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Abstract

We propose a novel Coupled Projection multi-task Met-

ric Learning (CP-mtML) method for large scale face re-

trieval. In contrast to previous works which were limited to

low dimensional features and small datasets, the proposed

method scales to large datasets with high dimensional face

descriptors. It utilises pairwise (dis-)similarity constraints

as supervision and hence does not require exhaustive class

annotation for every training image. While, traditionally,

multi-task learning methods have been validated on same

dataset but different tasks, we work on the more chal-

lenging setting with heterogeneous datasets and different

tasks. We show empirical validation on multiple face im-

age datasets of different facial traits, e.g. identity, age and

expression. We use classic Local Binary Pattern (LBP) de-

scriptors along with the recent Deep Convolutional Neural

Network (CNN) features. The experiments clearly demon-

strate the scalability and improved performance of the pro-

posed method on the tasks of identity and age based face

image retrieval compared to competitive existing methods,

on the standard datasets and with the presence of a million

distractor face images.

1. Introduction

Many computer vision algorithms heavily rely on a dis-

tance function over image signatures and their performance

strongly depends on the quality of the metric. Metric learn-

ing (ML) i.e. learning an optimal distance function for a

given task, using annotated training data, is in such cases, a

key to good performance. Hence, ML has been a very active

topic of interest in the machine learning community and has

been widely used in many computer vision algorithms for

image annotation [11], person re-identification [2] or face

matching [12], to mention a few of them.
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Figure 1. Illustration of the proposed method. We propose a

multi-task metric learning method which learns a distance func-

tion as a projection into a low dimensional Euclidean space, from

pairwise (dis-)similarity constraints. It learns two types of projec-

tions jointly: (i) a common projection shared by all the tasks and

(ii) task related specific projections. The final projection for each

task is given by a combination of the common projection and the

task specific projection. By coupling the projections and learning

them jointly, the information shared between the related tasks can

lead to improved performance.

This paper focuses on the task of face matching i.e. com-

paring images of two faces with respect to different criteria

such as identity, expression or age. More precisely, the task

is to retrieve faces similar to a query, according to the given

criteria (e.g. identity) and rank them using their distances to

the query.

One key contribution of this paper is the introduction of a

cross-dataset multi-task ML approach. The main advantage

of multi-task ML is leveraging the performance of single

task ML by combining data coming from different but re-

lated tasks. While many recent works on classification have

shown that learning metrics for related tasks together using

multi-task learning approaches can lead to improvements in

performance [1, 6, 19, 21, 28, 43], most of earlier works on

face matching are based on a single task. In addition, there
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are only a few works on multi-task ML [25, 37, 41], with

most of the multi-task approaches being focussed on multi-

task classification. In addition, the previous multi-task ML

methods have been shown to work on the same dataset but

not on cross dataset problems. Finally, none of the men-

tioned approaches have been showed to be scalable to mil-

lions of images with features of thousands of dimensions.

In the present paper, our goal is hence to develop a

scalable multi-task ML method, using linear embeddings

for dimensionality reduction, able to leverage related tasks

from heterogeneous datasets/sources of faces. Such chal-

lenging multi-task heterogeneous dataset setting, while be-

ing a very practical setting, has received almost negligi-

ble attention in the literature. Towards that goal, this pa-

per presents a novel Coupled Projection multi-task Metric

Learning method (CP-mtML) for learning better distance

metrics for a main task by utilizing additional data from

related auxiliary tasks. The method works with pairwise

supervision of similar and dissimilar faces – in terms of dif-

ferent aspects e.g. identity, age and expression – and does

not require exhaustive annotation with presence or absence

of classes for all images. We pose the metric learning task

as the one of learning coupled low dimensional projections,

one for each task, where the final distance is given by the

Euclidean distance in the respective projection spaces.

The projections are coupled with each other by enforcing

them to be a combination of a common projection and a

task specific one. The common projection is expected to

capture the commonalities in the different tasks, while the

task specific components are expected to specialize to the

specificities of the corresponding tasks. The projections are

jointly learned using, at the same time, training data from

different datasets containing different tasks.

The proposed approach is experimentally validated with

challenging publicly available datasets for facial analysis

based on identity, age and expression. The task of semantic

face retrieval is evaluated in a large scale setting, i.e. in the

presence of order of millions of distractors, and compared

with challenging baselines based on state-of-the-art unsu-

pervised and supervised projection learning methods. The

proposed model consistently improves over the baselines.

The experimental section also provides qualitative results

visually demonstrating the improvement of the method over

the most challenging baselines.

2. Related Work

As said in the introduction, because of its key role in

many problems, ML has received lot of attention in the lit-

erature. The reader can refer to [3, 18] for comprehensive

surveys on ML approaches in general. Among the possible

classes of distances, the Mahalanobis-like one is certainly

the most widely studied [22, 29, 38, 39] and has been very

successful in variety of face matching tasks [4, 11, 12, 31].

The various Mahalanobis-like methods differ in their ob-

jective functions which are themselves related to the type of

constraints provided by the training data. The constraints

can be given at class level (i.e. same-class vectors have to

be close from one another after projection) [29], under the

form of triplet constraints i.e. (xi, xj , xk) with xi relatively

closer to xj compared to xk [38], or finally by pairwise con-

straints (xi, xj , yij) such that xi and xj are similar (dissim-

ilar) if yij = +1 (yij = −1) [22, 31].

While the above mentioned works considered only a sin-

gle task, multi-task ML has recently been shown to be ad-

vantageous, allowing to learn the metrics for several related

tasks jointly [25, 40, 41]. Multi-task Large Margin Nearest

Neighbor (mt-LMNN) [25], which is an extension of the

(single task) LMNN method [38], was one of the earliest

multi-task ML methods. Given T related tasks, mt-LMNN

learns T + 1 Mahlanobis-like metrics parametrized by ma-

trices M0, {Mt}
T
t=1.

M0 encodes the general information common to all tasks

while Mt’s encode the task specific information. Since a

full rank matrix is learned, the method scales poorly with

feature dimensions. Pre-processing with unsupervised com-

pression techniques such as PCA is usually required, which

potentially leads to loss of information beforehand. Simi-

larly, Wang et al. [37] proposed a multi-feature multi-task

learning approach inspired by mt-LMNN. In general, mt-

LMNN suffers from overfitting. To overcome overfitting,

Yang et al. [40] proposed a regularizer based on Bregman

matrix divergence [8]. In contrast with these works, Yang et

al. [41] proposed a different but related approach aiming at

learning projection matrices Lt ∈ R
d×D with d≪ D. They

factorized these matrices as Lt = R⊤
t L0, where L0 is com-

mon transformation matrix for all the tasks and Rt are task

specific matrices. Their method is an extension of the Large

Margin Component Analysis (LMCA) [34]. It is important

to note that LMCA requires k-nearest neighbors for every

classes in their objective function, and hence does not allow

to handle tasks in which only pairwise (dis-)similarity con-

straints are available. Furthermore, computing the k-nearest

neighbors is computationally expensive.

In contrast to the works exploiting related tasks, Romera-

Paredes et al. [28] proposed a multitask learning method

which utilises a set of unrelated tasks, enforcing via con-

straints that these tasks must not share any common struc-

ture. Similarly, Du et al. [9] used age verification as an

auxiliary task to select discriminative features for face veri-

fication. They use the auxiliary task to remove age sensitive

features, with feature interaction encouraged via an orthog-

onal regularization. Other works such as [15, 20, 26] dis-

courage the sharing of features between the unrelated set of

tasks.

The application considered in this paper, i.e. face re-

trieval, requires encoding face images by visual descriptors.
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This is another problem, widely addressed by the literature.

Many different and successful face features have been pro-

posed such as [14, 24, 30, 33]. In the present work, we use

signatures based on (i) Local Binary Patterns (LBP) [24]

which are very fast to compute and have had a lot of suc-

cess in face and texture recognition, and (ii) Convolutional

Neural Networks (CNN) [17] which have been shown to be

very effective for face matching [32]. The computation of

face signatures is usually done after cropping and normal-

izing the regions of the images corresponding to the faces.

We do it by first locating face landmarks using the approach

of Cao et al. [5].

3. Approach

As stated in the introduction, the proposed method aims

at jointly learning Mahalanobis-like distances for T dif-

ferent but related tasks, using positive and negative pairs

from the different tasks. The motivation is to exploit the

relations between the tasks and potentially improve perfor-

mance. In such a case, the distance metric between vectors

xi, xj ∈ R
D can be written as

d2Mt
(xi, xj) = (xi − xj)

⊤Mt(xi − xj) (1)

where Mt ∈ R
D×D is a task specific parameter matrix (in

the following, subscript t denotes task t). To be a valid met-

ric, M must be positive semi-definite and hence can be fac-

torized as M = L⊤L. Following [22, 38] we decompose

M as the square of a low rank matrix L ∈ R
d×D, with

rank(L) ≤ d ≪ D. This has the advantage that the dis-

tance metric can now be seen as a projection to a Euclidean

space of dimension d≪ D i.e.

d2Lt
(xi, xj) = ‖Ltxi − Ltxj‖

2, (2)

thus resulting in a discriminative task-adaptive compression

of the data. However, it has the drawback that the optimiza-

tion problem becomes non-convex in L ∀d < D, even if it

was convex in M [38]. Nonetheless, it has been observed

that even if convergence to global maximum is not guaran-

teed anymore, the optimization of this cost function is usu-

ally not an issue and, in practice, very good results can be

obtained [12, 22].

We consider an unconstrained setting with diverse but

related tasks, coming from possibly different heterogenous

datasets. Training data consists of sets of annotated posi-

tive and negative pairs from the different task related train-

ing sets, denoted as Tt = {(xi, xj , yij)} ⊂ R
D × R

D ×
{−1,+1}. In the case of face matching, xi and xj are the

face signatures while yij = +1 (−1) indicates that the faces

are similar (dissimilar) for the considered task e.g. they are

of the same person (for identity retrieval) or they are of the

same age (for age retrieval) or they both are smiling (for

expression retrieval).

Algorithm 1 SGD for proposed CP-mtML

1: Given: {Tt|t = 1, . . . , T}, η0, η
2: Initialize: bt = 1, Li ← wpca(Ti), L0 ← L1

3: for all i = 0, . . . ,niters−1 do

4: for all t = 0, . . . , T − 1 do

5: if mod(i, T ) == t then

6: Randomly sample (xi, xj , yij) ∈ Tt
7: Compute d2t (xi, xj) using Eq. 3

8: if yij(bt − d2t (xi, xj)) < 1 then

9: L0 ← L0 − η0yijL0(xi − xj)(xi − xj)
⊤

10: Lt ← Lt − ηyijLt(xi − xj)(xi − xj)
⊤

11: bt ← bt + 0.1× ηyij
12: end if

13: end if

14: end for

15: end for

The main challenge here is to exploit the common in-

formation between the tasks e.g. learning for age matching

might rely on some structure which is also beneficial for

identity matching. Such structures may or may not exist,

as not only the tasks but also the datasets themselves are

different.

Towards this goal, we propose to couple the projections

as follows: we define a generic global projection L0 which

is common for all the tasks, and, in addition, we introduce

T additional task-specific projections {Lt|t = 1, . . . , T}.
The distance metric for task t is then given as

d2t (xi, xj) = d2L0
(xi, xj) + d2Lt

(xi, xj)

= ‖L0xi − L0xj‖
2 + ‖Ltxi − Ltxj‖

2. (3)

With this definition of dt we learn the projections

{L0, L1, . . . , Lt} jointly for all the tasks.

Learning the parameters of our CP-mtML model, i.e. the

projection matrices {L0, L1, . . . , Lt}, is done by minimiz-

ing the total pairwise hinge loss given by:

argmin
L0,{Lt,bt}T

t=1

T∑

t=1

∑

Tt

[1− yij(bt − d2t (xi, xj))]+, (4)

with [a]+ = max(0, a), b ∈ R being the bias, for all train-

ing pairs from all tasks. We optimize this function jointly

w.r.t. all the projections, ensuring information sharing be-

tween the different tasks.

In practice, stochastic gradient descent (SGD) is used

for doing this optimization. In each iteration, we randomly

pick a pair of images from a task, project them in (i) the

common and (ii) the corresponding task specific spaces and

then compute the square of the Euclidean distance between

image descriptors in the respective sub-spaces. If the sum

of distances violates the true (dis-)similarity constraint, we
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update both matrices. To update the matrices, we use the

closed-form expression of the partial derivatives of the dis-

tance function dt w.r.t. L0, Lt, given by

∂d2t (xi, xj)

∂Lk

= Lk(xi − xj)(xi − xj)
⊤∀k = 0, . . . , T (5)

Alg. 1 summarizes this learning procedure.

The learning rates of the different projections are set as

explained in the following. Regarding the update of the

common projection matrix, we can note that the update is

done for every violating training example of every task,

while other projection matrices are updated much less fre-

quently. Based on this observation, the learning rate for

task specific projection matrices is set to a common value

denoted as η while the learning rate for the common projec-

tion matrix, denoted as η0, is set as a fractional multiple of

η i.e. η0 = γη, where, γ ∈ [0, 1] is a hyper-parameter of the

model. The biases bt are task specific and are the thresholds

on the distances separating positive and negative pairs.

Advantage over mt­LMNN [25]

The proposed distance function (Eq. 3) can be rear-

ranged and written as d2t (xi, xj) = (xi − xj)
⊤(L⊤

0 L0 +
L⊤
t Lt)(xi − xj) and thus bears resemblance to the dis-

tances learned with mt-LMNN [25], where d2t (xi, xj) =
(xi − xj)

⊤(M0 + Mt)(xi − xj). However, the proposed

model as well as the learning procedure are significantly dif-

ferent from [25]. First, the objective function of mt-LMNN

is based on triplets (while our is based on pairs) i.e. after

projection a vector should be closer to another vector of the

same class than to a vector of a different class. The learning

procedure of mt-LMNN requires triplets which is in gen-

eral more difficult to collect and annotate than pairs. Sec-

ond, despite the fact that mt-LMNN leads to a semidefinite

program which is convex, the proposed model has many

practical advantages. Since a low rank projection is learnt,

there is no need for an explicit regularization as limiting

the rank acts as a regularizer. Another advantage is that the

low dimensional projections lead to a discriminative task-

adaptive compression, which helps us do very efficient re-

trieval. Third, the proposed SGD based learning algorithm

is highly scalable and can work with tens of thousands of

examples in thousands of dimensional spaces, without any

compression/pre-processing of the features. Finally, an-

other big advantage of our approach is that it can work in

an online setting where the data streams with time.

4. Experimental Results

We now report the experiments we conducted to validate

the proposed method for the task of face retrieval based on

traits which can be inferred from faces, including identity,

age and expressions. Such a task constitutes an important

application domain of face based visual analysis methods.

They find application in security and surveillance systems

as well as searching large human centered image collec-

tions. In our experiments we focus on the two main tasks

of identity and age based face retrieval. For the former, we

use age and expressions prediction tasks as auxiliary tasks

while for the later, we use identity prediction as the auxil-

iary task. We also evaluate identity based retrieval at a very

large scale, by adding a million of distractor faces collected

independently from the web.

We now give details of the datasets we used for the eval-

uation, followed by the features and implementation details

and then discuss the results we obtain.

CASIA Web [42] dataset consists of 494,414 images with

weak annotations for 10,575 identities. We use this dataset

to train Convolutional Neural Network (CNN ) for faces.

Labeled Faces in the Wild (LFW) [13] is a standard

benchmark for faces, with more than 13,000 images and

around 5,000 identities.

MORPH(II) [27] is a benchmark dataset for age estima-

tion. It has around 55,000 images annotated with both age

and identity. There are around 13,000 identities, with an av-

erage of 4 images per person, each at different ages. We use

a subset of around 13,000 images for our experiment. We

use this dataset for age matching across identities and hence

randomly subsample it and select one image per identity.

FACES [10] is a dataset of facial expressions with 2052

images of 171 identities. Each identity has 6 different ex-

pressions (neutral, happy, angry, in fear, disgusted, and sad)

with 2 images of each. Here again, we sample one image

from each of the expression of every person, and carefully

avoid identity based pairings.

SECULAR [4] is a dataset having one million face im-

ages extracted from Flickr. These are randomly crawled

images and these images are not biased to any of the tasks

or datasets. We use these images as distractors during re-

trieval.

4.1. Implementation details

All our experiments are done with grayscale images. The

CNN model (details below) is trained with normalized im-

ages of CASIA dataset. We use Viola and Jones [36] face

detector for other datasets. For detecting facial key points

and aligning the faces, we use the publicly available imple-

mentation1 of the facial keypoints detector of [5]. Faces are

encoded using the following two features.

Local Binary Patterns (LBP). We use the publicly avail-

able vlfeat [35] to compute descriptors. We resized the

aligned face images to 250 × 250 and centre cropped to

1
https://github.com/soundsilence/FaceAlignment
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170 × 100. We set cell size equal to 10 for a descriptor of

dimension 9860.

Convolutional Neural Networks (CNN). We use model

trained on CASIA dataset with the architecture of

Krizhevsky et al. [17] to compute the feature of faces. Be-

fore computing the features, the images are normalized sim-

ilar to CASIA. We use the publicly available Caffe [16]

deep learning framework to train the model. The weights of

the fc7 layer are taken as the features (4096 dimensions)

and are ℓ2 normalized. As a reference, our features give

a verification rate of 88.4 ± 1.4 on the LFW dataset with

unsupervised training setting (+10% compared to Fisher

Vectors (FV) [31]) and 92.9 ± 1.1 with supervised metric

learning with heavy compression (4096 dimensions to 32
dimensions) cf. 91.4% for 16× longer FVs.

4.2. Compared methods.

We compared with the following three challenging meth-

ods for discriminative compression, using the same fea-

tures, same compressions and same experimental protocol

for all methods for a fair comparison.

WPCA has been shown to be very competitive method for

facial analysis – even comparable to many supervised meth-

ods [14]. We compute the Whitened PCA from randomly

sampled subset of training examples from the main task.

Single Task Metric Learning (stML) learns a discrimina-

tive low dimensional projection for each of the task inde-

pendently. In Alg. 1, we only have a global projection, with

no tasks, i.e. T = 0, reducing it to single task metric learn-

ing which we use as a baseline. This is one of the state-of-

art stML methods [31] for face verification.

Metric Learning with Union of Tasks (utML). We also

learn a metric with the union of all tasks to verify that we

need different metrics for different tasks instead of a global

metric. We take all pairwise training data from all tasks and

learn a single metric as in stML above.

mtLMNN. We did experiments with publicly available

code of [25] but obtained results only slightly better than

WPCA and hence do not report them.

4.3. Experimental Protocol

We report results on two semantic face retrieval tasks, (i)

identity based face retrieval and (ii) age based face retrieval.

We now give the details of the experimental protocol i.e. de-

tails of metric used, main experiments and how we create

the training data for the tasks.

Performance measure. We report the 1-call@Kmetric av-

eraged over all the queries. n-call@K ∈ [0, 1] is an infor-

mation retrieval metric [7] which is 1 when at least n of the

top K results retrieved are relevant. With n = 1, this metric

is relevant for evaluating real systems, e.g. in security and

surveillance applications, where at least one of the top scor-

ing K retrievals should be the person of interest, which can

be further validated and used by an actual operator.

Identity based retrieval. We use the LFW as the

main dataset for identity based retrieval experiments and

MORPH (for age matching) and FACES (for expressions

matching) as the auxiliary datasets. We use 10, 000 (pos-

itive and negative) training pairs from LFW, disjoint from

the query images. For auxillary tasks, of expression and age

matching, we randomly sample 40, 000 positive and nega-

tive pairs, each. This setting is used to demonstrate per-

formance improvements, when the data available for auxil-

iary task is more than that for the main task. To compare

our identity retrieval performance with existing state-of-art

rank boosting metric learning [23], we randomly sampled

25, 000 positive and negative pairs (cf. ∼ 32, 000 by [23])

and take the same sets of constraints as before from auxil-

iary tasks.

Following Bhattarai et al. [4], we choose one random

image from the identities which have more than five im-

ages, as query images and the rest as training images. This

gives us 423 query images in total. We use these images to

do Euclidean distance, in the projection space, based near-

est neighbor retrieval from the rest of the images, one by

one. The non-query images are used to make identity based

positive and negative pairs for the main task. We use two

auxiliary tasks, (i) age matching using MORPH and (ii) ex-

pressions matching using FACES.

Age based retrieval. We use the MORPH dataset as the

main dataset and the LFW dataset as the auxiliary dataset.

We randomly split the dataset into two disjoint parts as

train+validation and test sets. In the test set, one image

from each age class is taken as the probe query while the

rest make the gallery set for retrieval. We take 10, 000 age

pairs and 30, 000 of identity pairs.

Large scale retrieval with 1M distractors. We use the

SECULAR dataset for distractors. We make the assumption

that, as these faces are crawled from Flickr accounts of ran-

domly selected common users, they do not have any identity

present in LFW, which is a dataset of famous people. With

this assumption, we can use these as distractors for the large

scale identity based retrieval task and report performances

with the annotations on the main dataset, since all of the

distractors will be negatives. However, we can not make

the same assumption about age and hence we do not use

distractors for age retrieval experiments.

Parameter settings. We choose the values for the parame-

ters (η, η0, niters) by splitting the train set into two parts

and training on one and validating on the other i.e. these

sets were disjoint from all of the test sets used in the exper-

iments.
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No distractors 1M distractors

Method Aux K = 2 5 10 20 K = 2 5 10 20

WPCA n/a 30.0 37.4 43.3 51.3 24.6 28.8 33.8 39.0

stML n/a 38.1 51.1 60.5 69.3 26.0 37.4 43.3 48.7

utML expr 31.0 38.1 48.5 57.9 20.3 25.8 31.9 38.5

CP-mtML expr 43.5 55.6 63.6 69.5 33.1 43.3 51.1 55.3

utML age 21.7 31.4 41.1 53.0 12.8 18.9 24.6 31.7

CP-mtML age 46.1 56.0 63.4 68.3 35.7 43.5 47.8 52.2
Table 2. Identity based face retrieval performance (1-call@K for different K) with and without distractors with LBP features. Auxiliary

task is either Age or Expression matching. Projection dimension, d = 64

No distractors 1M distractors

Method Aux K = 2 5 10 20 K = 2 5 10 20

WPCA n/a 72.1 80.4 83.7 89.1 65.2 72.1 75.9 78.7

stML n/a 76.8 85.1 89.6 92.0 70.7 78.0 82.0 84.2

utML expr 73.5 82.3 87.2 90.3 67.1 76.8 79.0 82.0

CP-mtML expr 76.8 86.5 90.3 93.4 71.2 79.7 83.2 85.3

utML age 73.0 82.0 88.2 91.0 68.1 76.1 81.1 82.7

CP-mtML age 76.8 85.8 90.3 93.6 71.2 79.0 83.0 85.1
Table 3. Identity based face retrieval performance (1-call@K for different K) with and without distractors with CNN features. Auxiliary

task is either Age or Expression matching. Projection dimension, d = 64

Projection K = 2 5 10 20

L0 30.3 38.1 43.3 51.8

L1 35.0 46.6 55.8 64.8

L2 4.5 7.6 10.4 13.0

L0 + L1 43.5 55.6 63.6 69.5
Table 1. Performance (1-call@K) of different projections matri-

ces learned with proposed CP-mtML (LBP features, d = 64) for

identity retrieval with auxiliary task of expression matching.

4.4. Quantitative Results

We now present the quantitative results of our experi-

ments. We first evaluate the contributions of the different

projections learnt, i.e. the common projection L0 and the

task specific projection Lt, in terms of performance on the

main task. We then show the performance of the proposed

CP-mtML w.r.t. the compared methods on the two experi-

ments on (i) identity based and (ii) age based face retrieval.

We mention the auxiliary task in brackets e.g. CP-mtML

(expr) means that the auxiliary task was expression match-

ing, with the main task being clear from context.

Contributions of projections. Tab. 1 gives the perfor-

mance of the different projections for the task of identity

based retrieval task with expression matching as the auxil-

iary task. We observe an expected trend; the combination

of the common projection L0 with the task specific one L1

performs the best at 69.5 at K = 20. The projection for

the auxiliary task L2 expectedly does comparatively badly

at 13.0, as it specializes on the auxiliary task and not on

the main task. The projection L1 specializing on the main

task is better than the common projection L0 (64.8 vs. 51.8)

while their combination is the best (69.5). The trend was

similar for the auxiliary task. This demonstrates that the

projection learning follows the expected trend, the global

projection captures commonalities and in combination with

the task specific projections performs better for the respec-

tive tasks.

Identity based retrieval. We evaluate identity based face

retrieval with two different features i.e. LBP and CNN, both

with and without one million distractors. Tab. 2 and 3 give

the performances of the different methods for different val-

ues of K (the number of top scoring images considered).

First of all we notice the general trend that the performances

are increasing with K, which is expected. We see that, both

in the presence and absence of distractors, the proposed

method performs consistently the best compared to all other

methods. In the case of LBP features, the performance gains

are slightly more when the auxiliary task is age prediction

e.g. 46.1 for CP-mtML (age) vs. 43.5 for CP-mtML (expr)

at K = 2, both these values are much better than WPCA

and stML (30.0 and 38.1 ) respectively. Interestingly, when

we take all the tasks together and learn only a single projec-

tion, i.e. utML, it degrades for both age and expression as

auxiliary tasks, but more so for age (21.7 vs. 31). This hap-

pens because the utML projection brings similar age peo-

ple closer and hence confuses identity more, as age is more

likely to be shared compared to expressions which are char-

acteristic of different people. The proposed CP-mtML is

not only able to recover this loss but also leverages the extra

information from the auxiliary task to improve performance

of the main task.

When distractors are added the performances generally
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No distractor 1M distractors

Method Aux d = 32 64 128 d = 32 64 128

WPCA - 34.3 43.3 52.5 23.4 33.8 40.4

stML - 50.1 60.5 63.6 33.3 43.3 51.3

utML expr 44.2 48.5 57.4 25.3 31.9 31.9

CP-mtML expr 55.6 63.6 70.2 37.6 51.1 54.6

utML age 37.6 41.1 51.5 17.5 24.6 34.0

CP-mtML age 52.5 63.4 69.0 34.3 47.8 53.9

No distractor 1M distractors

d = 32 64 128 d = 32 64 128

83.9 83.7 85.6 74.5 75.9 75.2

88.4 89.6 88.7 80.6 82.0 81.6

85.1 87.2 86.3 73.0 79.0 78.3

88.7 90.3 89.4 81.3 83.2 81.1

85.3 88.2 86.5 76.6 81.1 79.2

88.2 90.3 89.6 80.9 83.0 81.6

Table 4. Identity based face retrieval, 1-call@10 at different projection dimension, d, (left) using LBP and (right) CNN features.

go down e.g. 68.3 to 52.2 for LBP and 93.6 to 85.1 for

CNN with CP-mtML (age). However, even in the presence

of distractors the performance of the proposed CP-mtML is

better than all other methods, particularly stML e.g. 43.3 for

CP-mtML (expr) vs. 37.4 for stML at K = 5 with LBP and

79.7 for CP-mtML (expr) vs. 78.0 for stML with CNN.

The performances of the two different features are quite

different. The lightweight unsupervised LBP features per-

form lower than the more discriminative CNN features,

which are trained on large amounts of extra data e.g. 86.5
vs. 55.6 at K = 5 for CP-mtML (expr). The performance

gains for the proposed method are larger for LBP compared

to CNN features e.g. +4.5 vs. +1.4 at K = 5 for CP-mtML

(expr) cf. stML. While such improvements are modest for

CNN features, they are consistent for all the cases. Par-

allely, the improvements for LBP features are substantial,

especially in the presence of distractors e.g. +7.8 for CP-

mtML (expr) vs. stML at K = 10. While it may seem

that using stronger feature should then be preferred over us-

ing a stronger model, we note that this may not be always

preferable. In a surveillance scenario, for instance, where

a camera just records hours of videos and we need to find

a specific face after some incident, using time efficient fea-

tures as a first step for filtering and then using the stronger

feature on a sufficiently small set of filtered examples is ad-

vantageous. This is highlighted by the time complexities of

the features; in practice LBP are much faster than CNN to

compute. While CNN features roughly take 450 millisec-

onds, the LBP features take only a few milliseconds on a

2.5 GHz processor.

Further, Tab. 4 presents the 1-call@10 while varying

the projection dimension, which is directly proportional to

the amount of compression. We observe that all methods

gain performance when increasing the projection dimen-

sion, however, with diminishing returns. In the presence

of one million distractors, CP-mtML (expr) improves by

+13.5 when going from d = 32 to d = 64 and +3.5
when going from d = 64 to d = 128 for LBP. The results

for larger d were saturated for LBPs with a slight increase.

The performance changes with varying d in the presence of

distractors for CNN features are more modest. CNN with

distractors gets +1.9 for d = 32 to d = 64 and −2.1 for

d = 64 to d = 128 i.e. the algorithm starts over-fitting at

No distractors 1M distractors

Method Aux K=10 20 10 20

MLBoost n/a 54.1 63.4 34.3 39.5

CP-mtML expr 58.9 69.5 38.1 45.6

CP-mtML age 61.5 70.7 39.7 47.8
Table 5. Performance comparison with existing MLBoost [23] (for

LBP features and d = 32).

higher dimensions for the stronger CNN features. As an

idea of space complexity, at compression to d = 32 dimen-

sional single precision vector per face, storing ten million

faces would require one gigabytes of space, after projec-

tion. Interestingly, the proposed method is better than stML

in all but one case (CNN features with d = 128) which is a

saturated case anyway.

Tab. 5 gives the comparisons (with LBP features and

d = 32) with MLBoost [23]. At K = 10 CP-mtML obtains

61.5, 58.9 with age and expressions as auxiliary taks, re-

spectively, while the MLBoost method stays at 54.1. Hence

the proposed method is better than the results reported in

the literature. As said before, we also used the publicly

available code of mtLMNN [25]. We obtained results only

slightly better than WPCA and hence do not report them.

With the above results we conclude the following. The

proposed method effectively leverages the additional com-

plementary information in the related tasks of age and ex-

pression matchings, for the task of identity based face re-

trieval. It consistently improves over the unsupervised

WPCA, supervised stML which does not use additional

tasks and also utML which combines all the data. It is also

better than these methods at a range of projection dimen-

sions (i.e. compressions), deteriorating only at the saturated

case of high dimensions with strong CNN features.

Age based retrieval. Fig. 3 presents some results for face

retrieval based on age for the different methods, with the

auxiliary task being that of identity matching. In this task

CP-mtML outperforms all other methods by a significant

margin with LBP features. These results are different and

interesting from the identity based retrieval experiments

above, as they show the limitation of CNN features, learnt

on identities, to generalize to other tasks — the perfor-

mances with LBP features are higher than those with CNN

features.
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Figure 2. The 5 top scoring images (LBP & no distractors) for three queries for the different methods (auxiliary task in brackets). True

(resp. False) Positive are marked with a green (resp. red) border (best viewed in color).
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Figure 3. Age retrieval performance (1-call@K) for different K

with auxiliary task of identity matching. The dimension of projec-

tion is d = 32

While the trend is similar for LBP features i.e. CP-

mtML is better than stML, it is reversed for CNN features.

With CNN features, stML learns to distinguish between

ages when trained with such data, however, CP-mtML ends

up being biased, due to its construction, towards identity

matching and degrades age retrieval performance when aux-

iliary task is identity matching. However, the performance

of CPmtML with LBP features is much higher than of any

of the methods with CNN features.

4.5. Qualitative results

We now present some qualitative comparisons between

the proposed CP-mtML, with age and expression matching

as auxiliary tasks, with the competitive stML method. Fig. 2

shows the top five retrieved faces for three different queries

for stML and the proposed CP-mtML with age and expres-

sion matching as auxiliary tasks. The results qualitatively

demonstrate the better performance obtained by the pro-

posed method. In the first query (left) all the methods were

able to find correct matches in the top five. While stML

found two correct matches at ranks 1 and 4, CP-mtML (age)

also found two but with improved ranks i.e. 1 and 2 and CP-

mtML (expression) found three correct matches with ranks

1, 2 and 5. While the first query was a relatively simple

query, i.e. frontal face, the other two queries are more chal-

lenging due to non-frontal pose and deformations due to ex-

pression. We see that stML completely fails in these cases

(for K = 5) while the proposed CP-mtML is able to retrieve

one correct image with ranks 1, 3 (middle) and 5, 2 (right)

when used with age and expression matching as auxiliary

tasks, respectively. It is interesting to note that with chal-

lenging pose and expression the appearances of the faces

returned by the methods are quite different (right query)

which demonstrates that CP-mtML projection differs from

that learned by stML.

5. Conclusions

We presented a novel Coupled Projection multi-task

Metric Learning (CP-mtML) method for leveraging infor-

mation from related tasks in a metric learning framework.

The method factorizes the information into different projec-

tions, one global projection shared by all tasks and T task

specific projections, one for each task. We proposed a max-

margin hinge loss minimization objective based on pairwise

constraints between training data. To optimize the objec-

tive we use an efficient stochastic gradient based algorithm.

We jointly learn all the projections in a holistic framework

which leads to sharing of information between the tasks.

We validated the proposed method on challenging tasks of

identity and age based image retrieval with different auxil-

iary tasks, expression and age matching for the former and

identity matching in the later. We showed that the method

improves performance when compared to competitive exist-

ing approaches. We analysed the qualitative results, which

also supported the improvements obtained by the method.
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