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Abstract

Image matching is a fundamental problem in Computer

Vision. In the context of feature-based matching, SIFT and

its variants have long excelled in a wide array of applica-

tions. However, for ultra-wide baselines, as in the case of

aerial images captured under large camera rotations, the

appearance variation goes beyond the reach of SIFT and

RANSAC. In this paper we propose a data-driven, deep

learning-based approach that sidesteps local correspon-

dence by framing the problem as a classification task. Fur-

thermore, we demonstrate that local correspondences can

still be useful. To do so we incorporate an attention mech-

anism to produce a set of probable matches, which allows

us to further increase performance. We train our models on

a dataset of urban aerial imagery consisting of ‘same’ and

‘different’ pairs, collected for this purpose, and character-

ize the problem via a human study with annotations from

Amazon Mechanical Turk. We demonstrate that our mod-

els outperform the state-of-the-art on ultra-wide baseline

matching and approach human accuracy.

1. Introduction

Finding the relationship between two images depicting

a 3D scene is one of the fundamental problems of Com-

puter Vision. This relationship can be examined at different

granularities. At a coarse level, we can ask whether two im-

ages show the same scene. At the other extreme, we would

like to know the dense pixel-to-pixel correspondence, or

lack thereof, between the two images. These granularities

are directly related to broader topics in Computer Vision;

in particular, one can look at the coarse-grained problem

as a recognition/classification task, whereas the pixel-wise

problem can be viewed as one of segmentation. Traditional

geometry-based approaches live in a middle ground, rely-

ing on a multi-stage process that typically involves key-

point matching and outlier rejection, where image-level cor-

respondence is derived from local correspondence.

Input Pair SIFT CNN Match

Figure 1. Matching ultra-wide baseline aerial images. Left: The

pair of images in question. Middle: Local correspondence match-

ing approaches fail to handle this baseline and rotation. Right: The

CNN matches the pair and proposes possible region matches.

In this paper we focus on pairs of oblique aerial im-

ages acquired by distant cameras from very different an-

gles, as shown in Fig. 1. These images are challenging for

geometry-based approaches for a number of reasons—chief

among them are dramatic appearance distortions due to

viewpoint changes and ambiguities due to repetitive struc-

tures. This renders methods based on local correspondence

insufficient for ultra-wide baseline matching.

In contrast, we follow a data-driven approach. Specifi-

cally, we treat the problem from a recognition standpoint,

without appealing specifically to hand-crafted, feature-

based approaches or their underlying geometry. Our aim is

to learn a discriminative representation from a large amount

of instances of same and different pairs, which separates the

genuine matches from the impostors.

We propose two architectures based on Convolutional

Neural Networks (CNN). The first architecture is only con-

cerned with learning to discriminate image pairs as same or

different. The second one extends it by incorporating a Spa-

tial Transformer module [16] to propose possible matching
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Figure 2. Sample pairs from one of our datasets, collected from

Google Maps [13] ‘Birds-Eye’ view. Pairs show an area or build-

ing from two widely separated viewpoints.

regions, in addition to the classification task. We learn both

networks given only same and different pairs, i.e., we learn

the spatial transformations in a semi-supervised manner.

To train and validate our models, we use a dataset with

49k ultra-wide baseline pairs of aerial images compiled

from Google Maps specifically for this problem: exam-

ple pairs are shown in Fig. 2. We benchmark our mod-

els against multiple baselines, including human annotations,

and demonstrate state-of-the-art performance, close to that

of the human annotations.

Our main contributions are as follows. First, we demon-

strate that deep CNNs offer a solution for ultra-wide base-

line matching. Inspired by recent efforts in patch matching

[14, 43, 31] we build a siamese/classification hybrid model

using two AlexNet networks [19], cut off at the last pooling

layer. The networks share weights, and are followed by a

number of fully-connected layers embodying a binary clas-

sifier. Second, we show how to extend the previous model

with a Spatial Transformer (ST) module, which embodies

an attention mechanism that allows our model to propose

possible patch matches (see Fig. 1), which in turn increases

performance. These patches are described and compared

with MatchNet [14]. As with the first model, we train

this network end-to-end, and only with same and different

training signal, i.e., the ST module is trained in a semi-

supervised manner. In sections 3.2 and 4.6 we discuss the

difficulties in training this network, and offer insights in this

direction. Third, we conduct a human study to help us char-

acterize the problem, and benchmark our algorithms against

human performance. This experiment was conducted on

Amazon Mechanical Turk, where participants were shown

pairs of images from our dataset. The results confirm that

humans perform exceptionally while responding relatively

quickly. Our top-performing model falls within 1% of hu-

man accuracy.

2. Related Work

2.1. Correspondence Matching

Correspondence matching has been long dominated by

feature-based methods, led by SIFT [23]. Numerous de-

scriptors have been developed within the community, such

as SURF [5], BRIEF [8], and DAISY [36]. These de-

scriptors generally provide excellent performance in nar-

row baselines, but are unable to handle the large distortions

present in ultra-wide baseline matching [25].

Sparse matching techniques typically begin by extracting

keypoints, e.g., Harris Corners [15]; followed by a descrip-

tion step, e.g., computing SIFT descriptors; then a keypoint

matching step, which gives us a pool of probable keypoint

matches. These are then fed into a model-estimation tech-

nique, e.g., RANSAC [11] with a homography model. This

pipeline assumes certain limitations and demands assump-

tions to be made. Relying on keypoints can be limiting—

dense techniques have been successful in wide-baseline

stereo with calibration data [36, 38, 40], scene alignment

[21, 40] and large displacement motion [38, 40].

The descriptor embodies assumptions about the topology

of the scene, e.g., SIFT is not robust against affine distor-

tions, a problem addressed by Affine-SIFT [42]. Further

assumptions are made in the matching step: do we con-

sider only unique keypoint matches? What about repetitive

structures? Finally, the robust model estimation step is ex-

pected to tease out a correct geometric model. We believe

that these assumptions play a major role in why feature-

based approaches are currently incapable of matching im-

ages across very wide baselines.

2.2. Ultrawide Baseline FeatureBased Matching

Ultra-wide baseline matching generally falls under the

umbrella of correspondence matching problems. There

have been several works on wide-baseline matching [35,

24]. For urban scenery, Bansal et al. [4] presented the

Scale-Selective Self-Similarity (S4) descriptor which they

used to identify and match building facades for image geo-

localization purposes. Altwaijry and Belongie [1] matched

urban imagery under ultra-wide baseline conditions with

an approach involving affine invariance and a controlled

matching step. Chung et al. [9] calculate sketch-like repre-

sentations of buildings used for recognition and matching.

In general, these approaches suffer from poor performance

due to the difficulty of the problem.

2.3. Convolutional Neural Networks

Neural Networks have a long history in the field of Artifi-

cial Intelligence, starting with [30]. Recently, Deep Convo-

lutional Neural Networks have achieved state-of-the-art re-

sults and become the dominant paradigm in multiple fronts

of Computer Vision research [19, 33, 34, 12].

Several works have investigated aspects of correspon-

dence matching with CNNs. In [22], Long et al. shed some

light on feature localization within a CNN, and determine

that features in later stages of the CNN correspond to fea-

tures finer than the receptive fields they cover. Toshev and

Szegedy [37] determine the pose of human bodies using

3540



CNNs in a regression framework. In their setting, the neural

network is trained to regress the locations of body joints in

a multi-stage process. Lin et al. [20] use a siamese CNN

architecture to put aerial and ground images in a common

embedding for ground image geo-localization.

The literature has seen a number of approaches to learn-

ing descriptors prior to neural networks. In [7], Brown et

al. introduce three sets of matching patches obtained from

structure-from-motion reconstructions, and learn descriptor

representations to match them better. Simonyan et al. [32]

learn the placement of pooling regions in image-space and

dimensionality reduction for descriptors. However, with the

rise of CNNs, several lines of work investigated learning

descriptors with deep networks. They generally rely on a

two-branch structure inspired by the siamese network of [6],

where two networks are given pairs of matching and non-

matching patches. This is the approach followed by Han et

al. with MatchNet [14], which relies on a fully connected

network after the siamese structure to learn the comparison

metric. DeepCompare [43] uses a similar architecture and

focuses on the center of the patch to increase performance.

In contrast, Simo-Serra et al. [31] learn descriptors that can

be compared with the L2 distance, discarding the siamese

network after training. These three methods relied on data

from [7] to learn their representations. They assume that

salient regions are already determined, and deliver a bet-

ter approach to feature description for feature-based corre-

spondence matching techniques. The question of obtaining

CNN-borne correspondences between two input pairs, how-

ever, remains unexplored.

Lastly, attention models [26, 3] have been developed

to recognize objects by an attention mechanism examining

sub-regions of the input image sequentially. In essence, the

attention mechanism embodies a saliency detector. In [16],

the Spatial Transformer (ST) network was introduced as an

attention mechanism capable of warping the inputs to in-

crease recognition accuracy. In section 3.2 we discuss how

we employ an ST module to let the network produce guesses

for probable region matches.

3. Deep-Learning Architectures

3.1. Hybrid Network

We introduce an architecture which, given a pair of im-

ages, estimates the likelihood that they belong to the same

scene. Inspired by the recent success of patch-matching

approaches based on CNNs [43, 14, 31], we use a hybrid

siamese/classification network. The network comprises two

parts: two feature extraction arms that share weights (the

siamese component) and process each input image sepa-

rately, and a classifier component that produces the match-

ing probability. For the siamese component we use the con-

volutional part of AlexNet [19], i.e., cutting off the fully

connected layers. For the classifier we use a set of fully-

Yes/No

Convolution Max-PoolingVector Fully-Connected

Shared 
Weights

Decision

Figure 3. The siamese/classification Hybrid network. Weights are

shared between the convolutional arms. ReLU and LRN (Local

Response Normalization) layers are not shown for brevity.

connected layers that takes as input the concatenation of the

siamese features and ends with a binary classifier, for which

we minimize the binary cross-entropy loss. Fig. 3 illustrates

the structure of the ‘Hybrid’ network.

The main motivation behind this design is that it allows

features with local information from both images to be con-

sidered jointly. This is achieved where the two convolu-

tional features are concatenated. At that layer, the features

from both images retain correspondence to specific regions

within the input images.

3.2. Hybrid++

Unlike traditional geometry-based approaches, the hy-

brid network proposed in the previous section does not

model local similarity explicitly, making it difficult to draw

conclusions about corresponding image regions. We would

like to determine whether modeling local similarities more

explicitly can produce more discriminative models.

We therefore sought to expand our hybrid architecture

to allow for predictions of probable region matches, in ad-

dition to the classification task. To accomplish this, we

leverage the Spatial Transformer (ST) network described

in [16]. Spatial transformers consist of a network used

for localization, which takes as input the image and pro-

duces the parameters for a pre-determined transformation

model (e.g., translation, affine, etc.) which is used in turn

to transform the image. It relies on a grid generator and a

differentiable sampling kernel to keep track of the gradient

propagation to the localization network. The model can be

trained with standard back-propagation, unlike the attention

mechanisms of [3, 26] that relied on reinforcement learning

techniques. The spatial transformer is typically a standard

CNN followed by a set of fully-connected layers with the

required number of outputs, i.e., the number of transforma-

tion parameters, e.g., two for translation, six for affine.

The spatial transformer allows for any transformation

as long as it is differentiable. However, in this work we
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Spatial Transformer Localization Network

Input Image Transform Grid Result

Figure 4. Overview of a Spatial Transformer module operating on

a single image. The module uses the regressed parameters Θ to

generate and sample a grid of pixels in the original image.

only consider extracting patches at a fixed scale, i.e., trans-

lations, which are used to generate patch proposals over

both images—richer models, such as perspective transfor-

mations, can potentially be more descriptive, but are also

more difficult to train.

We build the spatial transformer with the same convo-

lutional network used for the ‘arms’ of the siamese com-

ponent of our hybrid network, plus a set of fully con-

nected layers that regress the transformation parameters

Θ = {Θ1,Θ2}, which are used to transform the input im-

ages, effectively sampling patches. Note that patch loca-

tions for each individual image are a function of both im-

ages. The number of extracted patches is reflected in the

number of regressed parameters specified. Fig. 4 illustrates

how the spatial transformer module operates.

The spatial transformer modules allow us to explicitly

model regions within each input image, permitting the net-

work to propose similar regions given an architecture that

demands such a goal. The overall structure of this model,

which we call ‘Hybrid++’, is shown in Fig. 5.

3.2.1 Describing Patches

In our model, we pair a ST module which produces a pre-

determined number of fixed-scale patch proposals with our

hybrid network. The extracted patches are given to a Match-

Net [14] network, which was trained with interest points

from Structure-from-Motion data [7] and thus already has a

measure of invariance against perspective changes built-in.

MatchNet has two components in its network, a feature

extractor modeled as a series of convolutional layers, and a

classifier network that takes the outputs of two feature ex-

tractors and produces a similarity score. We pass each ex-

tracted patch, after converting it to grayscale, through the

MatchNet feature extractor network (MatchNet-Feat) and

arrive at a 4096-dimensional descriptor vector.

These descriptors are then used for three different objec-

tives. The first objective is to supplement the global feature

description extracted by the original hybrid architecture. In

this manner, the extracted descriptors provide the classifier

with information extracted at a dedicated higher-resolution

mode. The second objective is to match patches in the other

Shared 
Weights

MatchNet-Feat

Convolution
Max-Pooling
Vector
Fully-Connected
Softmax

MatchNet-Classify

Spatial 
Transformation 

Modules
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.

.

.
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.

Yes/No

No

.

.
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Images

Patches
From
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Image

Figure 5. The ‘Hybrid++’ Network. Spatial Transformer modules

are incorporated into the ‘Hybrid’ model to predict probable patch

matches.

image. This objective encourages the network to use the

spatial transformer to focus on similar patches in both im-

ages simultaneously. The third objective is for the patch

to not match other patches extracted from the same image,

which we mainly use to discourage the network from col-

lapsing onto a single patch. For the last two tasks, we use

the MatchNet classification network (MatchNet-Classify).

3.2.2 Optimization

Combining the image-wise classification objective with the

regional descriptor objectives yields an objective function

with four components:

(1)L =
1

N

N
∑

i=1

(

Lclass +αLpatch + βLpairwise + γLbounds

)

where N is the size of the training batch and α, β, γ are

used to adjust the weights. The first component of the loss
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function encodes the image classification objective:

(2)Lclass = yi log pi + (1− yi) log(1− pi)

where pi is the probability of the images matching and

yi ∈ {0, 1} is the label. The second component encodes

the match of each pair of patches across both images:

(3)Lpatch =
1

M

M
∑

m=1

[

yi log qm + (1− yi) log(1− qm)
]

where M is the number of patches, and qm is the probabil-

ity of patch x
1
m on image 1 matching patch x

2
m on image 2.

The third component is a pairwise penalty function that dis-

courages good matches among the patches within the same

image, to prevent the network from collapsing the transfor-

mations on top of each other:

(4)Lpairwise =
4

M(M − 1)

2
∑

t=1

M
∑

m=1

M
∑

k=m+1

log(1−ut
m,k)

where ut
m,k is the probability of patch x

t
m matching patch

x
t
k on image t = {1, 2}. The last component is a penalty

function that discourages spatial transformations that fall

out of bounds:

(5)Lbounds =
2

M

2
∑

t=1

M
∑

m=1

f(xt
m)

where f(xt
m) is a function that computes the ratio of pixels

sampled out of bounds for patch x
t
m. The out-of-bounds

loss term discourages the model from stepping outside the

image, which may minimize the patch-matching loss, given

an appropriate weight—with this penalty function we gain

more control over the optimization process.

3.3. Training Procedure

To train the hybrid network, we follow a standard train-

ing procedure by fine-tuning the model after loading pre-

trained AlexNet weights into the convolutional arms only.

However, training the Hybrid++ network is more subtle,

as the network needs to get started on the right foot. We

initially train the non-ST and ST sides separately with the

global yes/no matching signal. Afterwards, we train the net-

works jointly. We learned this is necessary to prevent the

network from shutting off one side while minimizing the

objective. Similar to the Hybrid case, we use pre-trained

weights for the convolutional arms.

We use MatchNet as a pure feature descriptor, with

frozen weights, i.e., no learning. This is primarily done

to prevent the network from minimizing the loss by chang-

ing the descriptors themselves without moving the attention

mechanism. Our training procedure does not have pixel-

to-pixel correspondence labels, and hence we do not know

if the network is examining similar patches. We rely on

the power provided by MatchNet to determine patch simi-

larity. The global matching label in turn becomes a semi-

supervised cue. Therefore, the network can only minimize

the loss component for patch matching by moving the atten-

tion mechanism to examine patches that appear to be simi-

lar, as per MatchNet.

The reliance on MatchNet is a double-edged sword, as it

is our only means of moving the attention mechanism with-

out explicit knowledge of labeled patch correspondences.

That means if MatchNet cannot find correspondence for two

patches that do match, then the attention mechanism cannot

learn to look for these two patches.

4. Experiments

4.1. Dataset

We compiled 49,271 matching pairs (98,542 images) of

oblique aerial imagery through Google Maps [13]. The im-

ages were collected using an automated process that looks

for planar surfaces such that the normal vector of the sur-

face is within 40◦ to 75◦ of one cardinal direction. This

guarantees the visibility of the surface from two different

viewpoints. The pairs were collected non-uniformly from:

San Francisco, Boston and Milan. Those locations were

chosen with a goal of diversifying the scenery.

We split the dataset into roughly ∼39K/∼10K train-

ing/testing positive pairs. For training we generate samples

in an online manner by sampling from the reservoir of pos-

itive matching pairs. The sampling procedure is set to pro-

duce samples with a 1:1 positive:negative ratio. Therefore,

a random classifier would score 50% on the test-set. We call

this the ‘aerial’ dataset.

4.2. Human Performance

We ask ourselves: How well do humans perform when

matching such images? To this end, we conducted a small

experiment with human participants on Amazon Mechani-

cal Turk [2]. We picked a subset of 1,000 pairs from our

test set and presented them to the human subjects. Each

participant was shown 10 pairs of different images, and was

asked to determine whether each pair showed the same area

or building, as a binary question. We show a screenshot of

the interface presented to the participants in Fig. 6. Each

pair of images was presented at least 5 times to different

participants, giving us a total of 5000 labels, 5 per pair.

Our interface was prone to adversarial participants, those

answering randomly or giving a constant answer all the

time. To mitigate the effect of unfaithful workers, we took

the majority vote of the 5 labels per-pair. Human accuracy

was then calculated to be 93.3%, with a precision of 98%

and a recall of 89.4%.

We observed that the average response time for hu-

mans was less than 4.5 seconds/pair, with a minimum re-
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Figure 6. The user interface presented to our human subjects

through Amazon Mechanical Turk.

sponse time of half a second. This quick response aver-

age prompted us to examine mislabeled pairs: we show

examples of False-Positives in Fig. 7 and False-Negatives

in Fig. 8. Most of the False-Positive pairs have a simi-

lar general structure, a cue that humans relied on hastily—

notice that these examples require deliberate correspon-

dence matching. This is a non-trivial, time-consuming task,

which explains why the human subjects, who operate in an

environment that favors lower response times, labeled them

as False. This is also corroborated by the high precision

and lower recall of the human labelers, which is another in-

dication that humans are performing high-level image com-

parisons. All in all, we believe this indicates that the human

participants were relying mostly on global appearance cues,

which indicates the need for local correspondence match-

ing.

4.3. Training Framework

We train our networks with Torch7 [10]. We transplant

weights in our models from the pre-trained reference model

CaffeNet available from Caffe [18]. For the convolutional

feature arms, we keep the AlexNet layers up to ‘pool5’ and

discard the rest. The fully connected layers of our classifier

component are trained from scratch. For the patch descrip-

tor network, i.e., MatchNet [14], we transplant the ‘feature’-

network and the ‘classification’-network as-is and freeze the

learning for both.

We use Rectified Linear Units (ReLU) for all our non-

linearities, and train the networks with Stochastic Gradi-

ent Descent. The spatial transformer modules are trained

specifically without momentum.

4.4. Spatial Transformer Details

The spatial transformer regresses |Θ|= 4n parameters,

where n is the number of patches per image. Each 2 pa-

rameters are taken for an x-y location in the image plane in

the range [−1, 1]. We specify a fixed-scale interpretation,

where extracted patches are always 64 × 64, the resolution

Figure 7. False-Positive pairs from the human experiment.

Figure 8. False-Negative pairs from the human experiment.

required by MatchNet.

In the Hybrid++ network, we remove the ‘pool5’ and

‘conv5’ layers provided by AlexNet from the convolutional

arms, and learn a new 1 × 1 convolutional layer with an

output size of 64× 13× 13, performing dimensionality re-

duction from the 384-channel output of ‘conv4’. The local-

ization network takes a 2×64×13×13 input from the two

convolutional arms and follows up with 3 fully-connected

layers as follows: 21632 → 1024 → 256 → 4n. The ini-

tialization of the last fully-connected layer is not random;

as recommended in [16], we initialize it with a zero-weight

matrix and a bias specifying initial locations for the patches.

In our experiments, we predict M = 6 patches per image,

initialized to non-overlapping grid locations.

4.5. Matching Results

We compare our CNN models with a variety of baselines

on the ‘aerial’ dataset. Our first baseline was a feature-based

correspondence-matching method. We chose A-SIFT [42]

as it offers all the capabilities of SIFT with the addition

of affine invariance. In aerial images we mainly observe

affine distortion effects, which makes A-SIFT’s invariance

properties particularly relevant. We use the implementation

offered by the authors, which computes the matches and

performs outlier rejection to estimate the fundamental ma-

trix between the views, providing a yes/no answer, given a

threshold. The accuracy of A-SIFT is better than random by

11%, but suffers from low accuracy for the positive samples

(i.e., low recall), as it is unable to find enough correspon-

dences to perform the fundamental matrix estimation for a

large number of positive pairs. This illustrates the difficulty

of this problem with local correspondence matching.

Our second set of baselines are a measure of the perfor-

mance of holistic representation methods used in the im-

age classification and retrieval literature. We chose to com-

pare the performance of GIST [27], Fisher Vectors [28], and

VLAD [17]. The GIST-based classifier predicted most im-

age pairs to be non-matching. Fisher Vectors surpassed A-

SIFT performance by showing a better ability to recognize

positive matches, but performed worse than A-SIFT in dis-

tinguishing negative pairs. VLAD performed the best out of

these three holistic approaches with an average accuracy of

78.6%. For GIST we use the authors’ implementation, and
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Figure 9. Precision/Recall curves for the ‘aerial’ dataset. The num-

ber between parenthesis denotes the average precision (%).

for Fisher Vectors and VLAD we use VLFeat [39].

The third set of baselines are vanilla CNN models used

in a siamese fashion (without fine-tuning). We compare

against AlexNet [19], trained on ImageNet, and PlacesCNN

[44], which is an instance of the AlexNet architecture

trained on the Places205 dataset [44]. We extract the ‘fc7’

layer outputs as descriptor vectors for input images, and use

the L2 distance as a similarity metric. This group of base-

lines explores the applicability of pre-trained networks as

generic feature descriptors, for which there is mounting ev-

idence [29]. Both CNNs performed well, considering the

lack of fine-tuning. We note that while VLAD surpassed

the performance of these two CNN approaches, both VLAD

and Fisher Vectors require training with our dataset. This

shows the power of CNNs generalizing to other domains.

Finally we measure the classification accuracy of our

proposed architectures. Our Hybrid CNN outperforms all

the baselines. A variant of the Hybrid CNN was trained

without the ‘conv5’ and ‘pool5’ layers, with a 1 × 1 con-

volution layer after ‘conv4’ to reduce the dimensionality of

its output. This variant outperforms the base Hybrid CNN

by a small margin. Our Hybrid++ model with Spatial Trans-

formers gives us a further boost, and performs nearly as well

as the human participants in our study.

Table 1 summarizes the accuracy for every method, and

Fig. 9 shows precision/recall curves, along with the average

precision, expressed as a percentage.

4.6. Insights and Discussion

One of the main difficulties in the application of CNNs to

real-world problems lies in designing and training the net-

works. This is particularly true for complex architectures

with multiple components, such as our Hybrid++ network.

In this section we discuss our experience and attempt to of-

Method Acc. Acc. pos Acc. neg AP

Human∗ .933 .894 .972 —

A-SIFT [42] .613 .353 .874 .694

GIST [27] .549 .242 .821 .553

Fisher Vectors [28] .659 .605 .713 .722

VLAD [17] .786 .769 .803 .863

Siamese PlacesCNN [44] .690 .626 .754 .762

Siamese AlexNet [19] .754 .697 .811 .840

Hybrid CNN .881 .901 .861 .942

Hybrid w/o pool5 .909 .928 .891 .963

Hybrid++ .926 .927 .925 .975

Table 1. Classification performance on the ‘aerial’ dataset. AP

denotes Average Precision. (∗Human performance was measured

on a subset of the samples.)

fer insights that may not be immediately obvious.

We obtained a small improvement by removing the

‘pool5’ layer from the AlexNet model, and replacing

‘conv5’ by a 1 × 1 dimensionality reduction convolution.

We believe this is mainly due to the increased resolution

of 13× 13 presented to the classifier. This resolution would

typically allow for more local detail to be considered jointly.

In particular, this detail appears to be crucial to training

the Hybrid++ model, as it provided the Spatial Transformer

module with more resolution to work with. In Fig. 10

we show a sample of matched images with probable patch

matches highlighted. Even with the increase in resolution,

the receptive field for each neuron is still quite large in the

original image space. This suggests that higher resolution

features would be needed for finer localization of similar

patches. This aspect is reflected in the network learning re-

gions of interest for each of its attention mechanisms.

We attempted to use transformations with more degrees

of freedom with the Spatial Transformer module, such as

affine transforms, but we found the task increasingly diffi-

cult without higher levels of supervision and additional con-

straints. This was the origin of our ‘out-of-bounds’ penalty

term. For example, the network would learn to stretch parts

of each image into seemingly similar looking patches, effec-

tively minimizing the pairwise patch similarity loss term.

To train the pairwise patch similarity portion of the net-

work, we only have the image-level match label, with no

information regarding pixel-wise correspondence. It might

seem unclear what target labels should be presented to the

pairwise similarity loss. However, by studying the loss

function we can see that the attention mechanism would not

be able to find matching patches unless we actively look for

correspondences; hence it is sensible to use the image-level

label for patch correspondence. Given that MatchNet mod-

ules are frozen, the network will not induce a high loss for

non-corresponding patches over negative samples, but only

for non-corresponding patches over positive samples.
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Figure 10. Image pairs from ‘aerial’, matched with Hybrid++. The overlaying boxes indicate patch proposals. Red boxes denote patches

that do not match, according to MatchNet. Boxes with colors other than red indicate matches, with the color encoding the correspondence.

Figure 11. Image pairs from ‘Lausanne’, matched with Hybrid++. Color coding follows the same conventions are the figure above.

4.7. Investigating the Spatial Transformers

The patch proposal locations of Fig. 10 are meaningful

from pair to pair, and across the images for a given pair.

However, while the baseline between the two images in a

pair is very large, it does not change much from pair to

pair—an inevitable artifact of the dataset collection process.

This results in patch proposals with similar configurations

and raises questions about the Spatial Transformers.

We thus set up a second experiment to study the effect

of varying viewpoint changes explicitly. To this end we

used several high-resolution aerial images from the city of

Lausanne, Switzerland, to build a Structure-from-Motion

dataset [41] and extract corresponding patches, with 8.7k

training pairs and 3.6k test pairs. Patches were extracted

around SIFT locations and are thus significantly easier to

match than those in the ‘aerial’ dataset. However, the view-

point changes from pair to pair are much more pronounced.

We followed the same methodology as before to train

our models on this new dataset. In Fig. 11 we show dif-

ferent pairs from the new dataset, along with the probable

patch matches suggested by the model. The model learns to

predict patch locations that are consistent with the change in

perspective, while also differing from pair to pair. Match-

Net results on the proposals corroborate the findings when

the contents of those patches do match (non-red boxes), and

when they do not (red boxes). Numerical results are pro-

vided in Table 2. As this data is significantly easier, the

baselines (notably A-SIFT) perform much better, but our

method achieves the highest accuracy of 96%. The perfor-

mance gain from Hybrid to Hybrid++ is however negligible.

5. Conclusions and Future Work

We present two neural network architectures to address

the problem of ultra-wide baseline image matching. First,

we fine-tune a pre-trained AlexNet model over aerial data,

with a siamese architecture for feature extraction, and a bi-

nary classifier. This network proves capable of discerning

image-level correspondence, but is agnostic to local corre-

Method Acc. Acc. pos Acc. neg AP

A-SIFT [42] .947 .896 .998 .968

GIST [27] .856 .798 .914 .937

Fisher Vectors [28] .769 .723 .816 .867

VLAD [17] .898 .867 .930 .965

Siamese PlacesCNN [44] .690 .626 .754 .958

Siamese AlexNet [19] .754 .697 .811 .968

Hybrid CNN .959 .960 .957 .992

Hybrid++ .959 .962 .956 .992

Table 2. Classification performance on the ‘Lausanne’ dataset.

spondence. We then show how to integrate Spatial Trans-

former modules to predict probable patch matches in ad-

dition to the classification task, which further boosts per-

formance. Our models achieve state-of-the-art accuracy in

ultra-wide baseline matching, and close the gap with human

performance. We also demonstrate the adaptability of our

approach on a new dataset with varied viewpoint changes

which the ST modules can adapt to.

This work is a step towards bridging the gap between

neural networks and traditional image-matching techniques

based on local correspondence, in a framework that is train-

able end-to-end. We intend to build on it in the follow-

ing directions. First, we plan to explore means to increase

the resolution of the localization network to obtain finer-

grained patch proposals. Second, we plan to replace Match-

Net with ‘descriptor’ networks trained for this specific pur-

pose. Third, we are interested in richer transformations for

the ST modules, e.g., affine, and in exploring constraints in

order to do so. Finally, we want to study the use of higher

supervision for a better feature-localization step, bringing

neural networks closer to local correspondence techniques.
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