ E at a time and reconstruct the flow by formulating

a small max-flow problem.

Considering all the nodes Ui:λ and Uj:µ for a given pair

(i, j), we join them with edges with initial capacities φ0ij:λµ.

Nodes with positive exit-flow Σij:λ are joined to the source

with edges of capacities |Σij:λ|. Similarly, those with neg-

ative exit-flow are joined to the terminal. See Fig. 3.

Note that, in this network, the edges from the source

can be thought of as “supply” and the edges to the termi-

nal can be thought of as “demand”. Since the total sup-

ply equals the total demand in this network and there exists

a permissible flow ψij compatible with Σ (i.e., satisfying

the supply-demand equality), the maximum flow solution of

this network ψ′
ij is compatible with Σ, i.e., satisfies Eq. 4.

In fact we are interested in non-negative residual capacities

φ′ij = φ0ij −ψ
′
ij which are readily available in this network.

Now one possible max-flow algorithm is to find all the

augmenting paths in this network and push maximum per-

missible flow through them. Note that all minimal length

(length 3) augmenting paths can be found by calling Algo-

rithm 1 twice, first for the directed edge i→ j and then for

j → i. In our experiments such a two-pass procedure has

always found a permissible flow ψ′
ij satisfying Eq. 4. How-

ever, in general, this may require finding longer augmenting

paths, meaning that one may need to run a max-flow algo-

rithm on this small st-graph. While this graph has O(ℓ)
nodes and O(ℓ2) edges, this remains perfectly tractable,

since we only consider one edge (i, j) at a time. Therefore,

ultimately, flow reconstruction can be done efficiently.

At this point, given the initial capacities φ0 and the set

of exit-flows Σ, we have shown how to reconstruct the non-

negative residual edge capacities φ′. In fact, in addition to

the set of exit-flows Σ, we need to store the column-flows

ψi:λ ; i ∈ V , λ ∈ L, to completely reconstruct the residual

graph. This requires O((|V|+ |E|) ℓ) values to be stored.

3.2. Efficiently finding an augmenting path

Our algorithm follows a similar procedure as the usual

max-flow, in that it iteratively finds an augmenting path and

then pushes the maximum permissible flow through it. By

contrast with the usual max-flow, however, we do not store

the Ishikawa graph. Instead, we find an augmenting path in

a simplified graph, whose construction is detailed below.

Given the capacities φ, we rely on the fact that there ex-

ists a label λ such that φi:λ = 0 for each i ∈ V . In fact, it

is easy to see that in each column i, if all φi:λ are positive,

then there exists a trivial augmenting path from Ui:ℓ to Ui:0,

and the minimum along the column can be subtracted from

each φi:λ. Now, at each column i, we partition the nodes

Ui:λ for all λ ∈ {1, · · · , ℓ − 1} into a set of blocks, such

that each node in a block is connected with positive edges

ei:λ. Let us denote these blocks by Bi:γ , where γ is indexed

from bottom to top starting from 0. Note that there is no

edge between Bi:γ and Bi:γ±1. As depicted by Fig. 4, our

simplified graph then contains only the blocks and the edges

between the blocks.

The edges between the blocks in the simplified graph are

obtained as follows. Let us consider a directed edge (i, j) ∈
E+. We add an edge Bi:γ → Bj:δ , where δ is the smallest

value such that φij:λµ is positive for some Ui:λ ∈ Bi:γ and

Uj:µ ∈ Bj:δ . While doing this, we also enforce that there is

no edge Bi:γ′ → Bj:δ′ such that γ′ > γ and δ′ < δ. The

reasoning behind this is that, because of the upward infinite-

capacity edges between the nodes Ui:λ and Ui:λ+1, we have

the following:

5870



Figure 4: To find an augmenting path in a memory effi-

cient manner, we propose a simplified representation of the

Ishikawa graph in terms of blocks corresponding to consec-

utive non-zero edges in each column i.

1. If a node Uj:µ can be reached from Ui:λ through pos-

itive edges, then the nodes Uj:µ′ , for all µ′ ≥ µ, can

also be reached.

2. If a node Uj:µ can be reached from Ui:λ through posi-

tive edges, then it can also be reached from the nodes

Ui:λ′ , for all λ′ ≤ λ.

Hence, an edge Bi:γ → Bj:δ indicates the fact that there

is some positive flow possible from any node Ui:λ ∈ Bi:γ′ ,

for all γ′ ≤ γ, to any node Uj:µ ∈ Bj:δ′ , for all δ′ ≥ δ. In

other words, the set of edges obtained by this procedure is

sufficient.

Now, the relationship between augmenting paths in the

original Ishikawa graph and in our simplified graph can be

characterized by the following theorem.

Theorem 3.2. Given the set of Ishikawa capacities φ, there

is an augmenting path in the simplified graph if and only if

there exists an augmenting path in the Ishikawa graph.

Proof. In supplementary material.

Note that the simplified graph can only be used to find an

augmenting path; the quantity of the maximum permissible

flow cannot be determined in this graph. Therefore, the ca-

pacity of an edge Bi:γ → Bj:δ is not important, but it is

important to have these edges. Note also that the simplified

graph is constructed incrementally for each edge (i, j) ∈ E .

Hence, it only requires us to store the Ishikawa edge capaci-

ties φij corresponding to the edge (i, j). Furthermore, since

the simplified graph Gs is sparse, an augmenting path can be

found fairly quickly.

In addition, similar to the BK algorithm, we find an aug-

menting path Ps using a Breadth First Search (BFS) scheme

and maintain the search tree throughout the algorithm, by

repairing it whenever the simplified graph is updated. More

specifically, we grow the search tree from the source (node

0), in a breadth first manner, and if the terminal (node 1) is

reached, then an augmenting path is found.

3.3. Augmentation

Now, given an augmenting path Ps in the simplified

graph, we want to push the maximum permissible flow

through it. More specifically, since Ps corresponds to a set

of augmenting paths {ps} in the Ishikawa graph, we will

push the maximum flow through each path ps, until no such

path exists. This could be achieved by constructing the sub-

graph Ĝp of the Ishikawa graph corresponding to the aug-

menting path Ps, and then finding each of the augmenting

path ps by searching in Ĝp. This would require us to either

store Ĝp (not memory efficient) or call the flow reconstruc-

tion algorithm too many times.

Instead, we propose breaking down the augmentation op-

eration in the simplified graph into a sequence of flow-loops

and a subtraction along a column. Then, the maximum flow

through the path can be pushed in a greedy manner, by push-

ing the maximum flow through each flow-loop. Before de-

scribing this procedure in detail, we introduce the following

definitions.

Definition 3.4. A flow-loop m(λ, µ, α) in the Ishikawa

graph is defined as the following sequence of operations:

First, a value α is pushed down the left column from Ui:ℓ to

Ui:λ, then across from Ui:λ to Uj:µ, and finally up the right

column from Uj:µ to Uj:ℓ. Thus, applying the flow-loop

m(λ, µ, α) corresponds to replacing φ by φ+∆, where

∆i:λ′ = −α ∀λ′ ≥ λ ,

∆ij:λµ = −α ,

∆ji:µλ = α ,

∆j:µ′ = α ∀µ′ ≥ µ .

Definition 3.5. A flow-loop m̃(γ, δ, α) in the simplified

graph Gs is defined by the following sequence of operations:

First a value α is pushed down the left column from Ui:ℓ to

Bi:γ , then across from Bi:γ to Bj:δ , and finally up the right

column from Bj:δ to Uj:ℓ.

Note that, for a flow-loop m̃(γ, δ, α) to be permissi-

ble, block Bi:γ must contain node Ui:ℓ−1. Note also that

the flow-loop m̃(γ, δ, α) can be thought of as a summa-

tion of flow-loops m(λ, µ, α′), where Ui:λ ∈ Bi:γ and

Uj:µ ∈ Bj:δ′ , for all δ′ ≥ δ (see Fig. 5).

Given these definitions, one can easily see that the aug-

mentation operation along the path Ps can be broken down

into a sequence of flow-loops m̃(γ, δ, α) and a subtraction

along the last column k, as illustrated in Fig. 6. Now, we

push the maximum permissible flow through Ps, using the

following greedy approach.

For each edge Bi:γ → Bj:δ that is part of the path Ps,

we apply a flow-loop m̃(γ, δ, αij), where αij is the maxi-

mum permissible flow through the edge Bi:γ → Bj:δ . In

fact, applying this flow-loop translates to reconstructing the

5871



Figure 5: An example flow-loop m̃(1, 0, αij) in the simpli-

fied graph (left) is equivalent to the summation of two flow-

loops m(3, 1, α1) and m(4, 4, α2) in the Ishikawa graph

(right), with αij = α1 + α2.

Figure 6: An augmentation operation is broken down into a

sequence of flow-loops m̃(γ, δ, α), and a subtraction along

the column k. The augmenting path Ps is highlighted in red.

Ishikawa edge capacities φij corresponding to edge (i, j)
and then applying flow-loops m(λ, µ, α′) for all λ ≥ λ̌ and

µ ≥ µ̌, starting from λ̌ and µ̌, until no permissible flow-

loop m(λ, µ, α′) exists, with λ̌ and µ̌ the smallest values

such that Ui:λ ∈ Bi:γ and Uj:µ ∈ Bj:δ . Finally, in the last

column k, all the values φk:λ are positive, and the minimum

along column k is subtracted from each φk:λ. It is easy

to see that this approach pushes the maximum permissible

flow through the path Ps.

Since, for each edge (i, j), we do not store all the 2 ℓ2

capacities, but only the 2 ℓ exit-flows Σ, augmentation must

then also update these values. Fortunately, there is a di-

rect relation between the flow-loops and Σ. To see this, let

us consider the example flow-loop m̃(1, 0, αij) shown in

Fig. 5. Applying this flow-loop updates the corresponding

exit-flows as

Σij:3 = Σij:3 + α1 , (5)

Σji:1 = Σji:1 − α1 ,

Σij:4 = Σij:4 + α2 ,

Σji:4 = Σji:4 − α2 .

Algorithm 2 Memory Efficient Max Flow (MEMF)

Require: φ0 ⊲ Initial Ishikawa capacities

Σ← 0, T ← ∅ ⊲ Initialize exit-flows and search tree

Gs ← simplify graph(φ0) ⊲ Initial simplified graph

repeat

(T, Ps)← augmenting path(Gs, T ) ⊲ Sec. 3.2

Σ← augment(Ps, φ
0,Σ) ⊲ Sec. 3.3

for each edge (i, j) ∈ E affected by augmentation do

φij ← compute edges(φ0,Σ, i, j) ⊲ Sec. 3.1.1

Gijs ← simplify graph(φij , i, j) ⊲ Sec. 3.2

T ← repair tree(T,Gs) ⊲ Repair search tree

until no augmenting paths possible

return get labelling(T ) ⊲ Read from search tree

Similar updates can be done for all flow-loops in our proce-

dure. Note that the edge Bi:γ → Bj:δ represents a collec-

tion of possible paths from all the nodes Ui:λ ∈ Bi:γ to all

the nodes Uj:µ ∈ Bj:δ′ , for all δ′ ≥ δ. Therefore, unlike

in the full Ishikawa graph, after applying a flow-loop, the

portion of the graph Gijs corresponding to edge (i, j) ∈ E
needs to be reconstructed. This, however, can be done in

a memory efficient manner, since it only involves one edge

(i, j) at a time.

3.4. Summary

Our memory efficient max-flow (MEMF) method is

summarized in Algorithm 2. Let us briefly explain the sub-

routines below.

simplify graph: Given the initial Ishikawa capacities φ0,

this subroutine constructs the simplified graph by amalga-

mating nodes into blocks as described in Section 3.2. If the

input to the subroutine is the Ishikawa capacities φij cor-

responding to the edge (i, j) ∈ E , then it constructs the

simplified graph portion Gijs .

augmenting path: Given the simplified graph Gs and the

search tree T , this subroutine finds an augmenting path Ps
by growing the search tree, as discussed in Section 3.2.

augment: Given the path Ps, this subroutine pushes the

maximum permissible flow through it by applying flow-

loops m̃(γ, δ, α) and then subtracting the minimum from

the last column, as discussed in Section 3.3.

compute edges: Given the initial Ishikawa edge capaci-

ties φ0 and the set of exit-flows Σ, this subroutine computes

the non-negative residual Ishikawa edge capacities φij cor-

responding to the given edge (i, j). This is accomplished

by solving a small max-flow problem (see Section 3.1.1).

repair tree: This subroutine is similar to the adoption

stage of the BK algorithm. Given the reconstructed sim-

plified graph, the search tree T is repaired by checking for

valid parents for each orphan node. See Section 3.2.3 in [5]

for more details.

5872



get labelling: This subroutine directly reads the optimal

labelling from the search tree T .

As discussed above, the exit-flows Σ require O(ℓ) stor-

age for each edge (i, j) ∈ E . In addition, the simplified

graph Gs can have at most O(|V| ℓ) blocks and O(|E| ℓ)
edges. Furthermore, recall that we assume that the initial

Ishikawa capacities φ0 can be stored efficiently. Therefore,

ultimately, our algorithm requiresO((|V|+ |E|) ℓ) values to

be stored.

Note that, even though our algorithm is efficient, simi-

larly to the BK algorithm, it lacks a polynomial time guar-

antee. In fact, we lose the ability to find the shortest aug-

menting path in the Ishikawa graph, due to graph simplifi-

cation. Therefore, it would be interesting to come up with

a simplification strategy that can yield a polynomial time

bound on our algorithm.

4. Related work

The approaches that have been proposed to minimize

multi-label submodular MRFs can be roughly grouped into

two categories: Those based on max-flow and those based

on an LP relaxation of the problem. Below, we briefly re-

view representative techniques in each category.

Max-flow-based methods. The most popular method to

minimize a multi-label submodular MRF energy is to con-

struct the Ishikawa graph [13] and then apply a max-flow

algorithm to find the min-cut solution. Broadly speak-

ing, there are three different kinds of max-flow algorithms:

those relying on finding augmenting paths [8], the push-

relabel approach [12] and the pseudo-flow techniques [6].

Even though numerous implementations are available, the

BK method [5] is arguably the fastest implementation for

2D and sparse 3D graphs. Recently, for dense problems,

the IBFS algorithm [11] was shown to outperform the BK

method in a number of experiments [28]. All the above-

mentioned algorithms, however, require the same order of

storage as the Ishikawa graph and hence scale poorly. Two

approaches have nonetheless been studied to scale the max-

flow algorithms. The first one explicitly relies on the N-D

grid structure of the problem at hand [7, 14]. The second

one makes use of distributed computing [23, 24, 29]. Unfor-

tunately, both these approaches require additional resources

(disk space or clusters) to run max-flow on an Ishikawa

graph. By contrast, our algorithm lets us efficiently mini-

mize the energy of much larger Ishikawa-type graphs on a

standard computer. Furthermore, using the method of [24],

it can also be parallelized.

LP relaxation-based methods. One memory-efficient

way to minimize a multi-label submodular MRF energy

consists of formulating the problem as a linear program

and then maximize the dual using message-passing tech-

niques [30]. Many such algorithms have been studied [17,

18, 19, 31]. Even though these algorithms are good at ap-

Figure 7: Left and right images of the stereo instance from

the KITTI dataset. The images are of size 1241 × 376, and

we set the number of labels to 40. This image pair was

chosen arbitrarily as a representative of the dataset.

proximating the optimal solution, as evidenced by the com-

parison of [15] and by our experiments, they usually take

much longer to converge to the optimal solution than max-

flow-based techniques.

5. Experiments

We evaluated our algorithm on the problems of stereo

correspondence estimation and image inpainting. For stereo

correspondence estimation, we employed six instances

from the Middlebury dataset [20, 21]: Tsukuba, Venus,

Sawtooth, Map, Cones and Teddy, and one instance from

the KITTI dataset [9] (see Fig. 7). For Tsukuba and Venus,

we used the unary potentials of [25], and for all other stereo

cases, those of [3]. For inpainting, we used the Penguin

and House images employed in [25], and we used the same

unary potentials as in [25]. In all the above cases, we used

pairwise potentials that can be expressed as

θij(xi, xj) = wij θ(|xi − xj |) , (6)

where, unless stated otherwise, the regularizer θ(|xi − xj |)
is the quadratic function. Furthermore, in all our experi-

ments, we employed a 4-connected neighbourhood.

We compare our results with two max-flow imple-

mentations: the BK method [5] and Excesses Incremen-

tal Breadth First Search (EIBFS) [10], and three LP

relaxation-based algorithms: Tree Reweighted Message

Passing (TRWS) [17], Subgradient based Dual Decomposi-

tion (DDSG) [18] and the Adaptive Diminishing Smoothing

algorithm (ADSal) [19]. For DDSG and ADSal, we used

the Opengm [2] implementations. For the other algorithms,

we employed the respective authors’ implementations.

In practice, we only ran the BK method and EIBFS if the

graph could be stored in RAM. Otherwise, we provide an

estimate of their memory requirement. For LP relaxation-

based methods, unless they converged, we ran the algo-

rithms either for 10000 iterations, or for 50000 seconds,

whichever occurred first. Note that the running times re-

ported for our algorithm include graph construction. All

our experiments were conducted on a 3.4 GHz i7-4770 CPU

with 16 GB RAM.

The memory consumption and running times of the al-

gorithms are provided in Table 1. Altogether, our algorithm

lets us solve much larger problems than the BK method and

EIBFS, and is an order of magnitude faster than state-of-

the-art message-passing algorithms.

5873



Problem
Memory [MB] Time [s]

BK EIBFS DDSG ADSal TRWS MEMF BK EIBFS DDSG ADSal TRWS MEMF

Tsukuba 3195 2495 258 252 287 211 14 4 >9083 >7065 198 28

Venus 7626 5907 424 418 638 396 35 9 >18156 1884 206 59

Sawtooth 7566 5860 415 415 633 393 31 8 >16238 10478 455 35

Map 6454 4946 171 208 494 219 57 9 >9495 >1679 187 36

Cones *72303 *55063 657 939 5024 1200 - - >50000 >17866 1095 364

Teddy *72303 *55063 659 939 5025 1200 - - >50000 >50000 6766 2055

KITTI *88413 *67316 1422 1802 6416 2215 - - >50000 >50000 >45408 18665

Penguin *173893 *130728 236 1123 215 663 - - >50000 >50000 >50000 6504

House *521853 *392315 689 2389 643 1986 - - >50000 >50000 >50000 9001

Table 1: Memory consumption and runtime comparison with state-of-the-art baselines. A “*” indicates a memory estimate,

and “>” indicates that the algorithm did not converge to the optimum within the specified time. Note that our algorithm

has a memory consumption O(ℓ) times lower than the max-flow-based methods and is an order of magnitude faster than

message-passing algorithms. Compared to EIBFS, our algorithm is only 4 – 7 times slower, but requires 12 – 23 times less

memory, which makes it applicable to more realistic problems. In all stereo problems, TRWS cached the pairwise potentials

in an array for faster retrieval, but in the case of inpainting, it was not possible due to excessive memory requirement.

5 10 15 20 25 30
0

0.1

0.2

0.3

Augmenting path length

F
re

q
u
e
n
c
y Median = 5

Mean = 14

Maximum = 218

Figure 8: Lengths of augmenting paths found by our algo-

rithm for the Tsukuba stereo instance. Each bar indicates

the proportion of paths of a certain length. For example,

out of all augmenting paths 28% of them were of length 2.

The red arrow indicates the median length.

5.1. MEMF analysis

Note that, at each iteration, i.e., at each augmentation

step, our algorithm performs more computation than stan-

dard max-flow. Therefore, we would like our algorithm to

find short augmenting paths and to converge in fewer itera-

tions than standard max-flow. Below, we analyze these two

properties empirically.

In Fig. 8, we show the distribution of the lengths of the

augmenting paths found by our algorithm for the Tsukuba

stereo instance. Note that the median length is only 5. As

a matter of fact, the maximum length observed over all our

experiments was 1073 for the KITTI data. Nevertheless,

even in that image, the median length was only 15. Note

that, since our algorithm finds augmenting paths in a sim-

plified graph, the path lengths are not directly comparable

to those found by other max-flow-based methods. In terms

of number of augmentations, we found that our algorithm

only required between 35% and 50% of the total number of

augmentations of the BK method.

5.2. Minimizing non­submodular MRFs

Since our algorithm can simply replace standard max-

flow in Ishikawa-type graphs, we replaced the BK method

Problem
Memory [MB] Time [s]

IRGC MIRGC IRGC MIRGC

Penguin-128/10 4471 332 224 2566

House-64/15 8877 498 106 409

Penguin-256/20 *17143 663 - 17748

House-256/60 *137248 1986 - 19681

Table 2: Memory consumption and runtime comparison of

IRGC+expansion with either the BK method or our MEMF

algorithm as subroutine (IRGC and MIRGC respectively).

Here, “Penguin-128/10” corresponds to the Penguin prob-

lem with 128 labels and the truncated quadratic function

with truncation value 10 as pairwise potential. A “*” in-

dicates a memory estimate. Compared to IRGC, MIRGC

is only 4 – 11 times slower but requires 13 – 18 times less

memory, which makes it applicable to much larger MRFs.

with our MEMF procedure in the IRGC algorithm [1],

which minimizes MRFs with some non-convex pairwise

potentials by iteratively building and solving an Ishikawa

graph. This lets us tackle much larger non-submodular

problems. In particular, we computed inpainting results

on Penguin by using all 256 labels, as opposed to the

down-sampled label sets used in [1]. The results of the

IRGC+expansion algorithm, with the BK method (IRGC)

and with MEMF (MIRGC) are summarized in Table 2.

6. Conclusion

We have introduced a variant of the max-flow algorithm

that can minimize multi-label submodular MRF energies

optimally, while requiring much less storage. Furthermore,

our experiments have shown that our algorithm is an or-

der of magnitude faster than state-of-the-art methods. We

therefore believe that our algorithm constitutes the method

of choice to minimize Ishikwa-type graphs when the com-

plete graph cannot be stored in memory.

5874



References

[1] T. Ajanthan, R. Hartley, M. Salzmann, and H. Li. Iteratively

reweighted graph cut for multi-label mrfs with non-convex

priors. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2015. 1, 8

[2] B. Andres, T. Beier, and J. H. Kappes. Opengm: A

c++ library for discrete graphical models. arXiv preprint

arXiv:1206.0111, 2012. 7

[3] S. Birchfield and C. Tomasi. A pixel dissimilarity mea-

sure that is insensitive to image sampling. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 20(4):401–

406, 1998. 7

[4] E. Boros and P. L. Hammer. Pseudo-boolean optimization.

Discrete applied mathematics, 123(1):155–225, 2002. 3

[5] Y. Boykov and V. Kolmogorov. An experimental compari-

son of min-cut/max-flow algorithms for energy minimization

in vision. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 26(9):1124–1137, 2004. 1, 2, 6, 7

[6] B. G. Chandran and D. S. Hochbaum. A computational study

of the pseudoflow and push-relabel algorithms for the max-

imum flow problem. Operations research, 57(2):358–376,

2009. 7

[7] A. Delong and Y. Boykov. A scalable graph-cut algorithm

for nd grids. In Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,

2008. 7

[8] L. Ford and D. R. Fulkerson. Flows in networks, volume

1962. Princeton Princeton University Press, 1962. 1, 2, 7

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. The International Journal of

Robotics Research, page 0278364913491297, 2013. 7

[10] A. V. Goldberg, S. Hed, H. Kaplan, P. Kohli, R. E. Tarjan,

and R. F. Werneck. Faster and more dynamic maximum

flow by incremental breadth-first search. In Algorithms–ESA

2015, pages 619–630. Springer, 2015. 7

[11] A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and

R. F. Werneck. Maximum flows by incremental breadth-first

search. In Algorithms–ESA 2011, pages 457–468. Springer,

2011. 7

[12] A. V. Goldberg and R. E. Tarjan. A new approach to

the maximum-flow problem. Journal of the ACM (JACM),

35(4):921–940, 1988. 7

[13] H. Ishikawa. Exact optimization for markov random fields

with convex priors. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 25(10):1333–1336, 2003. 1,

2, 7

[14] O. Jamriška, D. Sỳkora, and A. Hornung. Cache-efficient

graph cuts on structured grids. In Computer Vision and Pat-

tern Recognition (CVPR), 2012 IEEE Conference on, pages

3673–3680. IEEE, 2012. 7

[15] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,

S. Nowozin, D. Batra, S. Kim, B. X. Kausler, T. Kröger,

J. Lellmann, N. Komodakis, B. Savchynskyy, and C. Rother.

A comparative study of modern inference techniques for

structured discrete energy minimization problems. Interna-

tional Journal of Computer Vision, pages 1–30, 2015. 7

[16] P. Kohli and P. H. Torr. Efficiently solving dynamic markov

random fields using graph cuts. In Computer Vision, 2005.

ICCV 2005. Tenth IEEE International Conference on, vol-

ume 2, pages 922–929. IEEE, 2005. 1

[17] V. Kolmogorov. Convergent tree-reweighted message pass-

ing for energy minimization. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 28(10):1568–

1583, 2006. 1, 3, 7

[18] N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy

minimization and beyond via dual decomposition. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,

33(3):531–552, 2011. 1, 7

[19] B. Savchynskyy, S. Schmidt, J. H. Kappes, and C. Schnörr.

Efficient mrf energy minimization via adaptive diminishing

smoothing. In Uncertainty in Artificial Intelligence, pages

746–755, 2012. 1, 7

[20] D. Scharstein and R. Szeliski. A taxonomy and evaluation

of dense two-frame stereo correspondence algorithms. In-

ternational journal of computer vision, 47(1-3):7–42, 2002.

7

[21] D. Scharstein and R. Szeliski. High-accuracy stereo depth

maps using structured light. In Computer Vision and Pat-

tern Recognition, 2003. Proceedings. 2003 IEEE Computer

Society Conference on, volume 1, pages I–195. IEEE, 2003.

7

[22] D. Schlesinger and B. Flach. Transforming an arbitrary min-

sum problem into a binary one. TU, Fak. Informatik, 2006.

1, 2

[23] A. Shekhovtsov and V. Hlaváč. A distributed min-

cut/maxflow algorithm combining path augmentation and

push-relabel. International journal of computer vision,

104(3):315–342, 2013. 7

[24] P. Strandmark and F. Kahl. Parallel and distributed graph

cuts by dual decomposition. In Computer Vision and Pat-

tern Recognition (CVPR), 2010 IEEE Conference on, pages

2085–2092. IEEE, 2010. 1, 7

[25] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-

mogorov, A. Agarwala, M. Tappen, and C. Rother. A

comparative study of energy minimization methods for

markov random fields with smoothness-based priors. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions

on, 30(6):1068–1080, 2008. 7

[26] P. Torr and M. Kumar. Improved moves for truncated con-

vex models. In Advances in neural information processing

systems, pages 889–896, 2009. 1

[27] O. Veksler. Multi-label moves for mrfs with truncated convex

priors. International journal of computer vision, 98(1):1–14,

2012. 1

[28] T. Verma and D. Batra. Maxflow revisited: An empirical

comparison of maxflow algorithms for dense vision prob-

lems. In BMVC, pages 1–12, 2012. 7

[29] V. Vineet and P. Narayanan. Cuda cuts: Fast graph cuts on

the gpu. In Computer Vision and Pattern Recognition Work-

shops, 2008. CVPRW’08. IEEE Computer Society Confer-

ence on, pages 1–8. IEEE, 2008. 7

[30] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Map es-

timation via agreement on trees: message-passing and linear

5875



programming. Information Theory, IEEE Transactions on,

51(11):3697–3717, 2005. 7

[31] T. Werner. A linear programming approach to max-sum

problem: A review. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 29(7):1165–1179, 2007. 3, 7

5876


