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Abstract

We tackle the problem of large scale visual place recog-

nition, where the task is to quickly and accurately recog-

nize the location of a given query photograph. We present

the following three principal contributions. First, we de-

velop a convolutional neural network (CNN) architecture

that is trainable in an end-to-end manner directly for the

place recognition task. The main component of this archi-

tecture, NetVLAD, is a new generalized VLAD layer, in-

spired by the “Vector of Locally Aggregated Descriptors”

image representation commonly used in image retrieval.

The layer is readily pluggable into any CNN architecture

and amenable to training via backpropagation. Second, we

develop a training procedure, based on a new weakly super-

vised ranking loss, to learn parameters of the architecture

in an end-to-end manner from images depicting the same

places over time downloaded from Google Street View Time

Machine. Finally, we show that the proposed architecture

significantly outperforms non-learnt image representations

and off-the-shelf CNN descriptors on two challenging place

recognition benchmarks, and improves over current state-

of-the-art compact image representations on standard im-

age retrieval benchmarks.

1. Introduction

Visual place recognition has received a significant

amount of attention in the past years both in computer vi-

sion [5, 10, 11, 24, 35, 62, 63, 64, 65, 79, 80] and robotics

communities [16, 17, 44, 46, 74] motivated by, e.g., appli-

cations in autonomous driving [46], augmented reality [47]

or geo-localizing archival imagery [6].

The place recognition problem, however, still remains

extremely challenging. How can we recognize the same

street-corner in the entire city or on the scale of the en-

tire country despite the fact it can be captured in different
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(a) Mobile phone query (b) Retrieved image of same place

Figure 1. Our trained NetVLAD descriptor correctly recognizes

the location (b) of the query photograph (a) despite the large

amount of clutter (people, cars), changes in viewpoint and com-

pletely different illumination (night vs daytime). Please see the

appendix [2] for more examples.

illuminations or change its appearance over time? The fun-

damental scientific question is what is the appropriate rep-

resentation of a place that is rich enough to distinguish sim-

ilarly looking places yet compact to represent entire cities

or countries.

The place recognition problem has been traditionally

cast as an instance retrieval task, where the query image

location is estimated using the locations of the most vi-

sually similar images obtained by querying a large geo-

tagged database [5, 11, 35, 65, 79, 80]. Each database

image is represented using local invariant features [82]

such as SIFT [43] that are aggregated into a single vector

representation for the entire image such as bag-of-visual-

words [53, 73], VLAD [4, 29] or Fisher vector [31, 52]. The

resulting representation is then usually compressed and effi-

ciently indexed [28, 73]. The image database can be further

augmented by 3D structure that enables recovery of accu-

rate camera pose [40, 62, 63].

In the last few years convolutional neural networks

(CNNs) [38, 39] have emerged as powerful image represen-

tations for various category-level recognition tasks such as

object classification [37, 49, 72, 76], scene recognition [89]

or object detection [22]. The basic principles of CNNs are

known from 80’s [38, 39] and the recent successes are a

combination of advances in GPU-based computation power

together with large labelled image datasets [37]. While it

has been shown that the trained representations are, to some

extent, transferable between recognition tasks [20, 22, 49,

68, 87], a direct application of CNN representations trained
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for object classification [37] as black-box descriptor extrac-

tors has so far yielded limited improvements in performance

on instance-level recognition tasks [7, 8, 23, 60, 61]. In this

work we investigate whether this gap in performance can

be bridged by CNN representations developed and trained

directly for place recognition. This requires addressing the

following three main challenges. First, what is a good CNN

architecture for place recognition? Second, how to gather

sufficient amount of annotated data for the training? Third,

how can we train the developed architecture in an end-to-

end manner tailored for the place recognition task? To ad-

dress these challenges we bring the following three innova-

tions.

First, building on the lessons learnt from the current

well performing hand-engineered object retrieval and place

recognition pipelines [3, 4, 25, 79] we develop a convo-

lutional neural network architecture for place recognition

that aggregates mid-level (conv5) convolutional features ex-

tracted from the entire image into a compact single vector

representation amenable to efficient indexing. To achieve

this, we design a new trainable generalized VLAD layer,

NetVLAD, inspired by the Vector of Locally Aggregated

Descriptors (VLAD) representation [29] that has shown ex-

cellent performance in image retrieval and place recogni-

tion. The layer is readily pluggable into any CNN archi-

tecture and amenable to training via backpropagation. The

resulting aggregated representation is then compressed us-

ing Principal Component Analysis (PCA) to obtain the final

compact descriptor of the image.

Second, to train the architecture for place recognition,

we gather a large dataset of multiple panoramic images de-

picting the same place from different viewpoints over time

from the Google Street View Time Machine. Such data

is available for vast areas of the world, but provides only

weak form of supervision: we know the two panoramas are

captured at approximately similar positions based on their

(noisy) GPS but we don’t know which parts of the panora-

mas depict the same parts of the scene.

Third, we develop a learning procedure for place recog-

nition that learns parameters of the architecture in an end-

to-end manner tailored for the place recognition task from

the weakly labelled Time Machine imagery. The resulting

representation is robust to changes in viewpoint and light-

ing conditions, while simultaneously learns to focus on the

relevant parts of the image such as the building façades and

the skyline, while ignoring confusing elements such as cars

and people that may occur at many different places.

We show that the proposed architecture significantly

outperforms non-learnt image representations and off-the-

shelf CNN descriptors on two challenging place recogni-

tion benchmarks, and improves over current state-of-the-art

compact image representations on standard image retrieval

benchmarks.

1.1. Related work

While there have been many improvements in design-

ing better image retrieval [3, 4, 12, 13, 18, 25, 26, 27, 29,

32, 48, 51, 52, 53, 54, 70, 77, 78, 81] and place recogni-

tion [5, 10, 11, 16, 17, 24, 35, 44, 46, 62, 63, 64, 74, 79, 80]

systems, not many works have performed learning for these

tasks. All relevant learning-based approaches fall into one

or both of the following two categories: (i) learning for an

auxiliary task (e.g. some form of distinctiveness of local fea-

tures [5, 16, 30, 35, 58, 59, 88]), and (ii) learning on top

of shallow hand-engineered descriptors that cannot be fine-

tuned for the target task [3, 10, 24, 35, 57]. Both of these are

in spirit opposite to the core idea behind deep learning that

has provided a major boost in performance in various recog-

nition tasks: end-to-end learning. We will indeed show in

section 5.2 that training representations directly for the end-

task, place recognition, is crucial for obtaining good perfor-

mance.

Numerous works concentrate on learning better local de-

scriptors or metrics to compare them [45, 48, 50, 55, 56,

69, 70, 86], but even though some of them show results

on image retrieval, the descriptors are learnt on the task of

matching local image patches, and not directly with image

retrieval in mind. Some of them also make use of hand-

engineered features to bootstrap the learning, i.e. to provide

noisy training data [45, 48, 50, 55, 70].

Several works have investigated using CNN-based fea-

tures for image retrieval. These include treating activations

from certain layers directly as descriptors by concatenating

them [9, 60], or by pooling [7, 8, 23]. However, none of

these works actually train the CNNs for the task at hand,

but use CNNs as black-box descriptor extractors. One ex-

ception is the work of Babenko et al. [9] in which the net-

work is fine-tuned on an auxiliary task of classifying 700

landmarks. However, again the network is not trained di-

rectly on the target retrieval task.

Finally, recently [34] and [41] performed end-to-end

learning for different but related tasks of ground-to-aerial

matching [41] and camera pose estimation [34].

2. Method overview

Building on the success of current place recognition sys-

tems (e.g. [5, 11, 35, 62, 63, 64, 65, 79, 80]), we cast place

recognition as image retrieval. The query image with un-

known location is used to visually search a large geotagged

image database, and the locations of top ranked images are

used as suggestions for the location of the query. This is

generally done by designing a function f which acts as the

“image representation extractor”, such that given an image

Ii it produces a fixed size vector f(Ii). The function is used

to extract the representations for the entire database {Ii},

which can be done offline, and to extract the query image
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representation f(q), done online. At test time, the visual

search is performed by finding the nearest database image to

the query, either exactly or through fast approximate nearest

neighbour search, by sorting images based on the Euclidean

distance d(q, Ii) between f(q) and f(Ii).
While previous works have mainly used hand-

engineered image representations (e.g. f(I) corresponds

to extracting SIFT descriptors [43], followed by pooling

into a bag-of-words vector [73] or a VLAD vector [29]),

here we propose to learn the representation f(I) in an

end-to-end manner, directly optimized for the task of

place recognition. The representation is parametrized

with a set of parameters θ and we emphasize this fact

by referring to it as fθ(I). It follows that the Euclidean

distance dθ(Ii, Ij) = ‖fθ(Ii) − fθ(Ij)‖ also depends on

the same parameters. An alternative setup would be to

learn the distance function itself, but here we choose to fix

the distance function to be Euclidean distance, and to pose

our problem as the search for the explicit feature map fθ
which works well under the Euclidean distance.

In section 3 we describe the proposed representation fθ
based on a new deep convolutional neural network architec-

ture inspired by the compact aggregated image descriptors

for instance retrieval. In section 4 we describe a method to

learn the parameters θ of the network in an end-to-end man-

ner using weakly supervised training data from the Google

Street View Time Machine.

3. Deep architecture for place recognition

This section describes the proposed CNN architecture

fθ, guided by the best practises from the image retrieval

community. Most image retrieval pipelines are based on (i)

extracting local descriptors, which are then (ii) pooled in an

orderless manner. The motivation behind this choice is that

the procedure provides significant robustness to translation

and partial occlusion. Robustness to lighting and viewpoint

changes is provided by the descriptors themselves, and scale

invariance is ensured through extracting descriptors at mul-

tiple scales.

In order to learn the representation end-to-end, we de-

sign a CNN architecture that mimics this standard retrieval

pipeline in an unified and principled manner with differen-

tiable modules. For step (i), we crop the CNN at the last

convolutional layer and view it as a dense descriptor ex-

tractor. This has been observed to work well for instance

retrieval [7, 8, 61] and texture recognition [14]. Namely,

the output of the last convolutional layer is a H ×W ×D

map which can be considered as a set of D-dimensional de-

scriptors extracted at H × W spatial locations. For step

(ii) we design a new pooling layer inspired by the Vector

of Locally Aggregated Descriptors (VLAD) [29] that pools

extracted descriptors into a fixed image representation and

its parameters are learnable via back-propagation. We call

this new pooling layer “NetVLAD” layer and describe it in

the next section.

3.1. NetVLAD: A Generalized VLAD layer (fV LAD)

Vector of Locally Aggregated Descriptors (VLAD) [29]

is a popular descriptor pooling method for both instance

level retrieval [29] and image classification [23]. It captures

information about the statistics of local descriptors aggre-

gated over the image. Whereas bag-of-visual-words [15,

73] aggregation keeps counts of visual words, VLAD stores

the sum of residuals (difference vector between the descrip-

tor and its corresponding cluster centre) for each visual

word.

Formally, given N D-dimensional local image descrip-

tors {xi} as input, and K cluster centres (“visual words”)

{ck} as VLAD parameters, the output VLAD image repre-

sentation V is K×D-dimensional. For convenience we will

write V as a K×D matrix, but this matrix is converted into

a vector and, after normalization, used as the image repre-

sentation. The (j, k) element of V is computed as follows:

V (j, k) =

N
∑

i=1

ak(xi) (xi(j)− ck(j)) , (1)

where xi(j) and ck(j) are the j-th dimensions of the i-th

descriptor and k-th cluster centre, respectively. ak(xi) de-

notes the membership of the descriptor xi to k-th visual

word, i.e. it is 1 if cluster ck is the closest cluster to de-

scriptor xi and 0 otherwise. Intuitively, each D-dimensional

column k of V records the sum of residuals (xi−ck) of de-

scriptors which are assigned to cluster ck. The matrix V is

then L2-normalized column-wise (intra-normalization [4]),

converted into a vector, and finally L2-normalized in its en-

tirety [29].

In order to profit from years of wisdom produced in

image retrieval, we propose to mimic VLAD in a CNN

framework and design a trainable generalized VLAD layer,

NetVLAD. The result is a powerful image representation

trainable end-to-end on the target task (in our case place

recognition). To construct a layer amenable to training via

backpropagation, it is required that the layer’s operation is

differentiable with respect to all its parameters and the in-

put. Hence, the key challenge is to make the VLAD pooling

differentiable, which we describe next.

The source of discontinuities in VLAD is the hard as-

signment ak(xi) of descriptors xi to clusters centres ck. To

make this operation differentiable, we replace it with soft

assignment of descriptors to multiple clusters

āk(xi) =
e−α‖xi−ck‖

2

∑

k′ e−α‖xi−ck′‖2
, (2)

which assigns the weight of descriptor xi to cluster ck pro-

portional to their proximity, but relative to proximities to
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Figure 2. CNN architecture with the NetVLAD layer. The layer can be implemented using standard CNN layers (convolutions,

softmax, L2-normalization) and one easy-to-implement aggregation layer to perform aggregation in equation (4) (“VLAD core”), joined

up in a directed acyclic graph. Parameters are shown in brackets.

other cluster centres. āk(xi) ranges between 0 and 1, with

the highest weight assigned to the closest cluster centre. α is

a parameter (positive constant) that controls the decay of the

response with the magnitude of the distance. Note that for

α → +∞ this setup replicates the original VLAD exactly

as āk(xi) for the closest cluster would be 1 and 0 otherwise.

By expanding the squares in (2), it is easy to see that

the term e−α‖xi‖
2

cancels between the numerator and the

denominator resulting in a soft-assignment of the following

form

āk(xi) =
ew

T
k xi+bk

∑

k′ e
w

T

k′
xi+bk′

, (3)

where vector wk = 2αck and scalar bk = −α‖ck‖
2
. The

final form of the NetVLAD layer is obtained by plugging

the soft-assignment (3) into the VLAD descriptor (1) re-

sulting in

V (j, k) =

N
∑

i=1

ew
T
k xi+bk

∑

k′ e
w

T

k′
xi+bk′

(xi(j)− ck(j)) , (4)

where {wk}, {bk} and {ck} are sets of trainable parameters

for each cluster k. Similarly to the original VLAD descrip-

tor, the NetVLAD layer aggregates the first order statistics

of residuals (xi − ck) in different parts of the descriptor

space weighted by the soft-assignment āk(xi) of descrip-

tor xi to cluster k. Note however, that the NetVLAD layer

has three independent sets of parameters {wk}, {bk} and

{ck}, compared to just {ck} of the original VLAD. This

enables greater flexibility than the original VLAD, as ex-

plained in figure 3. Decoupling {wk, bk} from {ck} has

been proposed in [4] as a means to adapt the VLAD to a

new dataset. All parameters of NetVLAD are learnt for the

specific task in an end-to-end manner.

As illustrated in figure 2 the NetVLAD layer can be vi-

sualized as a meta-layer that is further decomposed into ba-

sic CNN layers connected up in a directed acyclic graph.

First, note that the first term in eq. (4) is a soft-max func-

tion σk(z) = exp(zk)∑
k′ exp(zk′ )

. Therefore, the soft-assignment

of the input array of descriptors xi into K clusters can be

seen as a two step process: (i) a convolution with a set of K

filters {wk} that have spatial support 1×1 and biases {bk},

+

Figure 3. Benefits of supervised VLAD. Red and green cir-

cles are local descriptors from two different images, assigned to

the same cluster (Voronoi cell). Under the VLAD encoding, their

contribution to the similarity score between the two images is the

scalar product (as final VLAD vectors are L2-normalized) between

the corresponding residuals, where a residual vector is computed

as the difference between the descriptor and the cluster’s anchor

point. The anchor point ck can be interpreted as the origin of a

new coordinate system local to the the specific cluster k. In stan-

dard VLAD, the anchor is chosen as the cluster centre (×) in order

to evenly distribute the residuals across the database. However, in

a supervised setting where the two descriptors are known to be-

long to images which should not match, it is possible to learn a

better anchor (⋆) which causes the scalar product between the new

residuals to be small.

producing the output sk(xi) = w
T
k xi + bk; (ii) the convo-

lution output is then passed through the soft-max function

σk to obtain the final soft-assignment āk(xi) that weights

the different terms in the aggregation layer that implements

eq. (4). The output after normalization is a (K × D) × 1
descriptor.

Relations to other methods. Other works have proposed to

pool CNN activations using VLAD or Fisher Vectors (FV)

[14, 23], but do not learn the VLAD/FV parameters nor the

input descriptors. The most related method to ours is the

one of Sydorov et al. [75], which proposes to learn FV pa-

rameters jointly with an SVM for the end classification ob-

jective. However, in their work it is not possible to learn the

input descriptors as they are hand-engineered (SIFT), while

our VLAD layer is easily pluggable into any CNN archi-

tecture as it is amenable to backpropagation. “Fisher Net-

works” [71] stack Fisher Vector layers on top of each other,

but the system is not trained end-to-end, only hand-crafted

features are used, and the layers are trained greedily in a

bottom-up fashion. Finally, our architecture is also related

to bilinear networks [42], recently developed for a different
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(a) (b) (c)

Figure 4. Google Street View Time Machine examples. Each

column shows perspective images generated from panoramas from

nearby locations, taken at different times. A well designed method

can use this source of imagery to learn to be invariant to changes

in viewpoint and lighting (a-c), and to moderate occlusions (b).

It can also learn to suppress confusing visual information such as

clouds (a), vehicles and people (b-c), and to chose to either ignore

vegetation or to learn a season-invariant vegetation representation

(a-c). More examples are given in [2].

task of fine-grained category-level recognition.

Max pooling (fmax). We also experiment with Max-

pooling of the D-dimensional features across the H × W

spatial locations, thus producing a D-dimensional output

vector, which is then L2-normalized. Both of these oper-

ations can be implemented using standard layers in public

CNN packages. This setup mirrors the method of [7, 61],

but a crucial difference is that we will learn the represen-

tation (section 4) while [7, 60, 61] only use pretrained net-

works. Results will show (section 5.2) that simply using

CNNs off-the-shelf [60] results in poor performance, and

that training for the end-task is crucial. Additionally, VLAD

will prove itself to be superior to the Max-pooling baseline.

4. Learning from Time Machine data

In the previous section we have designed a new CNN ar-

chitecture as an image representation for place recognition.

Here we describe how to learn its parameters in an end-to-

end manner for the place recognition task. The two main

challenges are: (i) how to gather enough annotated training

data and (ii) what is the appropriate loss for the place recog-

nition task. To address theses issues, we will first show that

it is possible to obtain large amounts of weakly labelled im-

agery depicting the same places over time from the Google

Street View Time Machine. Second, we will design a new

weakly supervised triplet ranking loss that can deal with

the incomplete and noisy position annotations of the Street

View Time Machine imagery. The details are below.

Weak supervision from the Time Machine. We propose

to exploit a new source of data – Google Street View Time

Machine – which provides multiple street-level panoramic

images taken at different times at close-by spatial locations

on the map. As will be seen in section 5.2, this novel data

source is precious for learning an image representation for

place recognition. As shown in figure 4, the same loca-

tions are depicted at different times and seasons, providing

the learning algorithm with crucial information it can use to

discover which features are useful or distracting, and what

changes should the image representation be invariant to, in

order to achieve good place recognition performance.

The downside of the Time Machine imagery is that it

provides only incomplete and noisy supervision. Each Time

Machine panorama comes with a GPS tag giving only its ap-

proximate location on the map, which can be used to iden-

tify close-by panoramas but does not provide correspon-

dences between parts of the depicted scenes. In detail, as

the test queries are perspective images from camera phones,

each panorama is represented by a set of perspective images

sampled evenly in different orientations and two elevation

angles [11, 24, 35, 80]. Each perspective image is labelled

with the GPS position of the source panorama. As a result,

two geographically close perspective images do not neces-

sarily depict the same objects since they could be facing dif-

ferent directions or occlusions could take place (e.g. the two

images are around a corner from each other), etc. There-

fore, for a given training query q, the GPS information can

only be used as a source of (i) potential positives {pqi }, i.e.

images that are geographically close to the query, and (ii)

definite negatives {nq
j}, i.e. images that are geographically

far from the query.1

Weakly supervised triplet ranking loss. We wish to learn

a representation fθ that will optimize place recognition per-

formance. That is, for a given test query image q, the goal

is to rank a database image Ii∗ from a close-by location

higher than all other far away images Ii in the database. In

other words, we wish the Euclidean distance dθ(q, I) be-

tween the query q and a close-by image Ii∗ to be smaller

than the distance to far away images in the database Ii, i.e.

dθ(q, Ii∗) < dθ(q, Ii), for all images Ii further than a cer-

tain distance from the query on the map. Next we show

how this requirement can be translated into a ranking loss

between training triplets {q, Ii∗, Ii}.

From the Google Street View Time Machine data, we

obtain a training dataset of tuples (q, {pqi }, {n
q
j}), where

for each training query image q we have a set of potential

positives {pqi } and the set of definite negatives {nq
j}. The

1Note that even faraway images can depict the same object. For exam-

ple, the Eiffel Tower can be visible from two faraway locations in Paris.

But, for the purpose of localization we consider in this paper such image

pairs as negative examples because they are not taken from the same place.
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set of potential positives contains at least one positive image

that should match the query, but we do not know which one.

To address this ambiguity, we propose to identify the best

matching potential positive image p
q
i∗

p
q
i∗ = argmin

p
q

i

dθ(q, p
q
i ) (5)

for each training tuple (q, {pqi }, {n
q
j}). The goal then be-

comes to learn an image representation fθ so that dis-

tance dθ(q, p
q
i∗) between the training query q and the best

matching potential positive p
q
i∗ is smaller than the distance

dθ(q, n
q
j) between the query q and all negative images qj :

dθ(q, p
q
i∗) < dθ(q, n

q
j), ∀j. (6)

Based on this intuition we define a weakly supervised rank-

ing loss Lθ for a training tuple (q, {pqi }, {n
q
j}) as

Lθ =
∑

j

l
(

min
i

d2θ(q, p
q
i ) +m− d2θ(q, n

q
j)
)

, (7)

where l is the hinge loss l(x) = max(x, 0), and m is a con-

stant parameter giving the margin. Note that equation (7) is

a sum of individual losses for negative images n
q
j . For each

negative, the loss l is zero if the distance between the query

and the negative is greater by a margin than the distance be-

tween the query and the best matching positive. Conversely,

if the margin between the distance to the negative image and

to the best matching positive is violated, the loss is propor-

tional to the amount of violation. Note that the above loss

is related to the commonly used triplet loss [66, 67, 84, 85],

but adapted to our weakly supervised scenario using a for-

mulation (given by equation (5)) similar to multiple instance

learning [21, 36, 83].

We train the parameters θ of the representation fθ using

Stochastic Gradient Descent (SGD) on a large set of train-

ing tuples from Time Machine data. Details of the training

procedure are given in the appendix [2].

5. Experiments

In this section we describe the used datasets and evalua-

tion methodology (section 5.1), and give quantitative (sec-

tion 5.2) and qualitative (section 5.3) results to validate our

approach. Finally, we also test the method on the standard

image retrieval benchmarks (section 5.4).

5.1. Datasets and evaluation methodology

We report results on two publicly available datasets.

Pittsburgh (Pitts250k) [80] contains 250k database images

downloaded from Google Street View and 24k test queries

generated from Street View but taken at different times,

years apart. We divide this dataset into three roughly equal

parts for training, validation and testing, each containing

around 83k database images and 8k queries, where the di-

vision was done geographically to ensure the sets contain

independent images. To facilitate faster training, for some

experiments, a smaller subset (Pitts30k) is used, contain-

ing 10k database images in each of the train/val(idation)/test

sets, which are also geographically disjoint.

Tokyo 24/7 [79] contains 76k database images and 315

query images taken using mobile phone cameras. This is an

extremely challenging dataset where the queries were taken

at daytime, sunset and night, while the database images

were only taken at daytime as they originate from Google

Street View as described above. To form the train/val sets

we collected additional Google Street View panoramas of

Tokyo using the Time Machine feature, and name this set

TokyoTM; Tokyo 24/7 (=test) and TokyoTM train/val are

all geographically disjoint. Further details on the splits are

given in the appendix [2].

Evaluation metric. We follow the standard place recog-

nition evaluation procedure [5, 24, 64, 79, 80]. The query

image is deemed correctly localized if at least one of the top

N retrieved database images is within d = 25 meters from

the ground truth position of the query. The percentage of

correctly recognized queries (Recall) is then plotted for dif-

ferent values of N . For Tokyo 24/7 we follow [79] and per-

form spatial non-maximal suppression on ranked database

images before evaluation.

Implementation details. We use two base architectures

which are extended with Max pooling (fmax) and our

NetVLAD (fV LAD) layers: AlexNet [37] and VGG-16

[72]; both are cropped at the last convolutional layer

(conv5), before ReLU. For NetVLAD we use K = 64 re-

sulting in 16k and 32k-D image representations for the two

base architectures, respectively. The initialization proce-

dure, parameters used for training, procedure for sampling

training tuples and other implementation details are given in

the appendix [2]. All training and evaluation code, as well

as our trained networks, is online at [1].

5.2. Results and discussion

Baselines and state-of-the-art. To assess benefits of our

approach we compare our representations trained for place

recognition against “off-the-shelf” networks pretrained on

other tasks. Namely, given a base network cropped at

conv5, the baselines either use Max pooling (fmax), or ag-

gregate the descriptors into VLAD (fV LAD), but perform

no further task-specific training. The three base networks

are: AlexNet [37], VGG-16 [72], both are pretrained for

ImageNet classification [19], and Places205 [89], reusing

the same architecture as AlexNet but pretrained for scene

classification [89]. Pretrained networks have been recently

used as off-the-shelf dense descriptor extractors for instance

retrieval [7, 8, 23, 60, 61] and the untrained fmax network

corresponds to the method of [7, 61].
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Figure 5. Comparison of our methods versus off-the-shelf networks and state-of-the-art. The base CNN architecture is denoted in

brackets: (A)lexNet and (V)GG-16. Trained representations (red and magenta for AlexNet and VGG-16) outperform by a large margin off-

the-shelf ones (blue, cyan, green for AlexNet, Places205, VGG-16), fV LAD (-o-) works better than fmax (-x-), and our fV LAD+whitening

(-∗-) representation based on VGG-16 sets the state-of-the-art on all datasets. [79] only evaluated on Tokyo 24/7 as the method relies on

depth data not available in other datasets. Additional results are shown in the appendix [2].

Furthermore we compare our CNN representations

trained for place recognition against the state-of-the-art lo-

cal feature based compact descriptor, which consists of

VLAD pooling [29] with intra-normalization [4] on top

of densely extracted RootSIFTs [3, 43]. The descrip-

tor is optionally reduced to 4096 dimensions using PCA

(learnt on the training set) combined with whitening and

L2-normalization [25]; this setup together with view syn-

thesis yields the state-of-the-art results on the challenging

Tokyo 24/7 dataset (c.f . [79]).

In the following we discuss figure 5, which compares

place recognition performance of our method to the base-

lines outlined above on the Pittsburgh and Tokyo 24/7

benchmarks.

Dimensionality reduction. We follow the standard state-

of-the-art procedure to perform dimensionality reduction of

VLAD, as described earlier, i.e. the reduction into 4096-D

is performed using PCA with whitening followed by L2-

normalization [25, 79]. Figure 5 shows that the lower di-

mensional fV LAD (-∗-) performs similarly to the full size

vector (-o-).

Benefits of end-to-end training for place recognition.

Representations trained on the end-task of place recog-

nition consistently outperform by a large margin off-the-

shelf CNNs on both benchmarks. For example, on the

Pitts250k-test our trained AlexNet with (trained) NetVLAD

aggregation layer achieves recall@1 of 81.0% compared to

only 55.0% obtained by off-the-shelf AlexNet with stan-

dard VLAD aggregation, i.e. a relative improvement in re-

call of 47%. Similar improvements can be observed on

all three datasets. This confirms two important premises

of this work: (i) our approach can learn rich yet compact

image representations for place recognition, and (ii) the

popular idea of using pretrained networks “off-the-shelf”

[7, 8, 23, 60, 61] is sub-optimal as the networks trained for

object or scene classification are not necessary suitable for

the end-task of place recognition. We believe this could be

attributed to the fact that “off-the-shelf ” conv5 activations

are not trained to be comparable using Euclidean distance.

Comparison with state-of-the-art. Figure 5 also shows

that our trained fV LAD representation with whitening based

on VGG-16 (magenta -∗-) convincingly outperforms Root-

SIFT+VLAD+whitening, as well as the method of Torii et

al. [79], and therefore sets the state-of-the-art for compact

descriptors on all benchmarks. Note that these are strong

baselines that outperform most off-the-shelf CNN descrip-

tors on the place recognition task.

VLAD versus Max. By comparing fV LAD (-o-) meth-

ods with their corresponding fmax (-x-) counterparts it

is clear that VLAD pooling is much better than Max

pooling for both off-the-shelf and trained representations.

NetVLAD performance decreases gracefully with dimen-

sionality: 128-D NetVLAD performs similarly to 512-D

Max (42.9% vs 38.4% recall@1 on Tokyo 24/7), resulting

in four times more compact representation for the same per-

formance. Furthermore, NetVLAD+whitening outperforms

Max pooling convincingly when reduced to the same di-

mensionality (60%). See the appendix [2] for more details.

Which layers should be trained? In Table 1 we study the

benefits of training different layers for the end-task of place

recognition. The largest improvements are thanks to train-

ing the NetVLAD layer, but training other layers results in

further improvements, with some overfitting occurring be-

low conv2.

Importance of Time Machine training. Here we examine

whether the network can be trained without the Time Ma-

chine (TM) data. In detail, we have modified the training

query set for Pitts30k-train to be sampled from the same

set as the training database images, i.e. the tuples of query

and database images used in training were captured at the

same time. Recall@1 with fmax on Pitts30k-val for the off-

the-shelf AlexNet is 33.5%, and training without TM im-
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Lowest trained

layer

fmax fV LAD

r@1 r@5 r@10 r@1 r@5 r@10

none (off-the-shelf) 33.5 57.3 68.4 54.5 69.8 76.1

NetVLAD — — — 80.5 91.8 95.2

conv5 63.8 83.8 89.0 84.1 94.6 95.5

conv4 62.1 83.6 89.2 85.1 94.4 96.1

conv3 69.8 86.7 90.3 85.5 94.6 96.5

conv2 69.1 87.6 91.5 84.5 94.6 96.6

conv1 (full) 68.5 86.2 90.8 84.2 94.7 96.1

Table 1. Partial training. Effects of performing backpropagation

only down to a certain layer of AlexNet, e.g. ‘conv4’ means that

weights of layers from conv4 and above are learnt, while weights

of layers below conv4 are fixed to their pretrained state; r@N sig-

nifies recall@N. Results are shown on the Pitts30k-val dataset.
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Figure 6. What has been learnt? Each column corresponds

to one image (top row) and the emphasis various networks (under

fmax) give to different patches. Each pixel in the heatmap corre-

sponds to the change in representation when a large gray occluding

square (100× 100) is placed over the image in the same position;

all heatmaps have the same colour scale. Note that the original

image and the heatmaps are not in perfect alignment as nearby

patches overlap 50% and patches touching an image edge are dis-

carded to prevent border effects. All images are from Pitts250k-

val that the network hasn’t seen at training. Further examples are

given in the appendix [2].

proves this to 38.7%. However, training with TM obtains

68.5% showing that Time Machine data is crucial for good

place recognition accuracy as without it the network does

not generalize well. The network learns, for example, that

recognizing cars is important for place recognition, as the

same parked cars appear in all images of a place.

5.3. Qualitative evaluation

To visualize what is being learnt by our place recogni-

tion architectures, we adapt the method of Zeiler and Fer-

gus [87] for examining occlusion sensitivity of classifica-

tion networks. It can be seen in figure 6 that off-the-shelf

AlexNet (pretrained on ImageNet) focuses very much on

categories it has been trained to recognize (e.g. cars) and

certain shapes, such as circular blobs useful for distinguish-

ing 12 different ball types in the ImageNet categories. The

Place205 network is fairly unresponsive to all occlusions as

it does not aim to recognize specific places but scene-level

categories, so even if an important part of the image is oc-

cluded, such as a characteristic part of a building façade,

it still provides a similar output feature which corresponds

to an uninformative “a building façade” image descriptor.

In contrast to these two, our network trained for specific

place recognition automatically learns to ignore confusing

features, such as cars and people, which are not discrimina-

tive for specific locations, and instead focuses on describing

building façades and skylines. More qualitative examples

are provided in the appendix [2].

5.4. Image retrieval
We use our best performing network (VGG-16, fV LAD

with whitening down to 256-D) trained completely on Pitts-

burgh, to extract image representations for standard object

and image retrieval benchmarks. Our representation sets the

state-of-the-art for compact image representations (256-D)

by a large margin on all three datasets, obtaining an mAP of

63.5%, 73.5% and 79.9% on Oxford 5k [53], Paris 6k [54],

Holidays [26], respectively; for example, this is a +20% rel-

ative improvement on Oxford 5k. The appendix [2] contains

more detailed results.

6. Conclusions

We have designed a new convolutional neural network

architecture that is trained for place recognition in an end-

to-end manner from weakly supervised Street View Time

Machine data. Our trained representation significantly out-

performs off-the-shelf CNN models and significantly im-

proves over the state-of-the-art on the challenging 24/7

Tokyo dataset, as well as on the Oxford and Paris image re-

trieval benchmarks. The two main components of our archi-

tecture – (i) the NetVLAD pooling layer and (ii) weakly su-

pervised ranking loss – are generic CNN building blocks ap-

plicable beyond the place recognition task. The NetVLAD

layer offers a powerful pooling mechanism with learnable

parameters that can be easily plugged into any other CNN

architecture. The weakly supervised ranking loss opens up

the possibility of end-to-end learning for other ranking tasks

where large amounts of weakly labelled data are available,

for example, images described with natural language [33].
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M. Pollefeys. Hyperpoints and fine vocabularies for large-

scale location recognition. In Proc. ICCV, 2015. 1, 2
[63] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based lo-

calization using direct 2D–to–3D matching. In Proc. ICCV,

2011. 1, 2
[64] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image

retrieval for image-based localization revisited. In Proc.

BMVC., 2012. 1, 2, 6
[65] G. Schindler, M. Brown, and R. Szeliski. City-scale location

recognition. In Proc. CVPR, 2007. 1, 2
[66] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A

unified embedding for face recognition and clustering. In

Proc. CVPR, 2015. 6
[67] M. Schultz and T. Joachims. Learning a distance metric from

relative comparisons. In NIPS, 2004. 6
[68] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. OverFeat: Integrated recognition, localiza-

tion and detection using convolutional networks. CoRR,

abs/1312.6229, 2013. 1
[69] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, and

F. Moreno-Noguer. Fracking deep convolutional image de-

scriptors. CoRR, abs/1412.6537, 2014. 2
[70] K. Simonyan, A. Vedaldi, and A. Zisserman. Descriptor

learning using convex optimisation. In Proc. ECCV, 2012.

2
[71] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Fisher

networks for large-scale image classification. In NIPS, 2013.

4
[72] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In Proc. ICLR,

2015. 1, 6
[73] J. Sivic and A. Zisserman. Video Google: A text retrieval

approach to object matching in videos. In Proc. ICCV, vol-

ume 2, pages 1470–1477, 2003. 1, 3
[74] N. Sunderhauf, S. Shirazi, A. Jacobson, E. Pepperell, F. Day-

oub, B. Upcroft, and M. Milford. Place recognition with

ConvNet landmarks: Viewpoint-robust, condition-robust,

training-free. In Robotics: Science and Systems, 2015. 1,

2
[75] V. Sydorov, M. Sakurada, and C. Lampert. Deep fisher ker-

nels – end to end learning of the fisher kernel GMM param-

eters. In Proc. CVPR, 2014. 4
[76] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proc. CVPR, 2014. 1
[77] G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not

to aggregate: Selective match kernels for image search. In

Proc. ICCV, 2013. 2
[78] G. Tolias and H. Jégou. Visual query expansion with or with-

out geometry: refining local descriptors by feature aggrega-

tion. Pattern Recognition, 2014. 2
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