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Abstract

Projective analysis is an important solution for 3D shape

retrieval, since human visual perceptions of 3D shapes re-

ly on various 2D observations from different view points.

Although multiple informative and discriminative views are

utilized, most projection-based retrieval systems suffer from

heavy computational cost, thus cannot satisfy the basic re-

quirement of scalability for search engines.

In this paper, we present a real-time 3D shape search

engine based on the projective images of 3D shapes. The

real-time property of our search engine results from the fol-

lowing aspects: (1) efficient projection and view feature ex-

traction using GPU acceleration; (2) the first inverted file,

referred as F-IF, is utilized to speed up the procedure of

multi-view matching; (3) the second inverted file (S-IF),

which captures a local distribution of 3D shapes in the

feature manifold, is adopted for efficient context-based re-

ranking. As a result, for each query the retrieval task can

be finished within one second despite the necessary cost of

IO overhead. We name the proposed 3D shape search en-

gine, which combines GPU acceleration and Inverted File

(Twice), as GIFT. Besides its high efficiency, GIFT also

outperforms the state-of-the-art methods significantly in re-

trieval accuracy on various shape benchmarks and compe-

titions.

1. Introduction

3D shape retrieval is a fundamental issue in comput-

er vision and pattern recognition. With the rapid devel-

opment of large scale public 3D repositories, e.g., Google

3D Warehouse or TurboSquid, and large scale shape bench-

marks, e.g., ModelNet [39], SHape REtrieval Contest

(SHREC) [14, 31], the scalability of 3D shape retrieval al-

gorithms becomes increasingly important for practical ap-

plications. However, efficiency issue has been more or less

ignored by previous works, though enormous efforts have

been devoted to retrieval effectiveness, that is to say, to de-

sign informative and discriminative features [12, 2, 17, 6,
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40, 15, 18] to boost the retrieval accuracy. As suggested

in [14], plenty of these algorithms do not scale up to large

3D shape databases due to their high time complexity.

Meanwhile, owing to the fact that human visual percep-

tion of 3D shapes depends upon 2D observations, projective

analysis has became a basic and inherent tool in 3D shape

domain for a long time, with applications to segmenta-

tion [38], matching [24], reconstruction, etc.. Specifically in

3D shape retrieval, projection-based methods demonstrate

impressive performances. Especially in recent years, the

success of planar image representation [7, 35, 43], makes it

easier to describe 3D models using depth or silhouette pro-

jections.

Generally, a typical 3D shape search engine is comprised

of the following four components (see also Fig. 1):

1. Projection rendering. With a 3D model as input, the

output of this component is a collection of projection-

s. Most methods set an array of virtual cameras at

pre-defined view points to capture views. These view

points can be the vertices of a dodecahedron [4], lo-

cated on the unit sphere [35], or around the lateral sur-

face of a cylinder [24]. In most cases, pose normaliza-

tion [22] is needed for the sake of invariance to trans-

lation, rotation and scale changes.

2. View feature extraction. The role of this component is

to obtain multiple view representations, which affects

the retrieval quality largely. A widely-used paradigm

is Bag-of-Words (BoW) [7] model, since it has shown

its superiority as natural image descriptors. However,

in order to get better performances, many features [14]

are of extremely high dimension. As a consequence,

raw descriptor extraction (e.g., SIFT [20]), quantiza-

tion and distance calculation are all time-consuming.

3. Multi-view matching. This component establishes the

correspondence between two sets of view features, and

returns a matching cost between two 3D models. Since

at least a set-to-set matching strategy [25, 26, 27, 16, 9]

is required, this stage suffers from high time complex-

ity even when using the simplest Hausdorff matching.
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Hence, the usage of algorithms incorporated with some

more sophisticated matching strategies on large scale

3D datasets is limited due to their heavy computation-

al cost.

4. Re-ranking. It aims at refining the initial ranking list

by using some extra information. For retrieval prob-

lems, since no prior or supervised information is avail-

able, contextual similarity measure is usually utilized.

A classic context-based re-ranking methodology for

shape retrieval is diffusion process [5], which exhibits

outstanding performance on various datasets. Howev-

er, as graph-based and iterative algorithms, many vari-

ants of diffusion process (e.g., locally constrained d-

iffusion process [41]), generally require the computa-

tional complexity of O(TN3), where N is the total

number of shapes in the database and T is the number

of iterations. In this sense, diffusion process does not

seem to be applicable for real-time analysis.

In this paper, we present a real-time 3D shape search en-

gine using projections that includes all the aforementioned

components. It combines Graphics Processing Unit (G-

PU) acceleration and Inverted File (Twice), hence we name

it GIFT. In on-line processing, once a user submits a query

shape, GIFT can react and present the retrieved shapes with-

in one second (the off-line preprocessing operations, such

as CNN model training and inverted file establishment, are

excluded). GIFT is evaluated on several popular 3D bench-

marks datasets, especially on one track of SHape REtrieval

Contest (SHREC) which focuses on scalable 3D retrieval.

The experimental results on retrieval accuracy and query

time demonstrate the capability of GIFT in handling large

scale data.

In summary, our main contributions are as follows. First-

ly, GPU is used to speed up the procedure of projection

rendering and feature extraction. Secondly, in multi-view

matching procedure, a robust version of Hausdorff distance

for noise data is approximated with an inverted file, which

allows for extremely efficient matching between two view

sets without impairing the retrieval performances too much.

Thirdly, in the re-ranking component, a new context-based

algorithm based on fuzzy set theory is proposed. Different

from diffusion processes of high time complexity, our re-

ranking here is ultra time efficient on the account of using

inverted file again.

2. Proposed Search Engine

2.1. Projection Rendering

Prior to projection rendering, pose normalization for

each 3D shape is needed in order to attain invariance to

some common geometrical transformations. However, a-

part from many pervious algorithms [23, 24, 22] that re-

quire rotation normalization using some Principal Compo-

nent Analysis (PCA) techniques, we only normalize the s-

cale and the translation in our system. Our concerns are

two-fold: 1) PCA techniques are not always stable, espe-

cially when dealing with some specific geometrical char-

acteristics such as symmetries, large planar or bumpy sur-

faces; 2) the view feature used in our system can tolerate

the rotation issue to a certain extent, though cannot be com-

pletely invariant to such changes. In fact, we observe that

if enough projections (more than 25 in our experiments) are

used, one can achieve reliable performances.

The projection procedure is as follows. Firstly, we place

the centroid of each 3D shape at the origin of a spherical co-

ordinate system, and resize the maximum polar distance of

the points on the surface of the shape to unit length. Then

Nv virtual cameras are set on the unit sphere evenly, and

they are located by the azimuth θaz and the elevation θel an-

gles. At last, we render one projected view in depth buffer

at each combination of θaz and θel. For the sake of speed,

GPU is utilized here such that for each 3D shape, the aver-

age time cost of rendering 64 projections is only 30ms.

2.2. Feature Extraction via GPU Acceleration

Feature design has been a crucial problem in 3D shape

retrieval for a long time owing to its great influence on the

retrieval accuracy. Though extensively studied, almost all

the existing algorithms ignore the efficiency of the feature

extraction.

To this end, our search engine adopts GPU to accelerate

the procedure of feature extraction. Impressed by the su-

perior performance of deep learning approaches in various

visual tasks, we propose to use the activation of a Convo-

lutional Neural Network (CNN). The CNN used here takes

depth images as input, and the loss function is exerted on

the classification error for projections. The network archi-

tecture consists of five successive convolutional layers and

three fully connected layers as in [3]. We normalize each

activation in its Euclidean norm to avoid scale changes. It

only takes 56ms on average to extract the view features for

a 3D model.

Since no prior information is available to judge the dis-

criminative power of activations of different layers, we pro-

pose a robust re-ranking algorithm described in Sec. 2.4.

It can fuse those homogenous features efficiently based on

fuzzy set theory.

2.3. Inverted File for Multiview Matching

Consider a query shape xq and a shape xp from the

database X = {x1, x2, . . . , xN}. Let V denote a map-

ping function from 3D shapes to their feature sets. We can

obtain two sets V(xq) = {q1, q2, . . . , qNv
} and V(xp) =

{p1, p2, . . . , pNv
} respectively, where Nv is the number of

views. qi (or pi) denotes the view feature assigned to the
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Figure 1. The structure of the proposed 3D shape search engine GIFT.

i-th view of shape xq (or xp).

A 3D shape search engine requires a multi-view match-

ing component to establish a correspondence between two

sets of view features. These matching strategies are usually

metrics defined on sets (e.g., Hausdorff distance) or graph

matching algorithms (e.g., Hungarian method, Dynamic

Programming, clock-matching). However, these pairwise

strategies are time-consuming for a real-time search engine.

Among them, Hausdorff distance may be the most efficient

one, since it only requires some simple algebraic operations

without sophisticated optimizations.

Recall that the standard Hausdorff distance measures the

difference between two sets, and it is defined as

D(xq, xp) = max
qi∈V(xq)

min
pj∈V(xp)

d(qi, pj), (1)

where function d(·) measures the distance between two in-

put vectors. In order to eliminate the disturbance of isolated

views in the query view set, a more robust version of Haus-

dorff distance is given by

D(xq, xp) =
1

Nv

∑

qi∈V(xq)

min
pj∈V(xp)

d(qi, pj). (2)

For the convenience of analysis, we consider its dual form

in the similarity space as

S(xq, xp) =
1

Nv

∑

qi∈V(xq)

max
pj∈V(xp)

s(qi, pj), (3)

where s(·) measures the similarity between the two input

vectors. In this paper, we adopt the cosine similarity.

As can be seen from Eq. (2) and Eq. (3), Hausdorf-

f matching requires the time complexity O(N × Nv
2)

for retrieving a given query (assuming that there are N

shapes in the database). Though the complexity grows

linearly with respect to the database size, it is still in-

tolerable when N gets larger. However, by analyz-

ing Eq. (3), we can make several observations: (1) let

s∗(qi) = max1≤j≤Nv
s(qi, pj), the similarity calculations

of s(qi, pj) are unnecessary when s(qi, pj) < s∗(qi), since

these similarity values are unused due to the max opera-

tion, i.e., only s∗(qi) is kept; (2) when considering from

the query side, we can find that s∗(qi) counts little to the

final matching cost if s∗(qi) < ξ and ξ is a small thresh-

old. Those observations suggest that although the match-

ing function in Eq. (3) requires the calculation of all the

pairwise similarities between two view sets, some similarity

calculations, which generate small values, can be eliminat-

ed without impairing the retrieval performance too much.
In order to avoid these unnecessary operations and im-

prove the efficiency of multi-view matching procedure, we
adopt inverted file to approximate Eq. (3) by adding the
Kronecker delta response as

S(xq, xp) =
1

Nv

∑

qi∈V(xq)

max
pj∈V(xp)

s(qi, pj) · δc(qi),c(pj), (4)

where δx,y = 1 if x = y, and δx,y = 0 if x 6= y. The

quantizer c(x) = argmin1≤i≤K ‖x − bi‖
2 maps the input

feature into an integer index that corresponds to the nearest

codeword of the given vocabulary B = {b1, b2, . . . , bK}.

As a result, the contribution of pj , which satisfies c(qi) 6=
c(pj), to the similarity measure can be directly set to zero,

without estimating s(qi, pj) explicitly.

In conclusion, our inverted file for multi-view matching

is built as illustrated in Fig. 2. For each view feature, we

store it and its corresponding shape ID in the nearest code-

word. It should be mentioned that we can also use Multiple

Assignment (MA), i.e., assign each view to multiple code-

words, to improve the matching precision at the sacrifice of

memory cost and on-line query time.

2.4. Inverted File for Reranking

A typical search engine usually involves a re-ranking

component [21], aiming at refining the initial candidate list

by using some contextual information. In GIFT, we pro-

pose a new contextual similarity measure called Aggregat-

ed Contextual Activation (ACA), which follows the same
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Figure 2. The structure of the first inverted file.

principles as diffusion process [5], i.e., the similarity be-

tween two shapes should go beyond their pairwise formula-

tion and is influenced by their contextual distributions along

the underlying data manifold. However, apart from diffu-

sion process which has high time complexity, ACA enables

real-time re-ranking, which can be applied to large scale da-

ta.

Let Nk(xq) denote the neighbor set of xq , which con-

tains its top-k neighbors. Similar to [42], our basic idea is

that the similarity between two shapes can be more reliably

measured by comparing their neighbors using Jaccard sim-

ilarity as

S
′

(xq, xp) =
|Nk(xq) ∩Nk(xp)|

|Nk(xq) ∪Nk(xp)|
. (5)

One can find that the neighbors are treated equally in E-

q. (5). However the top-ranked neighbors are more likely to

be true positives. So a more proper behavior is increasing

the weights of top-ranked neighbors.

To achieve this, we propose to define the neighbor set

using fuzzy set theory1. Different from classical (crisp) set

theory where each element either belongs or does not be-

long to the set, fuzzy set theory allows a gradual assessment

of the membership of elements in a set. We utilize S(xq, xi)
to measure the membership grade of xi in the neighbor set

of xq . Accordingly, Eq. (5) is re-written as

S
′

(xq, xp) =

∑

xi∈Nk(xq)∩Nk(xp)

min (S(xq, xi), S(xp, xi))

∑

xi∈Nk(xq)
⋃

Nk(xp)

max (S(xq, xi), S(xp, xi))
.

(6)

Since considering equal-sized vector comparison is more

convenient in real computational applications, we use F ∈
R

N to encode the membership values. The i-th element in

Fq is given as

Fq[i] =

{

S(xq, xi) if xi ∈ Nk(xq)

0 otherwise.
(7)

Based on this definition we replace Eq. 6 with

S
′

(xq, xp) =

∑N

i=1 min (Fq[i], Fp[i])
∑N

i=1 max (Fq[i], Fp[i])
. (8)

1Please refer to supplementary material for the formal definitions of

all the fuzzy operations used in this paper.

Considering vector Fq is sparse, we can view it as sparse

activation of shape xq , where the activation at coordinate i

is the membership grade of xi in the neighbor set Nk(xq).
Eq. (8) utilizes the sparse activations Fq and Fp to define

the new contextual shape similarity measure.

Note that all the above analysis is carried out for only one

similarity measure. However, in our specific scenario, the

outputs of different layers of CNN are usually at different

abstraction resolutions.

For example, two different layers of CNN lead to two d-

ifferent similarities S(1) and S(2) by Eq. (3), which in turn

yield two different sparse activations F
(1)
q and F

(2)
q by E-

q. (7). Since no prior information is available to assess their

discriminative power, our goal now is to fuse them in a un-

supervised way. For this we utilize the aggregation oper-

ation in fuzzy set theory, by which several fuzzy sets are

combined in a desirable way to produce a single fuzzy set.

We consider two fuzzy sets represented by the sparse acti-

vations F
(1)
q and F

(2)
q (the extension to more than two acti-

vations is similar) . Their aggregation is then defined as

Fq =

(

(F
(1)
q )α + (F

(2)
q )α

2

)
1
α

, (9)

which computes the element-wise generalized means with

exponent α of F
(1)
q and F

(2)
q . Instead of using arith-

metic mean, we use this generalized means (α is set to

0.5 throughout our experiments). Our concern for this is

to avoid the problem that some artificially large elements in

Fq dominate the similarity measure. This motivation is very

similar to handling bursty visual elements in Bag-of-Words

(BoW) model (see [10] for examples).

In summary, we call the feature in Eq. (9) Aggregated

Contextual Activation (ACA). Next, we will introduce some

improvements of Eq. (9) concerning its retrieval accuracy

and computational efficiency.

2.4.1 Improving Accuracy

Similar to diffusion process, the proposed ACA requires

an accurate estimation of the context in the data manifold.

Here we provide two alternative ways to improve the re-

trieval performance of ACA without depriving its efficien-

cy.

Neighbor Augmentation. The first one is to augment Fq

using the neighbors of second order, i.e., the neighbors of

the neighbors of xq . Inspired by query expansion [24], the

second order neighbors are added as

F (l)
q :=

1

|N
(l)
k (xq)|

∑

xi∈N
(l)
k

(xq)

F
(l)
i . (10)

Neighbor Co-augmentation. Our second improvement is

to use a so-called “neighbor co-augmentation”. Specifical-
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Figure 3. The structure of the second inverted file.

ly, the neighbors generated by one similarity measure are

used to augment contextual activations of the other similar-

ity measure, formally defined as

F (1)
q :=

1

|N
(2)
k (xq)|

∑

xi∈N
(2)
k

(xq)

F
(1)
i ,

F (2)
q :=

1

|N
(1)
k (xq)|

∑

xi∈N
(1)
k

(xq)

F
(2)
i .

(11)

This formula is inspired by “co-training” [44]. Essentially,

one similarity measure tells the other one that “I think these

neighbors to be true positives, and lend them to you such

that you can improve your own discriminative power”.

Note that the size of neighbor set used here may be d-

ifferent from that used in Eq. (7). In order to distinguish

them, we denote the size of neighbor set in Eq. (7) as k1,

while that used in Eq. (10) and Eq. (11) as k2.

2.4.2 Improving Efficiency

Considering that the length of Fq is N , one may doubt the

efficiency of similarity computation in Eq. (8), especially

when the database size N is large. In fact, Fq is a sparse

vector, since Fq only encodes the neighborhood structure of

xq , and the number of non-zero values is only determined

by the size of Nk(xq). This observation motivate us to u-

tilize an inverted file again to leverage the sparsity of Fq .

Now we derive the feasibility of applying inverted file in

Jaccard similarity theoretically.

The numerator in Eq. (8) is computed as

∑

i

min (Fq[i], Fp[i]) =
∑

i|Fq [i] 6=0,Fp[i] 6=0

min(Fq[i], Fp[i])

+
∑

i|Fq [i]=0

min(Fq[i], Fp[i]) +
∑

i|Fp[i]=0

min(Fq[i], Fp[i]).

(12)

Since all values of the aggregated contextual activation are

non-negative, the last two items in Eq. (12) are equal to ze-

ro. Consequently, Eq. (12) can be simplified as

∑

i

min (Fq[i], Fp[i]) =
∑

i|Fq [i] 6=0,Fp[i] 6=0

min(Fq[i], Fp[i]),

(13)

which only requires accessing non-zero entries of the query,

and hence can be computed efficiently on-the-fly.

Although the calculation of the denominator in Eq. (8)

seems sophisticated, it can be expressed as
∑

i

max (Fq[i], Fp[i])

= ‖Fq‖1 + ‖Fp‖1 −
∑

i

min (Fq[i], Fp[i])

= ‖Fq‖1 + ‖Fp‖1 −
∑

i|Fq [i] 6=0,Fp[i] 6=0

min(Fq[i], Fp[i]).

(14)

Besides the query-dependent operations (the first and the

last items), Eq. (14) only involves an operation of L1 norm

calculation of Fp, which is simply equal to the cardinality

of the fuzzy set Nk(xp) and can be pre-computed off-line.

Our inverted file for re-ranking is built as illustrated in

Fig. 3. It has exactly N entries, and each entry corresponds

to one shape in the database. For each entry, we first store

the cardinality of its fuzzy neighbor set. Then, we find those

shapes which have non-negative membership values in this

entry. Those shape IDs and the membership values are s-

tored in this entry.

3. Experiments

In this section, we evaluate the performance of GIFT on

different kinds of 3D shape retrieval tasks. The evaluation

metrics used in this paper include mean average precision

(MAP), area under curve (AUC), Nearest Neighbor (NN),

First Tier (FT) and Second Tier (ST). Refer to [39, 29] for

their detailed definitions.

If not specified, we adopt the following setup throughout

our experiments. The projection rendered for each shape is

Nv = 64. For multi-view matching procedure, the approxi-

mate Hausdorff matching defined in Eq. (4) with an invert-

ed file of 256 entries is used. Multiple Assignment is set

to 2. We use two pairwise similarity measures, which are

calculated using features from convolutional layer L5 and

fully-connected layer L7 respectively. In re-ranking com-

ponent, each similarity measure generates one sparse acti-

vation Fq to capture the contextual information for the 3D

shape xq , and neighbor co-augmentation in Eq. (11) is used

to produce F
(1)
q and F

(2)
q . Finally, both F

(1)
q and F

(2)
q are

integrated by (9) with exponent α = 0.5.

3.1. ModelNet

ModelNet is a large-scale 3D CAD model dataset intro-

duced by Wu et al. [39] recently, which contains 151, 128
3D CAD models divided into 660 object categories. Two

subsets are used for evaluation, i.e., ModelNet40 and Mod-

elNet10. The former one contains 12, 311 models, and the

latter one contains 4, 899 models. We evaluate the perfor-

mance of GIFT on both subsets and adopt the same train-

ing and test split as in [39], namely randomly selecting 100
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Methods
ModelNet40 ModelNet10

AUC MAP AUC MAP

SPH [11] 34.47% 33.26% 45.97% 44.05%

LFD [4] 42.04% 40.91% 51.70% 49.82%

PANORAMA [24] 45.00% 46.13% 60.72% 60.32%

ShapeNets [39] 49.94% 49.23% 69.28% 68.26%

DeepPano [28] 77.63% 76.81% 85.45% 84.18%

MVCNN [32] - 78.90% - -

L5 63.70% 63.07% 78.19% 77.25%

L7 77.28% 76.63% 89.03% 88.05%

GIFT 83.10% 81.94% 92.35% 91.12%

Table 1. The performance comparison with state-of-the-art on

ModelNet40 and ModelNet10.
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Figure 4. Precision-recall curves on ModelNet40 (a) and Model-

Net10 (b).

unique models per category from the subset, in which 80
models are used for training the CNN model and the rest

for testing the retrieval performance.

For comparison, we collected all the retrieval result-

s publicly available2. The chosen methods are (Spheri-

cal Harmonic) SPH [11], (Light Field descriptor) LFD [4],

PANORAMA [24], 3D ShapeNet [39], DeepPano [28] and

MVCNN [32]. As Table 1 shows, GIFT outperforms al-

l the state-of-the-art methods remarkably. We also present

the performance of two baseline methods, i.e., feature L5

or L7 with exact Hausdorff matching. As can be seen, L7

achieves a better performance than L5, and GIFT leads to a

significant improvement over L7 of 5.82% in AUC, 5.31%

in MAP for ModelNet40 dataset, and 3.32% in AUC, 3.07%

in MAP for ModelNet10 dataset.

Fig. 4 compares the precision-recall curves. It demon-

strates again the discriminative power of the proposed

search engine in 3D shape retrieval. Note that ModelNet

also defines the 3D shape classification tasks. Considering

GIFT is initially developed for real-time retrieval, its clas-

sification results are given in the supplementary material.

3.2. Large Scale Competition

As the most authoritative 3D retrieval competition held

each year, SHape REtrieval Contest (SHREC) pays much

attention to the development of scalable algorithms gradual-

2http://modelnet.cs.princeton.edu/

ly. Especially in recent years, several large scale tracks [31],

such as SHREC14LSGTB [14], are organized to test the s-

calability of algorithms. However, most algorithms that the

participants submit are of high time complexity, and can-

not be applied when the dataset becomes larger (millions

or more). Here we choose SHREC14LSGTB dataset for

a comprehensive evaluation. This dataset contains 8, 987
3D models classified into 171 classes, and each 3D shape

is taken in turn as the query. As for the feature extractor,

we collected 54, 728 unrelated models from ModelNet [39]

divided into 461 categories to train a CNN model.

To keep the comparison fair, we choose two types of re-

sults from the survey paper [14] to present in Table 2. The

first type consists of the top-5 best-performing methods on

retrieval accuracy, including PANORAMA [24], DBSVC,

MR-BF-DSIFT, MR-D1SIFT and LCDR-DBSVC. The sec-

ond type is the most efficient one, i.e., ZFDR [13].

As can be seen from the table, excluding GIFT, the best

performance is achieved by LCDR-DBSVC. However, it re-

quires 668.6s to return the retrieval results per query, which

means that 69 days are needed to finish the query task on

the whole dataset. The reason behind such a high com-

plexity lies in two aspects: 1) its visual feature is 270K di-

mensional, which is time consuming to compute, store and

compare; 2) it adopts locally constrained diffusion process

(LCDP) [41] for re-ranking, while it is known that LCDP is

an iterative graph-based algorithm of high time complexity.

As for ZFDR, its average query time is shortened to 1.77s
by computing parallel on 12 cores. Unfortunately, ZFDR

achieves much less accurate retrieval performance, and it-

s FT is 13% smaller than LCDR-DBSVC. In summary, a

conclusion can be drawn that no method can achieve a good

enough performance at a low time complexity.

By contrast, GIFT outperforms all these methods, in-

cluding a very recent algorithm called Two Layer Coding

(TLC) [1] which reports 0.585 in FT. What is more im-

portant that GIFT can provide the retrieval results within

63.14ms, which is 4 orders of magnitude faster than LCDR-

DBSVC. Meanwhile, the two baseline methods L5 and L7

incur heavy query cost due to the usage of exact Hausdorf-

f matching, which testifies the advantage of the proposed

F-IF.

3.3. Generic 3D Retrieval

Following [34], we select three popular datasets for a

generic evaluation, including Princeton Shape Benchmark

(PSB) [29], Watertight Models track of SHape REtrieval

Contest 2007 (WM-SHREC07) [8] and McGill dataset [30].

Among them, PSB dataset is probably the first widely-used

generic shape benchmark, and it consists of 907 polygonal

models divided into 92 categories. WM-SHREC07 contains

400 watertight models evenly distributed in 20 classes, and

is a representative competition held by SHREC community.
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Methods
Accuracy

Query time

NN FT ST

ZFDR 0.879 0.398 0.535 1.77s

PANORAMA 0.859 0.436 0.560 370.2s

DBSVC 0.868 0.438 0.563 62.66s

MR-BF-DSIFT 0.845 0.455 0.567 65.17s

MR-D1SIFT 0.856 0.465 0.578 131.04s

LCDR-DBSVC 0.864 0.528 0.661 668.6s

L5 0.879 0.460 0.592 22.73s
L7 0.884 0.507 0.642 4.82s
GIFT 0.889 0.567 0.689 63.14ms

Table 2. The performance comparison on SHREC14LSGTB.

Datasets Off-line On-line Indexing

ModelNet40 ≈ 0.7h 27.02ms

ModelNet10 ≈ 0.3h 10.25ms

SHREC14LSGTB ≈ 8.5h 63.14ms

PSB

≈ 1.8h
16.25ms

WMSHREC07 16.05ms

McGill 9.38ms

Table 4. The time cost analysis of GIFT.

McGill dataset focuses on non-rigid analysis, and contains

255 articulated objects classified into 10 classes. We train

CNN on an independent TSB dataset [36], and then use the

trained CNN to extract view features for the shapes in all

the three testing datasets.

In Table 3, a comprehensive comparison between GIFT

and various state-the-art methods is presented, including

LFD [4], the curve-based method of Tabia et al. [33],

DESIRE descriptor [37], total Bregman Divergences (tB-

D) [19], Covariance descriptor [34], the Hybrid of 2D

and 3D descriptor [23], Two Layer Coding (TLC) [1] and

PANORAMA [24]. As can be seen, GIFT exhibits en-

couraging discriminative ability in retrieval accuracy and

achieves state-of-the-art performances consistently on al-

l the three evaluation metrics.

3.4. Execution Time

In addition to state-of-the-art performances on several

datasets and competitions, the most important property of

GIFT is the “real-time” performance with the potential of

handling large scale shape corpora. In Table 4, we give a

deeper analysis of the time cost. The off-line operations

mainly include projection rendering and feature extraction

for database shapes, training CNN, and building two in-

verted files. As the table shows, the time cost of off-line

operations varies significantly for different datasets. A-

mong them, the most time-consuming operation is train-

ing CNN, followed by building the first inverted file with

k-means. However, the average query time for differen-

t datasets can be controlled within one second, even for the

biggest SHREC14LSGTB dataset.

Feature Hausdorff
Re-ranking

First Tier
α NA

L5 × 0.588

L7 × 0.653

L5 + L7 × 1 0.688

L5 + L7 × 0.5 0.692

L5 + L7 × 0.5 × 0.710

L5 + L7 × 0.5
√

0.717

L5 + L7
√

0.5
√

0.712

Table 5. The performance improvements brought by various com-

ponents in GIFT over baseline. In column “Hausdorff”,
√

denotes

approximate Hausdorff matching in Eq. (4), while × denotes exact

matching in Eq. (3). Column “α” present the value of exponent in

Eq. (9). Column “NA” describes the procedure of neighbor aug-

mentation in Sec. 2.4.1:
√

is associated with Eq. (11) and × is

associated with Eq. (10). The blanks mean that this improvement

is not used.

3.5. Parameter Discussion

Due to the space limitation, the discussion is conducted

only on PSB dataset.

Improvements Over Baseline. In Table 5, a thorough dis-

cussion is given about the influence of various components

of GIFT. We can observe a consistent performance boost

by those improvements. The performance jumps a lot e-

specially when re-ranking component is embedded. One

should note a slight performance decrease when approxi-

mate Hausdorff matching with F-IF is used as compared

with its exact version. However, as discussed below, the

embedding with inverted file does not necessarily result in

a poorer performance, but shortens the query time signifi-

cantly.

Discussion on F-IF. In Fig. 5, we plot the retrieval per-

formance and the average query time using feature L7, as

the number of entries used in the first inverted file changes.

As Fig. 5(a) shows, the retrieval performance generally

decreases with more entries, and multiple assignment can

boost the retrieval performance significantly. However, it

should be addressed that a better approximation to Eq. (3)

using fewer entries (decreasing K) or larger multiple as-

signments (increasing MA) does not necessarily imply a

better retrieval performance. For example, when K = 256
and MA= 2, the performance of approximate Hausdorf-

f matching using inverted file surpasses the baseline using

exact Hausdorff matching. The reason for this “abnormal”

observation is that the principle of inverted file here is to

reject those view matching operations that lead to smaller

similarities, and sometimes they are noisy and false match-

ing pairs which can be harmful to retrieval performance.

As can be seen from Fig. 5(b), the average query time is

higher at smaller K and larger MA, since the two cases both

increase the number of candidate matchings in each entry.

The baseline query time using exact Hausdorff matching is
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Methods
PSB dataset WM-SHREC07 competition McGill dataset

NN FT ST NN FT ST NN FT ST

LFD [4] 0.657 0.380 0.487 0.923 0.526 0.662 - - -

Tabia et al. [33] - - - 0.853 0.527 0.639 - - -

DESIRE [37] 0.665 0.403 0.512 0.917 0.535 0.673 - - -

tBD [19] 0.723 - - - - - - - -

Covariance [34] - - - 0.930 0.623 0.737 0.977 0.732 0.818

2D/3D Hybrid [23] 0.742 0.473 0.606 0.955 0.642 0.773 0.925 0.557 0.698

PANORAMA [24] 0.753 0.479 0.603 0.957 0.673 0.784 0.929 0.589 0.732

PANORAMA + LRF [24] 0.752 0.531 0.659 0.957 0.743 0.839 0.910 0.693 0.812

TLC [1] 0.763 0.562 0.705 0.988 0.831 0.935 0.980 0.807 0.933

L5 0.849 0.588 0.721 0.980 0.777 0.877 0.984 0.747 0.881

L7 0.837 0.653 0.784 0.980 0.805 0.898 0.980 0.763 0.897

GIFT 0.849 0.712 0.830 0.990 0.949 0.990 0.984 0.905 0.973

Table 3. The performance comparison with other state-of-the-art algorithms on PSB dataset, WM-SHREC07 dataset and McGill dataset.
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Figure 5. The performance difference between Hausdorff match-

ing and its approximate version in terms of retrieval accuracy (a)

and average query time (b).

0.69s, which is at least one order of magnitude larger than

the approximate one.

Discussion on S-IF. Two parameters, k1 and k2, are in-

volved in the second inverted file, which are determined

empirically. We plot the influence of them in Fig. 6. As can

be drawn from the figure, when k1 increases, the retrieval

performance increases at first. Since noise contextual infor-

mation can be included at a larger k1, we can observe the

performance decreases after k1 > 10. Meanwhile, neigh-

bor augmentation can boost the performance further. For

example, the best performance is achieved when k2 = 4.

However, when k2 = 5, the performance tends to decrease.

One may find that the optimal value of k2 is much smaller

than that of k1. The reason for this is that k2 defines the

size of the second order neighbor, which is more likely to

return noise context compared with the first order neighbor

defined by k1.

4. Conclusions

In the past years, 3D shape retrieval was evaluated with

only small numbers of shapes. In this sense, the problem

of 3D shape retrieval has stagnated for a long time. Only
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Figure 6. The influence of neighbor set sizes k1 and k2 used in the

second inverted file.

recently, shape community started to pay more attention to

the scalable retrieval issue gradually. However, as suggest-

ed in [14], most classical methods encounter severe obsta-

cles when dealing with larger databases.

In this paper, we focus on the scalability of 3D shape

retrieval algorithms, and build a well-designed 3D shape

search engine called GIFT. In our retrieval system, GPU is

utilized to accelerate the speed of projection rendering and

view feature extraction, and two inverted files are embedded

to enable real-time multi-view matching and re-ranking. As

a result, the average query time is controlled within one sec-

ond, which clearly demonstrates the potential of GIFT for

large scale 3D shape retrieval. What is more impressive is

that while preserving the high time efficiency, GIFT out-

performs state-of-the-art methods in retrieval accuracy by a

large margin. Therefore, we view the proposed search en-

gine as a promising step towards larger 3D shape corpora.

We submitted a version of GIFT to the latest

SHREC2016 large scale track (the results are avail-

able in https://shapenet.cs.stanford.edu/

shrec16/), and won the first place on perturbed dataset.
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