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Abstract

In computer vision, many problems can be formulated as

finding a low rank approximation of a given matrix. Ideally,

if all elements of the measurement matrix are available, this

is easily solved in the L2-norm using factorization. How-

ever, in practice this is rarely the case. Lately, this prob-

lem has been addressed using different approaches, one is

to replace the rank term by the convex nuclear norm, an-

other is to derive the convex envelope of the rank term plus

a data term. In the latter case, matrices are divided into

sub-matrices and the envelope is computed for each sub-

block individually. In this paper a new convex envelope is

derived which takes all sub-matrices into account simulta-

neously. This leads to a simpler formulation, using only one

parameter to control the trade-of between rank and data fit,

for applications where one seeks low rank approximations

of multiple matrices with the same rank. We show in this

paper how our general framework can be used for man-

ifold denoising of several images at once, as well as just

denoising one image. Experimental comparisons show that

our method achieves results similar to state-of-the-art ap-

proaches while being applicable for other problems such as

linear shape model estimation.

1. Introduction

Low rank approximation and PCA type procedures are

important in many disciplines, for example, statistics, bio-

informatics, compression and prediction. In computer vi-

sion it has been proven useful for applications such as non-

rigid and articulated structure from motion [5, 23, 12], pho-

tometric stereo [3], optical flow [13] and linear shape mod-

els [8, 22]. The rank of the approximating matrix typically

describes the complexity of the solution. Therefore one

seeks to find a low rank factorization UV T ≈ M . If the

measurement matrix M is complete and the rank of the ap-

poximating matrix is known, then the best approximation,

in a least squares sense, can be computed in closed form

using the singular value decomposition (SVD) [10].

Alternatively the problem can be formulated as mini-

mization of the objective function

f(X) = µ rank(X) + ‖X −M‖2F . (1)

Here µ is a parameter that controls the trade-off between

data fit and rank. While the solution is easy to compute

using SVD the optimization problem itself is non-convex

and non-differentiable. As a consequence it is difficult to

modify the formulation without having to resort to heuris-

tic optimization approaches. For example, in case there are

missing entries and/or outliers the optimization problem is

substantially more difficult. In structure from motion, re-

cent approaches [11, 20] attack these problems by optimiz-

ing jointly over fixed size U and V matrices. As a conse-

quence the rank has to be predetermined and the quality of

the result is dependent on initialization.

To achieve flexible formulations that are independent of

initialization, researchers have instead started to consider

convex surrogates of the rank function. Most commonly the

convex nuclear norm, or sum-of-singular-values penalty is

used [18, 6, 17, 2, 7]. One reason for its popularity is that it

can be shown that if the locations of the missing entries are

random the approach gives the best low rank approximation

[6]. In many computer vision applications missing entry

locations are highly correlated which makes the approach

break down.

An additional downside of using the nuclear norm is that

it has a bias to small solutions. Due to its definition it penal-

izes both small and large singular values equally. Indeed its

proximal operator corresponds to soft thresholding [6]. In

contrast, the desirable operation of hard thresholding, which

is performed when solving (1) with SVD, leaves the larger

singular values unchanged.

A convex formulation that only penalizes the small sin-

gular values was recently proposed in [16]. It is shown that

the convex envelope of (1) is given by

f∗∗(X) =
n
∑

i=1

(

µ− [
√
µ− σi(X)]2+

)

+ ‖X −M‖2F , (2)
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Figure 1: A simple illustration of how to estimate tangent

planes of the manifold.

where [·]+ denotes truncation at 0 and σi(X), i = 1, . . . , n
are singular values of X . Since f∗∗ is the convex envelope

of f their minimum values coincide and f∗∗(X) is a lower

bound f(X) for every X . Furthermore, singular values that

are larger than
√
µ get a constant penalty, which is similar

to hard thresholding.

In this paper we are interested in problems where mul-

tiple matrices of the same unknown rank need to be esti-

mated. One example where this appears is in manifold esti-

mation. All the tangent spaces of a connected manifold have

the same dimension, equal to the dimension of the manifold.

Locally a d-dimensional manifold can be thought of as a

d-dimensional tangent space. Therefore approximating the

data with a d-dimensional manifold can be thought of as lo-

cally approximating data with low rank matrices (all of rank

d). Another problem that can be cast in the same frame-

work is the missing data problem. In [16] it was solved

by applying the objective (1) on complete sub-blocks of the

measurement matrix. To achieve the same rank on all sub-

blocks, one µ-parameter for each block had to be selected.

Optimal parameter selection is a major obstacle for this ap-

proach.

More specifically, in this paper we propose an approach

where a trade-off between the maximal rank of a set of ma-

trices and their fit to observed data is penalized. In contrast

to the approach in [16] we consider all matrices at the same

time. The formulation, which has only one parameter, en-

sures that the estimated matrices are of the same (unknown)

rank. Our main technical contribution is that we derive an

expression for the convex envelope and show that its prox-

imal operator is equivalent to a convex cone problem. This

allows efficient optimization using an ADMM approach [4].

We present several applications where this framework can

be applied, including manifold denoising and missing data

problems.

2. Regularization With the Maximal Rank

In applications like manifold estimation, one seeks to

estimate a manifold by its tangent spaces, where the tan-

gent spaces have a lower dimension than the ambient space,

Figure 2: Illustration of how measurement matrices can di-

vided into blocks. Left: Blocks for tangent spaces. Right:

Example of block division with missing data.

see Figure 1. In particular, all tangent spaces have the

same dimension which is also equal to the dimension of the

manifold. To achieve this, one can divide the data points

in a measurement matrix M into different neighborhoods.

These neighborhoods form blocks (or sub-matrices) Mj of

M , see left of Figure 2. Note that in this case, the blocks

Mj have the same number of rows as the matrix M , but

they may vary in sizes and typically have no missing data.

We will show how one can compute a low-rank approxima-

tion X where all blocks Xj corresponding to Mj have the

same rank. These low-rank approximations correspond to

the low dimensional (affine) tangent spaces. Further details

of the specific formulation for this application will be given

in Section 3.1. In this section, we will work with a more

general formulation.

We let M̂ = (M1,M2, ...,Mb) be a collection of mea-

surement matrices that we wish to approximate with X̂ =
(X1, X2, ..., Xb), where Xj , j = 1, . . . , b, are of the same

(unknown) rank. Note that the matrices Mj in M̂ need not

to have the same sizes, and thus M̂ should be regarded as a

collection of measurement matrices. Our objective function

will be of the form

min
X̂

µr(X̂) + ‖X̂ − M̂‖2, (3)

where the regularization term is

r(X̂) = max( rank(X1), rank(X2), ...., rank(Xb)), (4)

the data fit is measured by

‖X̂ − M̂‖2 =

b
∑

j=1

‖Xj −Mj‖2F , (5)

and ‖ · ‖F is the regular Frobenious norm. The parame-

ter µ controls the trade-off between rank and data fit. In

practice we are interested in solutions where the ranks of

the Xj matrices are the same. It can be seen that the reg-

ularizer (4) will achieve this under the assumption that the
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Mj matrices are all of full rank. If for some j we have

r(X̂) > rank(Xj) then the data term ‖Xj − Mj‖2F can

be reduced by adding another singular value to Xj without

affecting any other term.

A common approach would be to simply replace the rank

functions in (4) with nuclear norms. However in contrast

to the rank function the nuclear norm is not scale invari-

ant. Therefore this will result in a regularizer that penalizes

the matrices unevenly. In particular if the matrices Xj have

varying sizes. Furthermore, the nuclear norm is only a lower

bound on the rank function on the set {X;σ1(X) ≤ 1},

while in contrast our convex envelope will be valid on an

unbounded domain. Recall that the convex envelope is by

definition the tightest possible lower-bounding convex func-

tion, hence the ideal tool for our purposes.

In the following sections we will compute the convex

envelope of our formulation via conjugate functions and de-

rive its proximal operator [19].

2.1. Conjugate Functions

To find the convex envelope of (3) we consider the con-

jugate function, which is by definition

f∗(Ŷ ) = max
X̂

〈X̂, Ŷ 〉 − µr(X̂)− ‖X̂ − M̂‖2, (6)

where 〈X̂, Ŷ 〉 =
∑b

j=1 tr(XT
j Yj). By completing squares

via

||X̂−(M̂+
Ŷ

2
)||2 = ||X̂||2−2〈X̂, M̂+

Ŷ

2
〉+ ||M̂+

Ŷ

2
||2,
(7)

the maximization in (6) can be written

max
k

max
r(X̂)=k

−‖X̂ − Ẑ‖2 + ‖Ẑ‖2 − ‖M̂‖2 − µk, (8)

where Ẑ = M̂ + Ŷ
2 . For a fixed k the problem is separable

in the matrices Xj , j = 1, ..., b. That is, the optimal Xj can

be obtained from the SVD of Zj giving

Xj =

k
∑

i=1

σi(Zj)uiv
T
i . (9)

Inserting into (8) we get

max
k

−
n
∑

i=k+1

‖σi(Ẑ)‖22 + ‖Ẑ‖2 − ‖M̂‖2 − µk. (10)

Here σi(Ẑ) is the vector (σi(Z1), σi(Z2), . . . , σi(Zb)) and

‖ · ‖2 is the regular euclidean vector norm. To select the

maximizing k we note that

µk +
n
∑

i=k+1

‖σi(Ẑ)‖22 =
k

∑

i=1

µ+
n
∑

i=k+1

‖σi(Ẑ)‖22. (11)

Since each entry in the vector σi(Ẑ) is positive and decreas-

ing in i, its norm ‖σi(Ẑ)‖22 will also be decreasing with i.
Therefore k should be selected such that

‖σk+1(Ẑ)‖22 ≤ µ ≤ ‖σk(Ẑ)‖22. (12)

This gives the conjugate function

f∗(Ŷ ) = −
n
∑

i=1

min(µ, ‖σi(Ẑ)‖22)+‖Ẑ‖2−‖M̂‖2. (13)

Recall that Ẑ depends on Ŷ through Ẑ = M̂ + Ŷ
2 . Next we

consider the biconjugate, which is by definition

f∗∗(X̂) = max
Ŷ

〈X̂, Ŷ 〉 − f∗(Ŷ ) (14)

= max
Ẑ

2〈X̂, Ẑ − M̂〉 − f∗(2Ẑ − 2M̂). (15)

The objective function in (15) can be written

n
∑

i=1

min(µ, ‖σi(Ẑ)‖22)− ‖Ẑ − X̂‖2 + ‖X̂ − M̂‖2. (16)

Using von Neumann’s trace theorem it can be seen that the

optimal Zj has to have an SVD with the same U and V as

Xj . Therefore the optimization can be reduced to a search

over the singular values of the Zj , j = 1, ..., b, giving the

convex envelope

f∗∗(X̂) = Rµ(X̂) + ‖X̂ − M̂‖2, (17)

where

Rµ(X̂) = max
Ẑ

n
∑

i=1

min(µ, ‖σi(Ẑ)‖22)−‖σi(Ẑ)−σi(X̂)‖22.

(18)

2.2. The Proximal Operator of f∗∗

The maximization over the singular values in (18) does

not seem to have any closed form solution. Evaluation of

f∗∗(X̂) therefore has to be done by numerically maximiz-

ing the (concave) objective function. At first glance it may

therefore seem as though minimization of f∗∗ would in-

volve a search over numerical evaluations of f∗∗. Fortu-

nately this can be avoided. In this section we show that the

proximal operator

proxf∗∗(Ŷ ) = argmin
X̂

f∗∗(X̂) + ρ‖X̂ − Ŷ ‖2, (19)

which is the basis for ADMM can be computed using a

single cone program. The trick is to switch the order of

minimization and maximization and thereby obtain a closed

form solution for X̂ . If ρ > 0 the objective function is
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closed, proper convex-concave, continuous and the opti-

mization can be restricted to a compact set. Switching op-

timization order is therefore justified by the existence of a

saddle point, see [19]. To find the optimal X̂ we consider

the terms of (19) that contain X̂

− ‖Ẑ − X̂‖2 + ‖X̂ − M̂‖2 + ρ‖X̂ − Ŷ ‖2. (20)

It can be seen (e.g., by taking derivatives of (20)) that the

optimal X̂ is given by

X̂ = Ŷ +
M̂ − Ẑ

ρ
. (21)

Inserting into (20) and completing squares gives

− ρ+ 1

ρ

∥

∥

∥
Ẑ − Ŵ

∥

∥

∥

2

+ C, (22)

where

Ŵ =
ρŶ + M̂

ρ+ 1
(23)

and

C =
2ρ+ 1

ρ
‖M̂‖2 + ρ‖Ŷ ‖2 − ρ‖Ŷ +

M̂

ρ
‖2. (24)

Note that C is independent of Ẑ. In practice we are only

interested in finding the optimizers Ẑ and X̂ and not the

objective value itself. Hence we can ignore C. We therefore

need to maximize
n
∑

i=1

min(µ, ‖σi(Ẑ)‖22)−
ρ+ 1

ρ

∥

∥

∥
Ẑ − Ŵ

∥

∥

∥

2

. (25)

The terms in the sum only depend on the singular values of

the matrices Zj , j = 1, . . . , b. For the second term we have

∥

∥

∥
Ẑ − Ŵ

∥

∥

∥

2

= ‖Ẑ‖2 − 2

b
∑

j=1

〈Zj ,Wj〉+ ‖Ŵ‖2. (26)

By von Neumann’s trace theorem 〈Zj ,Wj〉 ≤
∑n

i=1 σi(Zj)σi(Wj) one sees that the SVD of Zj has

the same U and V as the SVD of Wj . Therefore (25)

simplifies to

n
∑

i=1

(

min(µ, ‖σi(Ẑ)‖22)−
ρ+ 1

ρ

∥

∥

∥
σi(Ẑ)− σi(Ŵ )

∥

∥

∥

2

2

)

.

(27)

The singular values can now be determined using a cone

program. To see this we introduce the auxiliary variables

si, i = 1, ..., n and write

max

n
∑

i=1

si (28)

s.t. si ≤ µ− ρ+ 1

ρ

∥

∥

∥
σi(Ẑ)− σi(Ŵ )

∥

∥

∥

2

2
(29)

si ≤
∥

∥

∥
σi(Ẑ)

∥

∥

∥

2

2
− ρ+ 1

ρ

∥

∥

∥
σi(Ẑ)− σi(Ŵ )

∥

∥

∥

2

2
. (30)

Note that as we are maximizing the sum of si, (29) or (30)

will always attain equality at the optimal solution. Thus the

above program is equivalent to (27). For the singular values

to be feasible they have to be decreasing for each block. To

enforce this we add linear constraints on the entries of the

vectors σi(Ẑ) which results in the formulation

max

n
∑

i=1

si (31)

s.t.

∥

∥

∥
σi(Ẑ)− σi(Ŵ )

∥

∥

∥

2

2
≤ ρ

ρ+ 1
(µ− si) (32)

ρ+ 1

ρ

∥

∥

∥
σi(Ẑ)− σi(Ŵ )

∥

∥

∥

2

2
−
∥

∥

∥
σi(Ẑ)

∥

∥

∥

2

2
≤ −si (33)

σ1(Ẑ) ≥ σ2(Ẑ) ≥ ... ≥ σn(Ẑ) ≥ 0. (34)

Equation (32) is easily seen to be convex since the left side

is a positive definite quadratic form and the right hand side

is linear. To see that the same holds true for (33) we can

rewrite this constraint as

∥

∥

∥
σi(Ẑ)− (ρ+ 1)σi(Ŵ )

∥

∥

∥

2

2
≤ ρ

(

∥

∥

∥
(ρ+ 1)σi(Ŵ )

∥

∥

∥

2

2
− si

)

.

(35)

Constraints (32) and (35) can be realized using the cone

{(x1, x2, x3); x1x2 ≥ ‖x3‖22, x1 + x2 ≥ 0}. (36)

This type of cone (which is a rotation of the quadratic cone)

is supported in SeDuMi [21] and Mosek [1] which we use

to solve (19).

3. Applications

In this section, we present two applications of our frame-

work: (i) Manifold denoising and (ii) Linear shape basis

models.

3.1. Manifold Denoising

Manifold denoising can be formulated as seeking affine

tangent spaces with the same dimension. If we have a set of

images, possibly corrupted with noise, then the assumption

is that the true uncorrupted images lie on a low-dimensional

manifold. The images, represented by mi, i = 1, . . . , N ,

are assumed to be column-stacked so one image lies in R
n,

where n is the number of pixels. The assumption means

that several points which are close to each other should be

close to the tangent space of the manifold as illustrated in

Figure 1. To determine neighbourhoods, we find for each

image point its K-closest neighbors in the euclidean dis-

tance and consider them to be one block.

Given a set of images, stacked in a measurement ma-

trix M = [m1,m2, ...,mN ], we determine a collection of

blocks via the neighbourhoods, M̂ = (M1,M2, . . . ,Mb),
see left of Figure 2. Since the images are corrupted by noise,
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Input PSNR Output PSNR

Our method 10.4553 17.5231

Manifold Denoising 10.4553 15.6656

Table 1: The PSNR using different methods for denoising

on the USPS Digits.

each sub-matrix Mi will have high rank, and the task is to

find a low-rank approximation Xi for each Mi. Note that

the different Xi share common varibles. Also, since we are

interested in the affine tangent spaces, which do not neces-

sarily go through the origin, we add the row-vise mean vec-

tor x̄i of each Xi. Assuming that Xi have zero row means,

that is Xi✶ = 0, the fitting terms in the objective function

can be written

b
∑

i=1

‖Xi + x̄i✶
T −Mi‖2 = (37)

b
∑

i=1

‖Xi − (Mi − m̄i✶
T )‖2F + ki‖x̄i − m̄i‖22, (38)

where m̄i is the row mean of Mi and ki is equal to the num-

ber of columns in block Mi. To ensure consistency between

shared variables, we penalize the differences by adding to

the objective

α

b
∑

i=1

‖Pi(X)− (Xi + x̄i✶
T )‖2F ,

where α is a weighting factor, X is the approximation of the

measurement matrix M and Pi(X) retrieves block i in X .

In summary, we have the following optimization problem

min
X̂,X,x̄i

r(X̂) +
b

∑

i=1

(

‖Xi − (Mi − m̄i✶
T )‖2F+ (39)

ki‖x̄i − m̄i‖22 + α‖Pi(X)− (Xi + x̄i✶
T )‖2F

)

(40)

s.t. Xi✶ = 0 i = 1, . . . , b. (41)

We have already derived the convex envelope for the terms

on the first row (39) and the terms on the second row (40)

are convex from the start. To minimize (39) we use the con-

vex envelope and introduce auxiallary variables Zi, which

results in

min
X̂,X,x̄i,Ẑ

f∗∗(X̂)+

b
∑

i=1

(

ki‖x̄i − m̄i‖22 + α‖Pi(X)− Zi − x̄i✶
T ‖2F

)

(42)

s.t. Xi = Zi, Zi✶ = 0, i = 1, . . . , b, (43)

and in turn, this leads to the ADMM formulation

min
X̂,X,x̄i,Ẑ

f∗∗(X̂) + ρ‖X̂ − Ẑ + Λ̂‖2 − ρ‖Λ̂‖2+

b
∑

i=1

(

ki‖x̄i − m̄i‖22 + α‖Pi(X)− Zi − x̄i✶
T ‖2F

)

(44)

s.t. Zi✶ = 0, i = 1, . . . , b. (45)

We get one part which depends on X̂ ,

min
X̂

f∗∗(X̂) + ρ‖X̂ − Ẑ + Λ̂‖F , (46)

which is precisely the proximal operator we have seen

before. To minimize with respect to the other variables Ẑ,

x̄i and X is now straightforward. Keeping the other vari-

ables fixed and solving for one we get the following up-

dates:

Xt+1 = argmin
Xt

α

b
∑

i=1

‖Pi(X
t)− Zt

i − x̄t
i✶

T ‖2F (47)

which is a separable least squares problem,

Zt+1
i = argmin

Zt

i

α‖Pi(X
t+1)− Zt

i − x̄t
i✶

T ‖2F+

ρ‖Xt
i−Zt

i + Λt
i‖2F i = 1, . . . , b, (48)

since all blocks are independent in the minimization,

x̄t+1
i = argmin

x̄t

i

ki‖x̄t
i − m̄i‖22+

α‖Pi(X
t+1)− Zt+1

i − x̄t
i✶

T ‖2F , (49)

since we can minimize each x̄i separately. To find X̂t+1 we

use the proximal operator we have deduced:

X̂t+1 = proxf∗∗(Ẑt+1 − Λ̂t+1). (50)

For Λ̂ we take a step in the ascent direction, that is,

Λt+1
i = Λt

i +Xt+1
i − Zt+1

i , (51)

since again, each block is separable.

Experimental results: USPS. To test the denoising

method, we use the USPS dataset [15] of handwritten digits.

We choose 100 images of each digit and rescale the intensi-

ties to lie between [0, 1]. The images are perturbed by Gaus-

sian noise with standard deviation σ = 0.3. We then stack

all images into one measurement matrix M , and find the

K = 30 closest neighbours for each image. With this data,

we apply our optimization to obtain the new approximate
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Figure 3: Some results from denoising the USPS digits. From left to right: Input images, our results and the results from

Manifold Denoising.

Figure 4: Denoising results of the Lena image. Left: Noisy input image. Middle: Denoised image using our method. Right:

Denoising results from BM3D.

Figure 5: Left: Input noisy Cameraman. Middle: Our result. Note the preserved details on the camera. Right: Result from

BM3D.

matrix X of M . Each column in X contains a denoised im-

age corresponding to the noisy image in the same column

in M .

For comparison we use the well-known work called

Manifold Denoising by [14]. This work uses a different

approach where a partial differential equation is solved on a

graph created by the data points to obtain a manifold.

The results shown in Table 1 where obtained when

adding noise with standard deviation σ = 0.3 to the USPS

dataset. For Manifold Denoising we set the number of

neighbors to 6 and re-weighting parameter λ = 1 and a

symmetric graph, since that gave the best results in our ex-

periment.

Experimental results: Single image denoising. Our

method for manifold denoising can also be used to denoise

a single image. To apply our method, the image is first di-

vided into several patches, and each patch is considered to

be one point in R
n. As above all points, or patches, are

then stacked into one measurement matrix M . Thereafter,
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Input Our method BM3D

Lena 19.9914 28.6064 29.1560

Cameraman 19.9883 26.0663 24.7322

Table 2: Denoising results from the Cameraman and Lena.

BM3D gives a higher PSNR for Lena, but we do better on

the Cameraman.

Figure 6: Zooming in, one can see more details in our result

(left) compared to BM3D’s result (right). Note that one can

see the pupil in the eye of the left image, but not in the right

image.

the optimal X is found applying our optimization method

and each column in X equals a denoised patch which can

be used to rebuild the image.

This was tested on Lena, size 512 × 512 pixels and the

Cameraman, size 256 × 256 pixels. On both images we

added gaussian noise with a standard deviation σ = 0.1. As

can be seen in Figure 4, much of the noise is reduced. To

compare our method, we also provide results from state-of-

the-art method BM3D [9]. In the closeup of Figure 6, it can

be seen that our method keeps details better than BM3D,

for example, the pupil is clearly distinguishable in our result

but not in BM3D’s result. The PSNR on the input data was

19.9914. Our method improved to 28.6064 and BM3D to

29.1560.

To get these results a patch size of 12 × 12 pixels was

used together with an overlap of 2/3 between two consecu-

tive patches, this results 15876 tangent spaces. The param-

eter α was set to 1.5 and µ to 75, 000 and the number of

neighbors K = 20. The optimal blocks Xi had rank 2.

The same approach was also tested on the Cameraman

and as can be seen in Figure 5, our method performs well

compared to BM3D. Figure 5 shows that our method pre-

serves more details compared to BM3D which smooths out

some details. For example the camera is more detailed and

the roof on the tower to the right is more preserved. For

the Cameraman we used the same parameters as above ex-

cept that µ = 22000 and the number of tangent spaces was

3844. The optimal blocks Xi had rank 3. The denoising

results are summarized in Table 2.

Dataset Loc. Rank Func. [16] Our method

Hand 0.474 0.474

Banner 6.54 · 107 4.73 · 107
Book 0.121 0.121

Table 3: The error
∑b

i=1 ‖Xi−Mi‖2F for the method in [16]

and our method. Note that the method in [16] outperforms

the nuclear norm relaxation for the same error metric.

3.2. Linear Shape Basis Models

Another application we test our framework on is esti-

mation of linear shape models. A common assumption is

that a set of tracked image points moving non-rigidly can

be described with a small number of basis elements in each

frame. If we let Mf = (m1
f ,m

2
f , . . . ,m

N
f ) denote the N

tracked 2D-points in frame f , we want to find shape ba-

sis models (S1, S2, . . . , SK) — each of size 2 × N — and

scalar coefficients Cf1, Cf2, . . . , CfK such that the points

Mf can be described by

Mf =

K
∑

k=1

CfkSk. (52)

Stacking the N points in F frames yields a 2F × N mea-

surement matrix M . Since we want to use as few basis el-

ements as possible, the matrix M should be of low rank.

Due to occlusion and tracking failures, not all points will

be seen in all frames. This gives a measurement matrix M
with missing data. To handle this we create sub-blocks Mi

of M , where each Mi has no missing entries, see right of

Figure 2. Hence, we have turned the problem into finding

low-rank approximations Xi of Mi, where the blocks in Xi

share common variables. The objective function we seek to

minimize is

minX̂,X f∗∗(X̂) (53)

s.t. Pi(X) = Xi i = 1, . . . , b,

where X̂ is the collection of blocks (X1, X2, . . . , Xb) and

Pi(X) retrieves block i from X . The constraint comes from

the requirement that the blocks we optimize over shall coin-

cide on the overlap. To minimize this, we use ADMM and

our augmented Lagrangian becomes

f∗∗(X̂) + ρ‖X̂ − P̂(X) + Λ̂‖2 − ρ‖Λ̂‖2, (54)

where P̂(X) = (P1(X), ...,Pb(X)).
In each iteration we perform the following updates:

X̂t+1 = argmin
X̄t

f∗∗(X̂t) + ρ‖X̂t − P̂(Xt) + Λ̂t||2

(55)

Xt+1 = argmin
Xt

ρ‖X̂t+1 − P̂(Xt) + Λ̂t‖2 (56)

Λt+1
i = Λt

i +Xt+1
i − Pi(X

t+1). (57)
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Figure 7: Frames 280 and 371 from the hand experiment.

The solution has rank 5.

Figure 8: Frames 297 and 337 in the Book sequence. The

solution has rank 3.

Figure 9: Frames 160 and 250 of the Banner sequence. The

solution has rank 9.

When the low-rank approximation is found where only

known data has been used, we complete the missing parts

in X by applying the same method as in [16].

Experimental results. Our framework has been applied

to a number of image sequences obtained from the authors

of [16]. The results of the Hand-, Book- and Banner se-

quences are shown in Figures 7, 8 and 9.

One sees clearly in all sequences that the red and blue

points, which are the reconstructed points, obey a mo-

tion which is reasonable compared to the input data, green

points. The blue points are the reconstructed points which

we could track and the red points are the reconstructed posi-

tions of points with no measurements available. The found

rank for the solution in the Hand sequence is 5, in the Book

sequence we get rank 3 and in the Banner sequence we get

rank 9. The number of blocks in Hand, Book and Banner

was 5,3 and 19.

To compare with [16], we test their method on the same

datasets and measure the error
∑b

i=1 ‖Mi −Xi‖2F and the

results are shown in Table 3. We choose to measure the

error on the blocks since that will show if our method differs

from [16]. Note that this method was shown to perform

better than the nuclear norm relaxation for this application.

As the results in Table 3 show, we do at least as good as

they do on these datasets. We investigated the approximated

sub-matrices from [16] individually and saw that some sub-

matrices had rank 8 and some rank 10. This shows that it

is easier to get uniform rank on all sub-matrices using our

formulation.

4. Conclusion

In this paper we have derived a novel and general convex

framework to approximate low-rank matrices. Our method

is suitable in situations where several matrices of the same

rank need to be approximated. Our main contribution is the

derivation of a strong convex formulation that can be opti-

mized in general frameworks using the proximal operator in

an ADMM fashion [4]. One of the advantages of our formu-

lation is that there is a single tuning parameter controlling

the trade-of between rank and model fit which is important

in manifold estimation where the number of sub-matrices

may be well above 10, 000.

Experimental evaluations showed that our method

achieves results similar to state-of-the-art approaches on

manifold denoising problems and linear shape basis estima-

tion. It should be mentioned that in the case of manifold de-

noising neighborhoods are computed using noisy patches.

Therefore results could potentially be improved by reesti-

mating neighborhoods using cleaned versions. However, to

focus the evaluation on our convex formation we have re-

frained from such heuristics.

5. Acknowledgements

This work has been funded by the Swedish Research

Council (grant no. 2012-4213), the Crafoord Foundation

and Scientific Research Council, project no. 2012-4215.

References

[1] The MOSEK optimization toolbox for MATLAB man-

ual. URL www.mosek.com. 4

[2] R. Angst, C. Zach, and M. Pollefeys. The general-

ized trace-norm and its application to structure-from-

motion problems. In International Conference on

Computer Vision, 2011. 1

[3] R. Basri, D. Jacobs, and I. Kemelmacher. Photometric

stereo with general, unknown lighting. Int. J. Comput.

Vision, 72(3):239–257, 2007. 1

5894

www.mosek.com


[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-

stein. Distributed optimization and statistical learn-

ing via the alternating direction method of multipliers.

Found. Trends Mach. Learn., 3(1):1–122, 2011. 2, 8

[5] C. Bregler, A. Hertzmann, and H. Biermann. Recov-

ering non-rigid 3d shape from image streams. In IEEE

Conference on Computer Vision and Pattern Recogni-

tion, 2000. 1

[6] J. Cai, E.J. Candès, and Z. Shen. A singular value

thresholding algorithm for matrix completion. SIAM

J. on Optimization, 20(4):1956–1982, 2010. 1

[7] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust

principal component analysis? J. ACM, 58(3):11:1–

11:37, June 2011. 1

[8] T.F. Cootes, G.J. Edwards, and Taylor C.J. Active

appearance models. Trans. Pattern Analysis and Ma-

chine Intelligence, 23(6):681–685, 2001. 1

[9] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian.

BM3D image denoising with shape-adaptive principal

component analysis. In Workshop on Signal Process-

ing with Adaptive Sparse Structured Representations,

2009. 7

[10] C. Eckart and G. Young. The approximation of one

matrix by another of lower rank. Psychometrika, 1(3):

211–218, 1936. 1

[11] A. Eriksson and A. Hengel. Efficient computation of

robust weighted low-rank matrix approximations us-

ing the L1 norm. IEEE Trans. Pattern Anal. Mach.

Intell., 34(9):1681–1690, 2012. 1

[12] R. Garg, A. Roussos, and L. de Agapito. Dense

variational reconstruction of non-rigid surfaces from

monocular video. In IEEE Conference on Computer

Vision and Pattern Recognition, 2013. 1

[13] R. Garg, A. Roussos, and L. de Agapito. A vari-

ational approach to video registration with subspace

constraints. Int. J. Comput. Vision, 104(3):286–314,

2013. 1

[14] M. Hein and M. Maier. Manifold denoising. In

Advances in Neural Information Processing Systems,

Cambridge, MA, USA, 2007. 6

[15] J. J. Hull. A database for handwritten text recogni-

tion research. IEEE Trans. Pattern Anal. Mach. Intell.,

16(5):550–554, May 1994. ISSN 0162-8828. doi:

10.1109/34.291440. URL http://dx.doi.org/

10.1109/34.291440. 5

[16] V. Larsson, C. Olsson, E. Bylow, and F. Kahl. Rank

minimization with structured data patterns. In Eur.

Conf. Computer Vision. 2014. 1, 2, 7, 8

[17] C. Olsson and M. Oskarsson. A convex approach to

low rank matrix approximation with missing data. In

Scandinavian Conference on Image Analysis, 2009. 1

[18] B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed

minimum-rank solutions of linear matrix equations via

nuclear norm minimization. SIAM Rev., 52(3):471–

501, August 2010. 1

[19] R.T. Rockafellar. Convex analysis. Princeton Mathe-

matical Series. Princeton University Press, Princeton,

N. J., 1970. 3, 4

[20] D. Strelow. General and nested Wiberg minimization.

In IEEE Conference on Computer Vision and Pattern

Recognition, 2012. 1

[21] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox

for optimization over symmetric cones. Optimization

Methods and Software, 11-12:625–653, 1999. 4

[22] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma.

Robust face recognition via sparse representation.

Trans. Pattern Analysis and Machine Intelligence, 31

(2):210–227, 2009. 1

[23] J. Yan and M. Pollefeys. A factorization-based ap-

proach for articulated nonrigid shape, motion and

kinematic chain recovery from video. Trans. Pat-

tern Analysis and Machine Intelligence, 30(5):865–

877, 2008. 1

5895

http://dx.doi.org/10.1109/34.291440
http://dx.doi.org/10.1109/34.291440

