
Online Learning with Bayesian Classification Trees

Samuel Rota Bulò

FBK-irst

Trento, Italy

rotabulo@fbk.eu

Peter Kontschieder

Microsoft Research

Cambridge, UK

Mapillary

Graz, Austria
pkontschieder@gmail.com

Abstract

Randomized classification trees are among the most pop-

ular machine learning tools and found successful applica-

tions in many areas. Although this classifier was origi-

nally designed as offline learning algorithm, there has been

an increased interest in the last years to provide an online

variant. In this paper, we propose an online learning algo-

rithm for classification trees that adheres to Bayesian prin-

ciples. In contrast to state-of-the-art approaches that pro-

duce large forests with complex trees, we aim at construct-

ing small ensembles consisting of shallow trees with high

generalization capabilities. Experiments on benchmark ma-

chine learning and body part recognition datasets show su-

perior performance over state-of-the-art approaches.

1. Introduction

Random classification forests are often the preferred ma-

chine learning tool due to their efficiency, scalability, and

robustness. They found successful application in many

areas such as computer vision [21], bio-informatics [26],

medical data analysis [9], data-mining [24], etc.

Random forests are usually trained in batch (or offline)

modality, i.e. all training data is expected to be given in ad-

vance and once a forest is trained it cannot be updated with

new, labelled samples. However, there are application do-

mains where the training data is not available in advance,

but is collected over time, and inference might be required

at any moment. Online learning approaches can serve such

purposes and have a number of advantages over batch meth-

ods: they are more flexible as they can work in the presence

of online data generation processes, can adapt to distribu-

tions varying over time, do not need to store the training set

during the learning phase, to name just a few.

Joining the online learning paradigm with classification

trees is particularly difficult due to the recursive nature of

this classifier. Moreover, the presence of (typically) deter-

ministic split decisions within the tree complicates using

new data samples to correct decisions that were taken at an

earlier level. Consequently, the number of works address-

ing online learning within decision trees in the literature is

rather small and we review the most related ones next. The

Hoeffding tree algorithm [11] maintains a set of candidate

splits in the leaves and tracks their quality as new data ar-

rives. The Hoeffding bound is used to control the amount

of data that should be collected before a probably-optimal

split selection can be ensured. In [20] a similar idea is pur-

sued, but the leaf splitting condition changes and an online

bagging [19] strategy is adopted. A modification over [20]

was presented in [23], which uses reservoir sampling to

keep track of a fixed-length, unbiased set of training sam-

ples for updating the trees. The work in [2] also extends

the Hoeffding tree algorithm by introducing an adaptive-

size version, allowing to mix differently-sized trees. Their

approach imposes restrictions on the number of split nodes

such that shallower trees can adapt more quickly to changes

in the distribution of the incoming data stream while deeper

trees adapt more slowly and therefore maintain a longer-

term memory. The work in [10] also maintains sets of can-

didate splits in the leaf nodes. There, the authors provide a

decision forest construction algorithm, which dynamically

partitions the data into structure and estimation samples, the

former being used to influence the tree structure and the lat-

ter being used to estimate the leaf predictions. The work

of [13] presents an alternative approach by governing the

tree growing phase by a Mondrian process. There, label

distributions are kept at each node and controlled by a hier-

archy of normalized, stable processes.

A remaining limitation of state-of-the-art online algo-

rithms for random forests is a tendency to producing over-

sized trees, as the split selection process is unaware of the

tree complexity and split functions are very simple. More-

over, trees tend to overfit, thus requiring large forests to

achieve good performance, which however implies slow-

down of the inference process and increased memory re-

quirements. In particular, the algorithms that keep candi-

date splits in the leaves during training suffer from a pro-

hibitive memory cost as trees get deep [10] or require mul-

tiple passes over the training data [10, 20].

3985

Contributions. In this paper, we introduce a novel on-

line learning algorithm for Bayesian classification trees that

tries to overcome the aforementioned limitations, by tak-

ing a different perspective. Our goal is to learn tree clas-

sifiers with a shallow structure and high generalization ca-

pability. We trade shallow tree structures for more com-

plex split decision functions that jointly take into account

multiple feature dimensions and their correlations. Our on-

line learning procedure is a Bayesian approach that itera-

tively replaces a posterior distribution over trees, obtained

after observing a new training sample, with a simpler, para-

metric distribution. This surrogate posterior is determined

within the parametric family in a way to fit the updated pos-

terior distribution with the minimum loss of information.

Our algorithm is characterized by update rules for the tree

hyper-parameters that are free from cumbersome learning

rate selection and allow us to naturally absorb the informa-

tion carried by each new sample. Due to the Bayesian learn-

ing principle, which takes the uncertainty about the tree’s

parameters into account, we can obtain tree classifiers that

do not overfit. In summary, the proposed method matches

our initial intention of obtaining ensembles containing few,

shallow and well-generalizing trees. The provided experi-

mental evaluation confirms our model choice and its ben-

efits are shown with quantitative experiments on standard

benchmark machine learning and more complex body part

recognition datasets.

Relationship to Bayesian tree models. Bayesian models

for decision trees have appeared in the literature for offline

learning – namely the Bayesian hierarchical mixture of ex-

perts (BHMEs) [3], Bayesian CART models [5, 6, 8, 25],

Bayesian BART models [7] – and for the online learning

modality with dynamic tree models [22, 1]. Our model

differentiates from these approaches since we are propos-

ing a parametric, Bayesian model for decision trees that

is trained in an online fashion, i.e. we update over time

a posterior distribution over the space of decision trees,

whereas other similar approaches like BHMEs (despite

sharing structural similarities) work in an offline fashion

and consider sigmoid-gated hierarchical mixture of experts

in the underlying model hypothesis space.

2. Classification Trees

In this section we recap classification trees to provide all

the necessary notation and definitions that are subsequently

used for introducing our Bayesian online learning approach.

Consider a classification problem with input spaceX and

a finite set of categorical labels Y . A classification tree is a

classifier consisting of decision nodes and prediction nodes,

arranged into a tree-structure. Decision nodes correspond to

the tree’s internal nodes N and are responsible for routing

data samples to an appropriate prediction node (i.e. leaf) in

L. Each decision node n ∈ N takes a routing decision for a

data sample x ∈ X via a routing function bn : X → {0, 1}.
If bn(x) = 1, then x is routed to the left sub-tree, otherwise

it goes to the right one. Akin to conventional decision trees,

we consider binary decision functions of the following type:

bn(x) = 1θ⊤
n ξn(x)≥0 , (1)

where 1P is an indicator function for the truth value of P .

The decision function bn depends on a node-specific feature

map ξn : X → R
dn , and a dn-dimensional parameter vec-

tor θn ∈ R
dn (see also [15]). Starting from the root node

and after visiting a number of decision nodes, x ends up in

a prediction node, where the actual class assignment takes

place. Indeed, each prediction node ℓ ∈ L holds a proba-

bility distribution πℓ = (πℓy)y∈Y over labels in Y that will

be used to deliver the final prediction for the data sample

reaching it.

A classification tree, denoted by t, is identified by its

structure S and its parameters, i.e. t = (θ,π, S), where

θ = {θn}n∈N holds the parameters of all decision nodes

and π = {πℓ}ℓ∈L contains the class distributions of all

prediction nodes. The structure of the tree comprises the

set of nodes N , leaves L and their relations. Moreover, it

includes the node-specific feature maps ξn.

Given a tree t = (θ,π, S), the predictive distribution

p (y|t;x) for data sample x is defined as

p (y|t;x) =
∑

ℓ∈L

r(ℓ|t;x)πℓy , (2)

where πℓy denotes the probability of a sample ending in leaf

ℓ to take on class y, and r(ℓ|x) is regarded as the routing

function, which is 1 for the leaf ℓwhere sample x is actually

routed to, and 0 elsewhere.

To give an explicit form to the routing function, we intro-

duce the following binary relations that depend on the tree

structure: ℓ ւ n is true if ℓ belongs to the left subtree of

node n, and nց ℓ is true if ℓ belongs to the right subtree of

n. By exploiting these relations we can factorize the routing

function as

r(ℓ|t;x) =
∏

n∈N

bn(x)
1ℓւn(1− bn(x))

1nցℓ . (3)

Although the product in (3) runs over all nodes, only the

decision nodes along the path from the root node to the leaf

ℓ are affected. 1

3. Bayesian Online Classification Trees

In this section we present our novel online learning al-

gorithm for classification trees, adhering to Bayesian prin-

ciples. Our approach falls within the theoretical framework

1
1ℓւn and 1nցℓ are both zero for all n not being ancestors of ℓ.

Hence, the corresponding factors in (3) yield 1 when assuming 0
0
= 1.

3986

of Bayesian Online Learning (BOL) [18], also known as as-

sumed density filtering in the control literature [14], and is

related to expectation propagation [17].

3.1. Overview

Let Di = {(x1, y1), . . . , (xi, yi)} ⊂ X × Y denote a

collection of i labelled examples, and assume to have a prior

distribution p(t) defined over the set of decision trees. In

standard Bayesian inference it is possible to compute the

posterior distribution of t given the collection of data points

Di by recursively employing the Bayes rule in the following

way:

p (t;Di) ∝ p (yi|t;xi) p (t;Di−1) , (4)

where p (t;D0) = p(t). This formula captures the change

in the posterior distribution due to an added training sample

(xi, yi), when the posterior distribution after i− 1 samples

is treated as the new prior for the incoming data point.

Although the rule in (4) seems to be structurally suitable

for an online scenario, it cannot instantly be used for online

learning, because in general it requires knowledge about the

entire training set. However, if we could store the posterior

from the previous (i−1) samples, and compute the normal-

izing constant, we would obtain an online learning approach

by repeatedly applying (4), without the need of revisiting

past samples. The BOL framework implements this idea

by recursively building a surrogate distribution for the true

posterior p (t;Di). The surrogate distribution is confined to

a pre-defined, parametric family of distributions Q, which

can be compactly stored. In the rest of the paper we will

denote by q(t;hi), or more compactly qi(t), the surrogate

distribution of the true posterior of t given i samples, hi
being the parametrization of the distribution.

The recursive construction of this surrogate distribution

alternates a Bayes update step, integrating information con-

veyed by new training data akin to (4), with a projection

step, which re-maps the obtained distribution in the para-

metric family Q.

Update step. Let qi(t) be the surrogate posterior distri-

bution of t from i samples, which is taken as prior for the

update step of a new data sample (xi+1, yi+1). By appli-

cation of the Bayes rule we obtain the following updated

posterior distribution:

q̂i+1(t) ∝ p (yi+1|t;xi+1) q
i(t) . (5)

The family Q, where qi belongs to, is typically selected in

a way to make the computation of (5) tractable. This prop-

erty however is not necessarily preserved by the distribution

q̂i+1 in case we use it for a subsequent update. For this rea-

son, a projection step is required.

Projection step. The projection step finds the best ap-

proximation of q̂i+1 within the parametric family Q, in a

way to minimize the loss of information. In this regard, the

sought distribution qi+1 ∈ Q is the one that minimizes the

following Kullback-Leibler (KL) divergence:

qi+1 ∈ arg min
q∈Q

DKL

(

q̂i+1‖q
)

. (6)

After performing the projection, qi+1 can be regarded as

a surrogate of the true posterior distribution p(t;Di+1) of

t given i + 1 samples, which can be used as a new prior

distribution for subsequent updates (see, Fig. 1).

Inference. At any time, we can use the current surrogate

posterior distribution, say qi(t), to compute the posterior

predictive distribution for a new data sample x. The poste-

rior predictive distribution, denoted by p(y;x, hi), provides

the expected class distribution that we obtain for x with a

decision tree t sampled from the surrogate posterior distri-

bution qi:
p(y;hi,x) = Eqi [p(y|t;x)] (7)

where Eqi [·] denotes expectation with respect to qi. In the

rest of the paper we will refer to (7) as the posterior predic-

tive distribution for convenience, but the reader should keep

in mind that it is actually an approximation of the true pos-

terior predictive distribution p (y;x,Di) that one obtains in

standard (offline) Bayesian inference from the observed set

of labelled samples Di. Indeed, we replace the true poste-

rior p (t;Di) with the surrogate posterior qi(t), which has

been sequentially estimated from Di as previously detailed.

3.2. Surrogate Posterior for Classification Trees

The key component of the online learning algorithm de-

scribed above is the surrogate posterior. On one hand, we

bb

bbQ q0

b
b

b

q1

q2q3

q̂1
q̂2

q̂3

(
x
1 , y

1)

(
x
2 , y

2)

(
x
3 , y

3)

Figure 1. Example of the Bayesian online learning process: we

start with a prior distribution q0(t) over the set of decision trees,

and apply the update rule in (5) to incorporate the information

from the first sample (x1, y1). The obtained posterior q̂1(t) is

then reprojected in the parametric family of distributions Q us-

ing (6). The resulting distribution q1(t) is a surrogate distribution

of the true posterior p(t;D1), which can be used as a new prior

for the next update step. We keep iterating this process as new

training samples arrive. At any moment, the most recent surrogate

posterior qi can be used for inference on unlabelled data samples.

3987

would like to keep it simple such that the projection step in

(6) and the computation of the posterior predictive distribu-

tion in (7) remain tractable. On the other hand, we would

like to have it complex and multi-modal to best possibly

capture the true posterior distribution. The solution we pro-

pose is a compromise between these two contradicting re-

quirements.

Unimodal with fixed structure. Assume in first place to

have a pre-defined tree structure Ŝ. The surrogate posterior

over trees t = (θ,π, S) can be defined as a factorization of

independent distributions over the tree’s parameters, which

takes the following parametric form:

q(t;h) = δ
Ŝ
(S)

∏

n∈N

qn(θn; Σn,µn)
∏

ℓ∈L

qℓ(πℓ;αℓ) . (8)

The first term in (8) is a Dirac measure that supports only

trees with structure Ŝ. Each decision function’s parame-

ter θn follows a multivariate Gaussian with mean µn and

covariance Σn, i.e. qn ∼ Gauss(µn, Σn), while each pre-

diction node’s class distribution πℓ follows a Dirichlet dis-

tribution with parameter αℓ, i.e. qℓ ∼ Dir(αℓ) (see Fig. 2).

The argument h = (Ŝ, Σ,µ,α) of q holds all the parameters

of the distribution (a.k.a. hyperparameters of the tree).

The distribution in (8) is unimodal for most parametriza-

tions and, under this modelling choice, the projection step

in (6) turns into the following, independent minimizations

over the different parameters of qi (see, Subsection A.1 of

the supplementary material):

(Σi+1
n ,µi+1

n) ∈ arg min
Σ,µ

Eq̂i+1 [− log qn(θn; Σ,µ)] , (9)

αi+1
ℓ ∈ arg min

α
Eq̂i+1 [− log qℓ(πℓ;α)] , (10)

where the expectations are with respect to the updated pos-

terior q̂i+1. Moreover, the structure of the tree is preserved

by the update in (6), i.e. Ŝi+1 = Ŝi. In Sec. 4, we describe

how to solve (9) and (10).

Multi-modal. A simple way to better capture the true pos-

terior distribution consists in modeling the surrogate poste-

θn ∼ Gauss(µn, Σn)

πℓ ∼ Dir(αℓ)

Figure 2. The parameters of the tree are given by θn for each de-

cision node n and πℓ for each prediction node ℓ. Each decision

node’s parameter θn is a multivariate Gaussian with mean µ
n

and

covariance Σn. Each prediction node’s parameter πℓ is a Dirichlet-

variate with concentration vector αℓ.

rior as a uniform mixture of distributions

q(t;h1, . . . , hm) =
1

m

m
∑

j=1

q(t;hj) , (11)

where q(t;hj) is defined as in (8). In such a way, each

of the mixture components might consider a different tree

structure (including possibly different feature maps ξn per

node). Accordingly, the tree structures are still assumed

to be given, but multiple structures can now be integrated

into a single, multi-modal distribution. The projection step

in (6) for the multi-modal posterior can be approximated

by independent projections of each single surrogate poste-

rior forming the mixture in (11) (see, Subsection A.2 in the

supplementary material). Finally, the posterior predictive

distribution under the multi-modal posterior has the simple

closed-form

p(y;h1i , . . . , h
m

i ,x) =
1

m

m
∑

j=1

p(y;hji ,x) , (12)

where hji is the parameter of the surrogate posterior dis-

tribution of t obtained from i samples for the jth mixture

component in (11). Please note that in (12), we average

the posterior predictive distribution over m online-trained

Bayesian trees, as known from conventional forests [4, 9].

Next, we will focus on algorithmic details (e.g. parameter

updates, implementation notes, etc.) of individual trees.

4. Algorithmic Details

In this section we provide further details about the form

of the posterior predictive distribution in (7) as well as the

update formulae for the surrogate posterior’s parameters,

providing the solutions for (9) and (10). Due to a lack of

space we omit the full derivations and a detailed discussion

about the computational complexity of our model, which

are however available in the supplementary material.

Posterior predictive distribution. The posterior predic-

tive distribution p (y;hi,x) as given in (7) can be computed

in closed-form as follows:

p (y;hi,x) =
∑

ℓ∈L

αi
ℓy

|αi
ℓ|1
ρ(ℓ;hi,x) . (13)

This distribution is the counterpart of (2), which we obtain

by marginalizing out the tree using the surrogate posterior

distribution q(t;hi). The first term in the summation is the

expectation of πℓy under the Dirichlet distribution with pa-

rameter αi
ℓ, where | · |1 is the ℓ1 norm. The second term is

a stochastic routing function, which takes the form:

ρ(ℓ;hi,x) =
∏

n∈N

βi
n(x)

1ℓւn(1− βi
n(x))

1nցℓ , (14)

3988

where βi
n(x) represents the following probability of sample

x to be routed to the left child at node n in a random tree t
distributed as q(t;hi):

βi
n(x) = Φ(µi⊤

n ξ̃in(x)) .

Function Φ is the cumulative distribution function of the

standard normal distribution, and ξ̃in is a Σi
n-normalized

version of the node-specific feature map ξn, given by

ξ̃in(x) = ξn(x)
[

ξn(x)
⊤
Σ
i
nξn(x)

]−1/2

. (15)

Inuitively, βi
n represent a softening of the hard decision rule

bn in (1), induced by the uncertainty about the decision

node’s parametrization.

Remark 1 Function (14) is still valid if we replace ℓ with

any other node m in the tree, and in that case ρ(m;hi,x)
provides the probability of reaching node m. We will use

this later in this section. Moreover, we will also use a

variant of the posterior predictive distribution, denoted by

p(y|m;hi,x), which conditions on a node m of the tree.

This provides the posterior predictive distribution if we took

m as the starting node for the prediction.

Update rule for µ and Σ. The update rules for µ and

Σ can be obtained by solving the cross-entropy minimiza-

tion problem in (9). Since the Gaussian distribution is

in the exponential family, we can determine a solution

to the aforementioned minimization problem by moment-

matching. The resulting update rules are given by

µi+1
n = µi

n + κnΣ
i
nξ̃

i
n , (16)

Σ
i+1
n = Σ

i
n −

(

κ2n + κnµ
i⊤
n ξ̃in

)

(Σinξ̃
i
n)

(

Σ
i
nξ̃

i
n

)⊤
, (17)

where we wrote ξ̃in as a shortcut for ξ̃in(xi+1) and

κn = φ
(

µi⊤
n ξ̃in

)

(unL
− unR

) an , (18)

where φ(·) is the probability density function of the stan-

dard normal distribution, nL and nR denote the left and

right child of node n, respectively, an = ρ(n;hi,xi+1)
p(yi+1;hi,xi+1)

,

and un = p(yi+1|n;hi,xi+1).

Remark 2 (Scale invariance) The posterior predictive

distribution will not change if we scale each mean µi
n by

cn and each covariance Σi
n by c2n for any cn > 0 (e.g.

cn = 1/‖µi
n‖2). Moreover, the update rules in (16) and

(17) are consistent under the same transformation, i.e. we

obtain cnµ
i+1
n and c2nΣ

i+1
n if we transform µi

n and Σi
n in

the same way. Hence, we can safely scale µi+1
n and Σi+1

n

in this sense after each update round, without affecting the

outcome of the algorithm. This helps to avoid numerical

instabilities.

Update rule for α. The update rule for α can be deter-

mined by solving (10). Since πℓ follows a Dirichlet distri-

bution with parameter αℓ, we obtain the following moment-

matching equations:

Eqi+1

ℓ
[log(πℓ)] = Eq̂i+1 [log(πℓ)] . (19)

With some manipulations of the two expectation terms, we

end up with the following system of equalities for z ∈ Y:

ψ(αi+1
ℓz)− ψ(|αi+1

ℓ |)

= ψ(αi
ℓz)− ψ(|α

i
ℓ|) +

aℓ(1z=yi+1
− uℓ)

|αi
ℓ|1

(20)

where aℓ and uℓ are defined as in (18), and ψ(·) is the

digamma function. We solve the system using Newton-

Raphson iterations, where few iterations (typically 5–10)

are necessary to achieve a good accuracy. This provides us

with a solution to (10) as required. We refer to [16] for the

derivation of the fixed-point iterations.

Prior distribution. We select a prior distribution from the

same family Q as the surrogate posterior given in (8) and it

is identified by the timestamp i = 0, i.e. p (t) = q0(t).
We instantiate a prior distribution by providing a tree struc-

ture Ŝ0 with some pre-defined depth and with randomized

feature map functions ξn in each node having the form,

ξn(x) = [Pnx; 1], where Pn is a projection matrix and

1 accounts for a bias term. The prior terms for the deci-

sion nodes’ parameters are improper, flat priors with mean

µ0 = 0 and Σ0 →∞I, which induces the following update

once the first sample is observed: µ1
n = ξn(x1)/‖ξn(x1)‖2

and Σ1
n = I/κ2n − µ1

nµ
1⊤
n , where κn is computed as per

(18) with ξ̃0n = 0. The prior parameters for the predic-

tion nodes are uniformly sampled in the range (0, ǫ], i.e.

0 < α0
ℓy ≤ ǫ, where 0 < ǫ ≪ 1 is a small, non-negative

constant, with the exception of having one peaked prefer-

ence per class uniformly distributed across the leaves.

Implementation notes The update of the surrogate tree

posterior distribution after having seen a new training sam-

ple (xi+1, yi+1) can be carried out by traversing the tree

twice. The first traversal is top-down and computes ρn =
ρ(n|hi,xi+1) for each node n, which is required in the

definition of κn, in (18) and in (20). This is done by ini-

tializing ρ⊤ = 1, where ⊤ ∈ N is the root node, and

by computing for each decision node n ∈ N visited in

breadth-first order ρnL
= βi

n(xi+1)ρn and ρnR
= ρn− ρnL

,

where nL and nR are the left and right child of node n. It

is then possible to run over the leaves ℓ ∈ L to compute

uℓ = αi
ℓyi+1

/

|αi
ℓ|1 and finally obtain the posterior predic-

tive probability p(yi+1;hi,xi+1) =
∑

ℓ∈L ρℓuℓ. We have

then all the required quantities to compute αi+1
ℓ for each

3989

Algorithm 1 Online learning of Bayesian classification tree

Require: (xi+1, yi+1): next training sample

Require: hi: latest surrogate posterior parameter (if i > 0)

Require: Ŝ0: a tree structure (if i = 0)

1: if i = 0 then

2: initialize α0, µ0 and Σ
0 (see, Prior distribution)

⊲ Forward pass over tree computes ρn = ρ(n|hi,xi+1)
3: ρ⊤ ← 1
4: for all n ∈ N in top-down, breadth-first order do

5: ρnL
← βi

n(xi+1)ρn ⊲ nL: left child of n
6: ρnR

← ρn − ρnL
⊲ nR: right child of n

7: uℓ ←
αi

ℓyi+1

|αi
ℓ
|1

, ∀ℓ ∈ L

8: p (yi+1;hi,xi+1)←
∑

ℓ∈L ρℓuℓ
9: compute αi+1

ℓ by solving (20), ∀ℓ ∈ L
⊲ Backward pass over tree: un = p (yi+1|n;hi,xi+1)

10: for all n in bottom-up, breadth-first order do

11: un ← unR
+ (unL

− unR
)βi

n(xi+1)
12: compute κn as per (18)

13: if i = 0 then ⊲ Prior initialization

14: µ1
n ←

ξn(xi+1)
‖ξn(xi+1)‖2

15: Σ
1
n ← I/κ2n − µ1

nµ
1⊤
n

16: else

17: compute µi+1
n as per (16)

18: compute Σi+1
n as per (17)

19: rescale µi+1
n and Σ

i+1
n as per Remark 2

return hi+1: new surrogate posterior parameters

prediction node ℓ by solving the system (20). The second

traversal is bottom-up and computes the updates for the de-

cision nodes’ hyperparameters. We run again over the nodes

n ∈ N , but in bottom-up, breadth-first order. Once a node

n is visited, we compute un = unR
+(unL

−unR
)βi

n(xi+1)
and κn as per (18). Finally, we calculate Σi+1

n and µi+1
n us-

ing (16) and (17), since all the required quantities are avail-

able. A summary is provided in Alg. 1.

Fast, single path inference During inference, exact com-

putation of the posterior predictive distribution requires

traversing the tree entirely. The complexity is thus

O(|N |d2), where d is the maximum decision node fea-

ture dimensionality. However, since the routing function

of each tree gets peaked on a single path after a reason-

able number of samples (i ≫ 0) have been observed, we

can obtain a good approximation of the posterior predic-

tive distribution by taking at each decision node n the di-

rection where the sample x has the highest probability to be

routed to, i.e. left if βi
n(x) > 0.5, and right otherwise. This

decision can be taken efficiently by evaluating the sign of

µi⊤
n ξn(x), because βi

n(x) > 0.5 ⇐⇒ µi⊤
n ξn(x) > 0.

With this trick, we reduce the per-tree complexity during

inference to O(d log2 |N |), which is the same as for offline,

oblique decision trees [12, 15]. Please note, that log2 |N | is

much smaller for our compact trees than for typically deeper

oblique decision trees.

5. Experiments

We assess several variants of our algorithm on differ-

ent datasets, including standard machine learning (ML)

classification benchmarks (Sec. 5.1) and pixel-wise se-

mantic labelling of Kinect [21] data (Sec. 5.2). For

all experiments, we provide baseline results of state-of-

the-art online random forest approaches, using their pub-

licly available reference implementations. We validate our

learner against Mondrian Forests (MF) [13], Online Ran-

dom Forests (ORF) [20], and Consistent Online Forests

(COF) [10] (the latter code includes a re-implementation of

ORF). As additional baselines, we provide results for offline

random forests (RF) [4] and offline oblique random forests

(obRF) [15]. Please note however, that offline forest results

are not directly comparable to online results, as their train-

ing expects the entire dataset to be given in advance. We fix

ǫ = 0.01 (see last section), which may serve as guideline

for other datasets (we did not experience large sensitivity

when varying it). For each dataset we train at most 8 trees

for our method (no reasonable improvement was found with

more) and we allow only a single epoch over the data for

our trees to properly simulate an online scenario unless ex-

plicitly stated otherwise. Instead, all forest competitors (of-

fline and online) comprised 100 trees with up to 15 epochs

over the data (specifically recommended for [20, 10]).

5.1. Classification performance on ML datasets

We tested on G50c, dna, satimages and USPS since

they were also (partially) selected in [10, 13], and cover dif-

ferent granularity of difficulty with respect to dataset char-

acteristics (#feature dimensions, #classes, #train/#test sam-

ples). A summary is provided on top of Tab. 1, followed

by blocks for offline ([4, 15], grayed block) and online for-

est results, respectively. All reported scores are average

classification errors with standard deviations in [%] (from

10 repetitions or cross-validation folds for standard parti-

tioning of datasets), i.e., lower is better. Offline forest re-

sults should mainly demonstrate the effects due to different

complexities of decision node functions: For instance, [4]

uses randomly selected, single feature channels (i.e. axis-

aligned splits) while [15] applies more complex, oriented

hyperplanes, thus incorporating a larger feature space. On-

line forest results for ORF, MF and COF could be approx-

imately reproduced with default parameter settings in their

code (or suggested in their papers), which we also used for

training/testing on datasets not evaluated in their papers.

We dub our method as Bayesian Online Forest2 (BOF) in

2While knowing that we introduced an ensemble of Bayesian trees

rather than a Bayesian forest, we use the term forest as we average akin

to conventional forests

3990

G50c dna satimages USPS

#features 50 180 60 36 256

#classes 2 3 6 10

#train/#test 50/500 1400/1186 3104/2000 7291/2007

O
ffl

in
e

fo
re

st
s RF [4] 18.91 ±1.33 6.05 ±0.48 5.19 ±0.3 9.7 ±0.25 6.50 ±0.13

obRF100
25 [15] 9.01 ±0.77 17.38 ±0.43 6.75 ±0.25 9.36 ±0.16 5.87 ±0.21

obRF8
25 [15] 16.16 ±1.92 22.81 ±1.08 10.35 ±0.56 10.62 ±0.34 7.47 ±0.34

obRF100
BOF [15] 8.92 ±0.79 29.2 ±0.63 9.02 ±0.41 9.86 ±0.22 7.85 ±0.24

obRF8
BOF [15] 15.0 ±2.14 29.48 ±1.19 12.49 ±0.81 11.3 ±0.41 10.38 ±0.51

O
n

li
n

e
fo

re
st

s

ORF×15 [20] 19.44 ±1.71 8.2 ±0.9 5.77 ±0.56 11.8±0.40 6.60 ±0.20

MF×15 [13] 13.8 ±1.79 32.75 ±0.54 9.01 ±0.41 10.46 ±0.15 6.79 ±0.23

COF×15 [10] 19.71 ±1.36 7.36 ±0.32 6.5 ±0.15 10.4 ±0.13 7.06 ±0.22

ORF×1 [20] 33.02 ±3.52 13.2 ±0.47 8.85 ±0.64 13.5 ±0.37 9.6 ±0.19

MF×1 [13] 14.22 ±1.53 32.93 ±0.5 9.10 ±0.56 10.45 ±0.26 6.96 ±0.19

COF×1 [10] 41.64 ±3.79 16.37 ±0.86 11.28 ±1.66 15.29 ±0.30 11.53 ±0.22

BOF 7.74 ±1.29 5.78 ±0.31 4.87 ±0.19 11.14 ±0.30 6.17 ±0.28

BOF-P 3.64 ±0.25 6.87 ±0.74 5.84 ±0.46 13.25 ±0.20 6.03 ±0.21

BOF-B 7.86 ±1.38 5.73 ±0.31 4.86 ±0.28 11.42 ±0.38 6.47 ±0.18

BOF-PB 3.72 ±0.27 7.32 ±0.57 6.61 ±0.26 13.91 ±0.30 6.25 ±0.26

Table 1. Mean classification errors with standard deviations in [%]
over 10 runs. Grayed block: Offline forest variants. Middle block:

Online forest competitors. Bottom block: Proposed Bayesian On-

line forest variants. See Sec. 5.1 for description.

case no projection is performed, i.e. Pn = I, BOF-P when

we perform a randomly selected projection, BOF-B when

using bagging (i.e. a tree discards a sample with probability

τ), and BOF-BP when bagging and random projection are

applied. All methods were trained on the same splits into

training/testing. As a rule of thumb, we define a dataset-

specific set of possible tree depths from where the actual

tree depth is randomly selected. Specifically, we sample

the tree depth from {⌈log2(|Y|)⌉, . . . , ⌈log2(|Y|)⌉+2} such

that there are at least as many leaves as number of classes.

E.g., the satimages dataset has 6 classes which means

that we randomly select a tree depth between 3 and 5. This

max tree depth is also applied for some oblique forest con-

figurations, indicated by the super- and subscripts. For in-

stance, obRF8
BOF means that 8 trees with the same max

depth as our Bayesian trees were grown, while obRF100
25

means that 100 trees with max depth 25 were trained.

We obtain scores that are similar or better than all online

methods we compare to, considering their 15-epoch results

ORF×15, MF×15, COF×15. For the dna dataset we eval-

uate with two different feature space sizes like [13]. MF

seems to struggle with higher-dimensional inputs (see er-

ror values of ≈33% vs. ≈9%), whereas pre-selection of in-

formative dimensions yields ≈1% in accuracy gain for our

approach. On the satimages dataset we perform similar

(or slightly worse) than our competitors. Finally, we also

list single-epoch results for ORF×1, MF×1 and COF×1,

which, except for MF, show drastic performance reductions,

inhibiting online learning without additional samples.

To illustrate the ensemble effect, we obtain the follow-

ing classification errors (in [%]) when using (1,4,8) BOF

trees. G50c: (8.1, 7.9, 7.7). dna(180): (6.1, 5.9, 5.8).

dna(60): (5.5, 5.0, 4.9). satimages: (13.0, 11.3, 11.1).

USPS: (8.3, 6.5, 6.2). Since our trees are Bayesian, they

exhibit less variance than standard trees. We thus require

Training data size

10
2

10
3

10
4

A
c
c
u

ra
c
y
 [

%
]

75

80

85

90

95
USPS Forest Accuracy

Offline RF

COF [Denil et al.]

ORF [Saffari et al.]

MF [Lakshm. et al.]

Ours

Figure 3. Sequential data arrival experiments for USPS dataset (see

last paragraph in Sec. 5.1), showing test data classification accura-

cies as function of seen training samples.

smaller ensembles to achieve similar/better accuracy. For

different variants of our method we experience only mi-

nor performance drop when applying bagging (τ = 0.3),

which however linearly reduces training times. We obtain

both, improvement of classification error and reduction in

training time for G50c and USPS when applying randomly

chosen projections to lower-dimensional feature spaces (by

applying projection matrices Pn). As target feature projec-

tion dimensionality we choose values approximately around

d/2, i.e. Pn ∈ R
d/2×d. We provide a table with detailed in-

formation on Matlab timings in the supplementary material

(Sec. C.1), corresponding to the experiments in Tab. 1.

Sequential data arrival performance on USPS In Fig. 3

we show the results when training and testing our tree en-

semble from sequentially arriving data of the USPS dataset,

akin to the experiment in [10]. The curves show the per-

formance on the test dataset as a function of the number

of training samples presented to the algorithms. As can be

seen, our algorithm initially performs comparably with the

other methods but begins to even surpass re-trained offline

forests [4] after seeing more than 500 training samples. The

numbers for our method are averaged over 10 runs and again

each sample was presented only once while [10, 20] allowed

15 epochs in their training protocol.

5.2. Kinect dataset

In this experiment we perform the task of pixel-wise

semantic labelling (body part recognition, see Fig. 5), us-

ing synthetically generated depth input images. We used

the publicly available3 dataset of [10], which provides pre-

defined splits into training and test images, as well as the

specific order and training sample center locations pre-

sented to the learners. The training set contains 2000 im-

ages (i.e. poses with 19 body part classes + 1 background

3http://mdenil.com/projects/#random-forests

3991

http://mdenil.com/projects/#random-forests

Training data size

10
4

10
6

A
c
c
u

ra
c
y
 [

%
]

15

25

35

45

55

65

75

85
Kinect Forest Accuracy

ORF [Saffari et al.]

COF [Denil et al.]

BOF-S (8 trees, depth 8)

BOF-S (3 trees, depth 8)

BOF-SD (8 trees, depth 8)

BOF-SD (3 trees, depth 8)

BOF-S (8 trees, depth 7)

BOF-S (3 trees, depth 7)

Figure 4. Sequential data arrival experiments for Kinect dataset

(see Sec. 5.2), showing test data classification accuracies as func-

tion of seen training samples.

class label) from where ≈50 samples per body part and im-

age were collected, resulting in roughly 2 million training

samples. Testing was conducted on all foreground pixels of

the 500 images in the test set. Since the exact order and

locations of training samples are given, we can provide a

direct comparison to the baseline scores reported for [20]

and [10]. Both trained forests of 25 trees, [20] was limited

to depth 8 for memory reasons (to keep memory consump-

tion <10GB) while [10] reports no restriction on their max-

imum depth. Moreover, [10] reports that their trees were

allowed to evaluate 2000 candidate offsets with 10 candi-

date split node tests at a memory consumption of 1.6GB,

when limiting their approach to 1000 active leaf nodes.

We trained again ensembles comprising 8 balanced

Bayesian trees, using maximum depths of 7 or 8 (yield-

ing 127/255 split nodes and 128/256 leaf nodes per tree,

respectively). Instead of granting access to 2000 candi-

date offsets, we used d = 100 randomly chosen off-

sets (+1 bias dimension) per split node (dubbed BOF-S),

which we sampled from a log-polar space with maximum

distance of ≈35 pixels, akin to [10]. In such a way,

the total number of parameters per tree for our approach

is
(

|N | · ((d+ 1)2 + (d+ 1) + d) + 2|N | · |Y|
)

(requiring

1012 per Σn, 101 per µn, 100 for subspace selection via Pn
and 20 per αℓ), resulting in ≈5/10MB per tree (depth 7/8).

When using only axis-aligned, diagonal covariance matri-

ces Σn (denoted as BOF-SD), the model memory require-

ment reduces to ≈160/320kB per tree. Once only inference

Figure 5. Color-coded, qualitative examples of Kinect semantic la-

belling experiment (ground truth vs. obtained result), see Sec. 5.2.

has to be performed, memory consumption can be reduced

to≈110/220kB (for both, BOF-S and BOF-SD) when using

the fast, single-path routing described in Sec. 4..

The plot in Fig. 4 shows the pixel labelling accuracy

(percentage of correctly labelled foreground pixels of test

set as in [10]) as a function of presented training data.

We outperform both baselines by a significant margin over

the entire sweep of training samples when using 8 BOF-S

trees. For instance, after 500k training samples we improve

by ≈6/8% over [10] and ≈11/13% over [20] (depth 7/8).

Conversely, we approximately match the final performance

of [10] at 2M samples with our depth 8 ensemble after see-

ing only 20k (i.e. 1/100th) training samples. Also, we only

need 3 of our trees in order to reach comparable final per-

formance to [10], which we illustrate with dashed lines in

the plot. With our faster 8 tree training variant BOF-SD

(ie. diagonal Σn, shown in cyan), we approximately match

the performance of the full covariance version at the maxi-

mum number of training samples. Finally, note that all re-

sults for our approaches were obtained by performing the

fast, single-path inference described at the end of Sec. 4.

More experimental insights in the supplementary material

include i) details on timings in Sec. C.1, ii) plots and dis-

cussions of an increasing ensemble size for both, depth 7

and depth 8 BOF-S ensembles in Sec. C.2, iii) a guide on

how to perform model selection based on the online devel-

opment of the ensemble training loss in Sec. C.3.

6. Summary and Future Work

In this paper we have proposed a novel approach for on-

line learning of classification trees, driven by ideas from

Bayesian online learning theory. Our solution departs from

state-of-the-art approaches by trying to build tree ensembles

that consist of only few and compact trees with good gen-

eralization capability. We achieved this goal by adopting a

Bayesian learning procedure that iteratively refines a pos-

terior distribution within a pre-defined parametric family in

a way to best incorporate information carried by new data

samples. The experimental evaluation has shown that our

approach is able to perform on par or better than state-of-

the-art online forest algorithms on a variety of classification

tasks, while using smaller models.

We plan to extend our approach to regression, by replac-

ing the prediction model in the leaves and derive proper up-

date formulæ for the related parameters. We also plan to

investigate a semi-parametric, Bayesian setting in order to

let the tree structure be driven by the data.

Acknowledgments. This research has received funding

from the European Unions Horizon 2020 research and in-

novation programme under grant agreement No 687757.

3992

References

[1] C. Anagnostopoulos and R. B. Gramacy. Dynamic trees

for streaming and massive data contexts. ArXiv preprint

arXiv:1201.5568, 2012.

[2] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and

R. Gavaldà. New ensemble methods for evolving data

streams. In Proceedings of the 15th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Min-

ing, KDD ’09, pages 139–148, New York, NY, USA, 2009.

ACM.

[3] C. M. Bishop and M. Svensén. Bayesian hierarchical mix-

tures of experts. In Proc. of Conference on Uncertainty in

Artificial Intelligence, page 5764, 2003.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001.

[5] W. Buntine. Learning classification trees. Stat. Comput.,

2:63–73, 1992.

[6] H. Chipman, E. I. George, and R. E. McCulloch. Bayesian

cart model search. J. Am. Stat. Assoc., pages 935–948, 1998.

[7] H. Chipman, E. I. George, and R. E. McCulloch. BART:

Bayesian additive regression trees. The Annals of Applied

Statistics, 4(1):266–298, 2010.

[8] H. Chipman and R. E. McCulloch. Hierarchical priors for

Bayesian cart shrinkage. Stat. Comput., 10(1):17–24, 2000.

[9] A. Criminisi and J. Shotton. Decision Forests in Computer

Vision and Medical Image Analysis. Springer, 2013.

[10] M. Denil, D. Matheson, and N. de Freitas. Consistency of

online random forests. In (ICML), 2013.

[11] P. Domingos and G. Hulten. Mining high-speed data streams.

In Int. Conf. on Knowl. Discov. and Data Mining, pages 71–

80, 2000.

[12] D. Heath, S. Kasif, and S. Salzberg. Induction of oblique

decision trees. Journal of Artificial Intelligence Research,

2(2):1–32, 1993.

[13] B. Lakshminarayanan, D. Roy, and Y. W. Teh. Mondrian

forests: Efficient online random forests. In Advances in Neu-

ral Inform. Process. Syst., 2014.

[14] P. S. Maybeck. Stochastic models, estimation and control.

Academic Press, 1982.

[15] B. H. Menze, B. M. Kelm, D. N. Splitthoff, U. Koethe, and

F. A. Hamprecht. On oblique random forests. In Machine

Learning and Knowledge Discovery in Databases, volume

6912. Springer, 2011.

[16] T. P. Minka. Estimating a dirichlet distribution. Unpublished,

2000.

[17] T. P. Minka. Expectation propagation for approximate

bayesian inference. In Proceedings of the 17th Conference

in Uncertainty in Artificial Intelligence, UAI ’01, pages 362–

369, 2001.

[18] M. Opper. A bayesian approach to on-line learning. In

D. Saad, editor, On-line Learning in Neural Networks, pages

363–378. Cambridge University Press, 1998.

[19] N. Oza and S. Russel. Online bagging and boosting. In Proc.

of Artificial Intell. and Statistics, pages 105–112, 2001.

[20] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof.

On-line random forests. In IEEE - ICCV Workshop on On-

line Learning for Computer Vision, 2009.

[21] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook,

M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman,

and A. Blake. Efficient human pose estimation from single

depth images. (PAMI), 2013.

[22] M. Taddy, R. B. Gramacy, and N. G. Polson. Dynamic trees

for learning and design. J. Am. Stat. Assoc., 106(493):109–

123, 2011.

[23] J. Valentin, V. Vineet, M.-M. Cheng, D. Kim, J. Shotton,

P. Kohli, M. Nießner, A. Criminisi, S. Izadi, and P. Torr. Se-

manticpaint: Interactive 3d labeling and learning at your fin-

ger tips. ACM Transactions on Graphics, 2015.

[24] A. Verikas, A. Gelzinis, and M. Bacauskiene. Mining data

with random forests: A survey and results of new tests. Pat-

tern Recognition (PR), 44(2):330 – 349, 2011.

[25] Y. Wu, H. Tjelmeland, and M. West. Bayesian CART: Prior

specification and posterior simulation. J. Comput. Graph.

Stat, 16(1):44–66, 2007.

[26] P. Yang, Y. Hwa Yang, B. B. Zhou, and A. Y. Zomaya. A re-

view of ensemble methods in bioinformatics. Current Bioin-

formatics, 5(4):296–308, 2010.

3993

