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Abstract

We investigate an efficient strategy to collect false pos-

itives from very large training sets in the context of object

detection. Our approach scales up the standard bootstrap-

ping procedure by using a hierarchical decomposition of an

image collection which reflects the statistical regularity of

the detector’s responses.

Based on that decomposition, our procedure uses a

Monte Carlo Tree Search to prioritize the sampling toward

sub-families of images which have been observed to be rich

in false positives, while maintaining a fraction of the sam-

pling toward unexplored sub-families of images. The re-

sulting procedure increases substantially the proportion of

false positive samples among the visited ones compared to

a naive uniform sampling.

We apply experimentally this new procedure to face de-

tection with a collection of ∼100,000 background images

and to pedestrian detection with ∼32,000 images. We show

that for two standard detectors, the proposed strategy cuts

the number of images to visit by half to obtain the same

amount of false positives and the same final performance.

1. Introduction

Learning techniques for object detection require very

large sets of negative examples, which are usually used

through a bootstrapping procedure. The training process

constructs a sequence of predictors of increasing perfor-

mance, each trained from a fixed set of positive samples

and a collection of so called “hard” negative samples that

fool the previous predictor.

Such an approach enriches the training set with negative

samples that get closer and closer to the boundary between

the positive and the negative populations, which are the ones

that matter for a discriminative criterion. From a computa-

tional perspective, bootstrapping decouples the selection of

the interesting (negative) samples from their use for training

the model. The latter usually has a cost linear with the num-

ber of selected samples, which is far less than the number
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Figure 1: Number of images visited vs. bootstrapping it-

erations for a the ACF-face detector (top) and a DPM-face

detector (bottom). Our methods using a Monte-Carlo tree

search (blue and green) focus on difficult images and visit

roughly half the number of images the traditional approach

needs (red).

of samples in the full set. However, the selection process

from the full set requires one evaluation of the predictor per

candidate sample, and remains linear with the total number

of samples.

In practice one observes that the frequency of false-

positives in images is highly structured: certain types of
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images exhibit statistical regularities that generate more or

less frequent false-positives. Similar structures can be ob-

served in the images themselves: Large uniform patches

(sky, empty walls) can be ignored, while high-frequency

or highly-structured parts (trees, buildings, bookshelves)

should be examined in detail. If one has to collect images

from the web to create a “good” set of background images,

she/he would quickly get a good intuition about which im-

ages to select and which to ignore. Indeed, the quality of

images as sources of hard samples is strongly related to

the geographical environment or type of events they depict,

or indirectly to the time period, photographer, or even the

web site they originate from. In a video for instance, time-

consistency induces a strong regularity of the proportion of

hard samples in contiguous frames.

The existence of such structures motivates the use of a

hierarchical process able to concentrate computation recur-

sively, figuring out automatically at what scale (image sets,

image sub-sets, image) it should make a decision about in-

vesting or not more computation in the corresponding sam-

ples.

We propose to formalize the problem by first defin-

ing a tree-structure whose leaves are individual images,

and whose nodes correspond to small groups of con-

tent/temporal related images in the bottom level (street,

flowers, indoor, etc.), and larger groups of dataset related

images in the top level (dataset, origin, etc., see figure 2 for

an example). If the structure is given (temporal structure,

keywords, etc.) then no pre-processing is needed. Given

such a tree and an existing predictor, each leaf is labeled

with a score that reflects how many false positives it con-

tains.

Our objective is to use that tree-structure to efficiently

sample among false-positives, that is to maximize the frac-

tion of false positives we find among the samples we actu-

ally look at.

Without an additional structure, this problem amounts to

an exploration-exploitation dilemma: We want at the same

time to “exploit” the groups of images we have already

identified as promising, that is are rich in false-positives,

but we also want to invest a fraction of our computational

effort to “explore” new groups of images.

Framed in such a way, a natural response to the problem

is the use of the Monte Carlo Tree Search (MCTS). This

technique associates a multi-arm bandit to each node of the

tree, and uses them to sample paths down the tree based

on the current estimates of rewards, or in our case, of pro-

portion of hard samples in the sub-trees. While MCTS is

traditionally used to characterize the good choice to make

at the top node, the by-product we use here is the list of

leaves it has visited during sampling.

2. Related works

2.1. Object detection and bootstrapping

Object detection aims at predicting the position and the

scale of all the instances of an object class in an input im-

age. Most detectors use a binary classifier which discrimi-

nates the object from the background, and evaluates it at all

positions and scales in the image. Multiple detections are

removed with a non-maxima suppression post-processing.

The binary classifier is trained with a population of pos-

itive samples corresponding to location and scales in im-

ages where the object is visible, and a population of nega-

tive samples uniformly taken in (parts of) images where the

object of interest is not visible. Then a bootstrapping ap-

proach [30] is used to improve the classifier by assembling

better negative sample sets: The training set is augmented

by a collection of misclassified samples and used to train a

new classifier. This procedure emphasizes difficult samples

that lie at the boundary between the two classes and can

be repeated multiple times. A hard sample can be defined

as being on the wrong side of the boundary [32] or in the

margin of the classifier [16, 13].

The number of bootstrapping steps varies depending

on the complexity or the nature of the classifier and on

the number of hard samples that are added: Dalal and

Triggs [10] perform only one step of bootstrapping but add

all the false positives that are found until it no longer fits

in memory. The pedestrian detector of Dollar et al. [13]

is trained in a soft cascade fashion with three rounds of

bootstrapping, each time adding 5,000 new samples. The

deformable part based model (DPM) [16] is trained with a

maximum of ten rounds for each re-labeling of the positive

samples, with a stopping criterion based on the variation of

the objective function. Finally when a detector is trained in

a cascade fashion, the bootstrapping procedure is applied at

each level. Henriques et al. [18] showed that in the partic-

ular case of linear classifiers, the Gram matrix of translated

samples can efficiently be computed with non overlapping

windows which allows to train with the fully translated set

of samples without any bootstrapping step.

Most of the works in object detection have focused on

proposing new features to improve the performances of

the final detector such as Haar-wavelets [32], histograms

of oriented gradients (HOG) [10], optical-flow based fea-

tures and self-similarity [33] or aggregated channel features

(ACF) [13]. Besides, other works have concentrated on

speeding up the detection at test time. Cascades [32, 3] or

coarse-to-fine approaches [17, 28] allow to reject many win-

dows in the early stages and concentrate most of the com-

putation on promising parts of the image. In the case of

the DPM, the convolutions can be efficiently computed in

the Fourier domain [15] or hashed into tables for fast ac-

cess [11, 29].
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SUN flickr INRIA

sky facade desert animal iceberg flowers

Figure 2: Example of a structured image database. The structure can be explicit such as in the SUN dataset (facade, sky,

etc.) or implicit like in the INRIA Person dataset, where images can be grouped either based on their names or after a

pre-clustering of the images. Videos have a temporal structure.

Nevertheless, little work has been done to efficiently

build the set of hard samples during the bootstrapping step.

For instance, the works by Canévet et al. [5] and Kalal et

al. [19] sample respectively in the image plan, and in sam-

ple sets, without prior structure over the databases nor ex-

plicit concern for the exploration/exploitation trade-off. The

structure of the data-set is never exploited in order to find

the hard samples faster.

2.2. Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search is a method to find the optimal

solution in a given and potentially huge search space [4].

MCTS balances between analyzing promising moves in the

space (exploitation) and expanding the tree randomly (ex-

ploration). It has gained a lot of interest in the Artificial

Intelligence community in the last decade because of the

huge improvement it brought in the game of Computer Go.

MCTS has successfully been applied to games to make

a computer play against a human. Previous strategies such

as αβ [21] or A∗ [20] have shown to be efficient against

humans for the game of chess or checker because it is quite

easy to evaluate the outcome of the game given the current

state. But for games such as Go or Backgammon, comput-

ers have long been unable to defeat non-professional players

until MCTS appeared. By doing randomized simulations of

the game and biasing simulations towards a successful end

for the computer, MCTS is able to find the next best move to

be made. Many works have been done to formulate MCTS

for games [9, 22, 7] and computers are now able to defeat

human on small boards for the game of Go.

Another example of successful use of MCTS is the op-

timization of a “black-box” function [27, 8] where the goal

is to get a good estimate of the maximum of the function

(deterministic or stochastic) by evaluating it only a limited

number of times. The idea is to design a sequence of input

samples on which the function should be evaluated given

the previously observed values. The space is split in a hier-

archical manner, and MCTS determines in which subspace

the function should be evaluated next. As the process goes

Tree policy

Expansion and reward

Back-propagation

Figure 3: One run of the traditional MCTS [4]

on, the procedure converges to the subspace where the func-

tion is maximal.

In all these applications, the input space can be repre-

sented with a tree that serves as the support for MCTS. We

now describe more precisely the basic run of MCTS in the

case of a two-player game, in which the machine tries to

determine the most promising move to be made against the

human player.

For every move, one considers a tree whose root node

corresponds to the current configuration of the game, whose

internal nodes correspond to possible future configurations,

and whose leaves are winning configurations. Using this

tree, the sampling procedure of MCTS (see Figure 3) re-

cursively goes down the tree as follows: In every node, if

some of the children have never been visited, one is selected

at random uniformly. If all children have been visited at

least once, the selection is framed as a multi-armed bandit

problem [2] to optimally tackle the exploitation/exploration

dilemma. When a leaf is reached, that is a wining con-

figuration for one of the two players, the reward is back-

propagated up to the root, and the statistics at each node re-

garding the number of times it was visited and the fraction

of winning outcomes are updated.

This sampling is repeated until a computational/time

budget is exhausted, at which point the next move is made

by selecting the best child of the root which is the one with
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Algorithm 1 UCB1 [2]

∀ k, X̄k ← 0, nk ← 0
for t = 1 to T do

Select arm kt = argmaxk X̄k +
√

2 ln t
nk

Observe reward Xt from arm kt
Update X̄kt

and nkt

end for

the maximum proportion of wins.

MCTS and bandit algorithms have nice theoretical prop-

erties. In particular, one such property is the guarantee that

they only expand the optimal part of the tree. Moreover the

tree structure of MCTS allows to deal with very large spaces

leaving unexpanded unpromising parts of the domain.

As explained in detail in § 3.2, we propose in this pa-

per to formulate the problem of mining hard samples in a

MCTS way. We associate to each leaf an image, and a pos-

itive reward if it contains false-positives. However, instead

of using the MCTS to eventually select a good child at the

root node, we keep track of the “good” samples to retrain

the classifier.

3. Method

For clarity, we first recall below the basics of multi-arm

bandits and Monte Carlo Tree Search. Then, in § 3.3, we

present how we adapt such strategies to bootstrapping.

3.1. Multi­armed bandit (MAB)

As explained in section 2.2, the selection of the next

child to visit is formulated as a MAB problem, that we now

describe using the analogy of a gambler in a casino. Given

a slot machine with K arms, at each iteration t ∈ J1, T K,

the player selects one arm and plays it. This generates a

reward following an unknown distribution described by θk
with support in [0, 1], and of unknown expectation µk. The

arm with the largest expectation is called optimal and is the

one that the player would play all the time, had he knew

it was optimal. The goal of the player is to maximize his

cumulative payoff, or equivalently, to minimize his cumu-

lative regret, that is the loss due to not playing the optimal

machine all the time. Lay and Robbins [24] proved that

the regret grows at least logarithmically with the number of

plays. Solving the MAB problem consists in finding a pol-

icy to select the next arm to pull given past observations and

to achieve a logarithmic regret.

Many algorithms have been proposed to select the best

arm at a given iteration [2]. Although the usual policy

used for the MAB in MCTS is UCB1, we will also present

Thompson sampling because the reward we aim at model-

ing – namely the proportion of false positives – is strongly

biased toward very small values which is inconsistent with

the standard assumptions justifying the use of UCB1.

Algorithm 2 Thompson Sampling [6]

1: D ← ∅
2: for t = 1 to T do

3: For each arm, draw θk ∼ P (θ|D) ∝ P (D|θ)P (θ)
4: Select arm kt = argmaxk E[Xk | θk]
5: Observe reward Xt from arm kt
6: D ← D ∪ (kt, Xt)
7: end for

3.1.1 Upper Confident Bound (UCB1)

The UCB1 [2] selects the arm maximizing

X̄k +

√

2 ln t

nk

,

where X̄k is the average reward of arm k (estimated from

the previous plays), nk the number of times arm k has been

played and t the total number of plays done so far. The

first term is the exploitation term and is larger for arms with

more rewards. The second term is the exploration term and

tends to be larger for less frequently pulled arms. As the

exploration term is a decreasing function of the time, the

beginning of the process is dominated by the exploration

term while the end of the process is driven by the exploita-

tion one. Asymptotically, only the best arms are pulled.

3.1.2 Thompson sampling for MAB (TS)

Thompson Sampling [31] was introduced to address the ex-

ploration/exploitation trade-off in a purely Bayesian man-

ner. It was applied recently for the MAB problem in [6],

and then proved to achieve a logarithmic regret [1]. The

idea of TS is to assume a prior distribution on the parame-

ter θk of the distribution of each arm, and at each iteration t,
to play the arm according to its posterior probability of be-

ing optimal, that is choosing the arm maximizing E[Xk|θk],
where θk is drawn from the posterior at each iteration.

The use of TS is motivated by the fact that it can explic-

itly embeds a model of the rewards with a long tail distri-

bution as opposed to UCB1 which are constrained to be in

[0, 1].
In this setup, the exploration phase occurs in the begin-

ning of the sequence when the posterior distributions are

not estimated with many observations, and as the number

of observations increases, the estimation of the posterior is

better, and as for UCB1, only the best arm is pulled asymp-

totically. Algorithms 1 and 2 summarize the selection of the

next arm for both presented strategies.

3.2. Monte Carlo Tree Search (MCTS)

In MCTS, the traversal of the tree is performed from top

to bottom. Starting from the root node, one iteration of

MCTS consists in associating a MAB on the children of the
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current node, selecting the best child (that is the one maxi-

mizing the score of MAB), and going further down with the

new selected node. When the policy reaches a leaf, a reward

is drawn from it.

If the MAB policy is UCB1 (§ 3.1.1), the child selected

is the one maximizing

X̄i +

√

2 ln p

ni

,

where p (resp. ni) is the number of times the current node

(resp. child i) has been visited.

If the MAB policy is based on TS (§ 3.1.2), the next child

is chosen by sampling according to its posterior probability,

based on the passed traversals of the current node.

The reward is then back-propagated and the statistics of

the nodes between the leaf and the root are updated (see

figure 3). The number of visits are incremented; for UCB1,

the mean of the nodes are recomputed given the outcome

of the simulation (win or loss) and for TS, the posterior is

updated for future draws.

The MCTS policy will asymptotically visit the best

branches that lead to more wins leaving unexpanded non

promising parts of the search space. The MCTS framework

seems therefore well suited for the task of mining hard sam-

ples in a large structured collection of images.

We next present how MCTS is ported to bootstrapping.

We define the rewards obtained at the leaves (i.e. in the im-

ages) after detecting false positives and how the tree is up-

dated to avoid going back to the same images twice.

3.3. MCTS Bootstrapping

3.3.1 Image dataset structure

As said in the introduction, image datasets inherently have

a hierarchical structure by the way images were collected,

and our procedure builds upon this structure (see figure 2).

In the top level, the children of the root corresponds to a

specific image dataset, such as Pascal, INRIA, or any image

directory available on one’s hard disk.

Further down the tree, nodes would correspond to sub-

parts of each datasets, such as the year for Pascal (2007,

2008, etc.) or the name of the semantic object contained in

the sub-directory for SUN (desert, abbey, etc.). Finally, at

the bottom of the tree, leaves are individual images.

When an image dataset comes with no explicit structure

(such as Microsoft Coco [25] or INRIA Person [10]), a pre-

clustering can be applied build sub-groups of visually sim-

ilar images, which correspond in practice to coarse seman-

tic categories of similar structural complexity (see § 4.2.2).

This is what is depicted by figure 2 below the “INRIA”

node, where images taken from the same place (city, for-

est, etc.) have a common ancestor.

3.3.2 Procedure

We now explain in detail how MCTS Bootstrapping works

to train an object detector. We assume we have this very

large structured database.

After training the initial detector with the collection of

positive samples and a collection of negative samples uni-

formly taken in the dataset, the detector is bootstrapped sev-

eral times by adding false detections.

We recall that in the traditional setting, the detector is

applied on random images from the dataset until finding

enough hard samples.

In MCTS Bootstrapping, the next image on which to ap-

ply the detector is chosen by traversing the tree from the

root in an MCTS fashion. A first MAB selects the dataset

from which the image will be chosen. Then a second MAB

selects from which sub-part of this dataset, etc., until even-

tually reaching an image. The detector is applied on it, the

hard samples (if any) are kept (that is receiving a reward)

and the outcome of the play is eventually back-propagated

up to the root by updating the various statistics of all the

nodes that were traversed. The image is marked as “ex-

hausted” not to be selected anymore in the future steps.

This process is then repeated to select another image,

this time based on the new updated statistics, until enough

hard samples are found. As hard samples are found, the

MCTS policy progressively concentrates its sampling on

more promising parts of the tree, hence dataset, that is on

sub-groups of images which are rich in hard samples.

Statistics are reset to 0 before beginning a new bootstrap-

ping phase because images that produced false positives in

previous rounds may no longer be informative.

3.3.3 Scores

As described in § 3.2, each node contains the number of

wins that were obtained after traversing it, and the number

of times it was traversed. We propose to adapt these scores

to our scheme of MCTS Bootstrapping. We also recall that

the rewards should be in the full range [0, 1] [2].

As the goal is to find false detections, the reward ob-

tained after applying the detector should be a function of

this amount h of hard samples in the image which was even-

tually selected. The first score that we can defined is

win =

{

1 if h > 0

0 otherwise.

This “win” score corresponds to the vanilla setup of the

MAB where the reward is either 0 or 1 (“did the player

win or not?”). The back-propagation rule to update the

score of node p with the scores of its children C(p) is

winp =
∑

c∈C(p) winc.
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However, the score should reflect the size of an image,

to leverage the fact that finding the same amount of false

detections in two images of different size does not have

the same (computational) cost. A natural score would be

d = h/S, where S is the number of times the detector is

evaluated in the image, which is proportional to its size in

pixels. d is thus the true density of false positives in the

image.

Preliminary experiments show that the true density does

not suit UCB1 policy because the rewards are small. A de-

tector can be evaluated ∼100, 000 times on a 640× 480 im-

age so finding 10 hard samples leads to a reward of 0.0001.

The exploration term dominates the small exploitation score

and there is no exploitation.

We thus normalize this score so that it ranges in [0, 1]
and finally, we define

d̃ = min

{

1,
1

2Z

h

S

}

,

where Z is the mean of the density of hard samples that

is estimated as the images are visited. The min ensures

that the score lies in [0, 1]. Basically, when the density of

hard samples is around the mean, the reward will be 0.5,

and when an image is rich in false positives (i.e. h/S much

larger than Z), the score will be close to 1. The score is

back-propagated with d̃p =
∑

c∈C(p) d̃c.

So each node i contains the number of times ni it was

visited (0 or 1 for an image), the number of wins wini (0 or

1 for an image), the number of hard samples hi found below

that node, and the number of times Si the detector was eval-

uated. In addition to that, a Boolean flag indicates if there

are still non-visited images below a node, thus avoiding go-

ing to “exhausted” branches.

Given the various scores, we define 3 different policies

for the MAB: two of them for UCB1 and one for TS.

3.3.4 MCTS-strategies

MCTS-UCB1-win (win) The first strategy is based on

UCB1 (§ 3.1.1) with the “win” score. At a given node p,

the next node to select among its children C(p) is the one

maximizing

winc

nc

+

√

2 ln p

nc

.

winc/nc is the average number of images in which at least

one hard sample was found. This score reflects the probabil-

ity of finding at least one hard sample in an image and cor-

responds to the simplest bandit scenario in which rewards

are either 0 or 1.

MCTS-UCB1-dense (dense) The second one is based on

the normalized density of hard samples and the next child
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Figure 4: Distribution of false positives (Left: bootstrap 2,

right: bootstrap 3)

to be selected is the node maximizing

d̃c
nc

+

√

2 ln p

nc

,

where d̃c is the normalized density of false positives as de-

scribed in 3.3.3.

In both UCB1 policies, the exploration score
√

2 ln p/nc

simply reflects time, just as in vanilla MCTS.

MCTS-Thompson-sampling (ts) For Thompson sam-

pling (§ 3.1.2) as described in [6], a model of the distri-

bution of the observations is required as well as a prior on

its parameter. As previously stated, TS does not require the

rewards to lie in [0, 1] so we here directly use the true den-

sity.

Some simple experiments (see figure 4) show that the

distribution of the density of false positives in images

has an exponential shape. We thus model the true den-

sity di of hard samples with an exponential distribution

p(D|λ) = λe−λx (with notations of algorithm 2, θ = λ).

If we use the conjugate prior of the exponential distribu-

tion, that is the Gamma prior Γ(α, β), then the posterior is

also a Gamma distribution with parameter α′ = α+ ni and

β′ = β + di, with ni being the number of times node i was

visited and di = hi/Si the true density of hard samples.

So at a given node p with children C(p), the MCTS Boot-

strapping based on TS selects the next child by:

1. Drawing λc from Γ(α+ nc, β + dc),
2. Selecting argminc λc (the expectation of

an exponential distribution is 1/λ, so

argmaxc E[Xc|λc] = argminc λc).

We now compare these three strategies to the traditional

uniform bootstrapping.

4. Experiments

We present the results of our experiments to train a face

detector and a pedestrian detector with a large dataset of

images. We show that our MCTS-based bootstrapping ap-

proach is able to leverage the tree structure of the dataset

to efficiently find hard samples. We will make our code

publicly available at the time of publication to allow the re-

production of the experiments.
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4.1. Detectors

The ACF detector [13] belongs to the state-of-the-art

detectors for pedestrian detection [34] and face detec-

tion [26, 36]. It consists of a series of channels which are

combined with boosted small depth trees. We used in part

the implementation provided by the original author [12].

The DPM [16] also reaches state-of-the-art performance

for face detection [26, 35] and we used the Fourier-based

implementation of [15].

4.2. Image datasets with a tree structure

4.2.1 CaltechPedestrians

The pedestrian detector is trained on the CaltechPedestri-

ans dataset [14] as described in [34, 12] by using 24, 498
positive examples and 3 rounds of bootstrapping each time

adding 25, 000 hard samples. The structure of the tree is

pretty straight forward because of the temporal structure

of the dataset. The sequences (set00-V000, set00-V001,

etc.) are at the top of the tree while the images are arranged

chronologically at the bottom of the tree.

4.2.2 Face-free images

The face detector ACF (resp. DPM) is trained with 15, 000
(resp. 7, 000) images of faces from AFLW [23] and we

use a collection of 102, 230 background (face-free) images.

We have used 7, 537 images from Pascal and 24, 685 from

Microsoft Coco [25]. In addition to that, we have down-

loaded images from Flickr using keywords which a priori

are useful to train a face detector (animal, trees, etc.) or use-

less (sky, desert, landscape, etc.). On average, we collected

3, 000 images of these categories.

The structure of the tree is obvious for “keyword” im-

ages: images of desert, trees or animals will each make a

node (see figure 2). As for Coco and Pascal, there is no in-

herited structure. To make one, we perform a pre-clustering

of these datasets: We make a 48×64 thumbnail of each im-

age, compute its features (gradient or GIST) and recursively

perform a k-mean clustering.

4.3. Results

MCTS Bootstrapping is faster than the traditional uni-

form approach because it is able to concentrate its search

for hard samples on promising parts of the dataset.

We present our results by looking at the number of im-

ages required to find the targeted number of hard samples.

For the ACF detector, averaged computing times estimated

on 40, 000 images give 0.047s for computing the features

and 0.011s for evaluating the detector per image. The

Fourier-based DPM on 640× 480 images requires 0.041s

to compute the HOG features and 0.1s to do the convolu-

tions. This justifies the use of the number of images instead

Nb images visited AP

Strategy Boot1 Boot2 Boot3 Pascal AFW

uniform* 130 1609 10377 84.4 95.3

win 126 1213 7811 84.0 95.4

win-grad 135 1164 5083 83.0 95.4

win-gist 128 1015 4828 83.8 95.1

win-shuf 132 1516 10035 84.0 95.4

dense 117 1271 7955 84.0 95.2

dense-grad* 122 1100 6359 84.2 95.5

dense-gist 115 880 5376 84.0 95.2

dense-shuf 137 1528 9931 84.1 95.6

ts 107 1172 6627 84.1 95.3

ts-grad* 106 919 5515 84.0 95.4

ts-gist 97 886 5123 83.8 95.3

ts-shuf 139 1496 9969 84.4 95.6

Table 1: Number of images visited (normalized to

640× 480) for each strategy to train an ACF face detec-

tor with 3 bootstrapping steps (averaged over 10 runs). The

performance on Pascal Faces and AFW is the average preci-

sion (AP). The *s indicate which strategies are also depicted

in figure 1.

Nb images visited Miss rate @ fppi

Strategy Boot1 Boot2 Boot3 0.01 0.1 1

uniform 568 2143 13767 0.46 0.29 0.16

win 563 2132 8885 0.46 0.30 0.16

dense 536 1843 7683 0.49 0.31 0.17

ts 509 1874 8625 0.48 0.31 0.17

Table 2: Number of images visited to train an ACF pedes-

trian detector (averaged over 10 runs). The temporal struc-

ture of the video was kept to build the tree. The performance

on the CaltechPedestrians test set is the miss rate at a given

number of false positive per image (fppi).

of the number of evaluation of the detector as a reference.

4.3.1 Reduction of the number of visited images

The main performance measure for the proposed methods,

that is the number of images to visit to collect a required

number of hard samples, is presented in tables 1 and 2. Our

MCTS-based methods need roughly half as many images

than the traditional uniform approach, without hurting the

performance of the resulting trained detector (last columns).

The top plot of figure 1 summarizes table 1 by showing

the cumulated number of images required to train an ACF-

face detector. Regarding DPM, we only present the cumu-

lated number of images on the bottom plot of figure 1 for

space consideration. For all re-labeling steps of the positive

examples, MCTS strategies require half as many images as

the uniform approach.
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(b) MCTS-UCB1-dense (dense-clust)
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Figure 5: These plots show how often the datasets are visited by the procedure during the second bootstrapping step to collect

5, 000 hard samples with the ACF detector. The uniform method selects a dataset proportionally to the number of images in

the set (to be uniform over the entire dataset) and requires more than 2, 500 images to find enough false positives (x axis cut).

Our MCTS bootstrapping approaches identify the most promising datasets (Coco, Pascal, animals) while leaving the less

interesting (sky, fingerprints, etc.). Note that “coco-plane” contains many images of plane/bird on blue sky (i.e. less dense in

hard samples), so within a (structured) dataset, MCTS is also able to discard sub-branches and visit it less often.

4.3.2 Behavior of the sampling

Figure 5 shows how often the datasets are visited over time

when training an ACF-face detector. The uniform approach

selects images uniformly in the whole dataset, that is pro-

portionally to the number of images in each sub-sets. The

Pascal dataset is more visited because it contains 7, 537 im-

ages while the other sets have around 3, 000. Each dataset

is visited linearly with time. Unsurprisingly the MCTS

approaches identify the datasets Pascal, Coco, animals or

stairs are being rich in hard samples and visit them more

often. Datasets of sky, desert of fingerprints are quickly

identified as being useless. The speed-up is therefore due to

the identification of good branches of the dataset.

When MCTS methods are applied on a pre-clustered

dataset (suffix “clust” and “gist” in table 1) the speed-up

is even more than on non-clustered dataset. This is due to

the fact that in Coco and Pascal sets, the pre-clustering put

uninformative images in the same clusters such as planes

over a blue sky or landscapes. MCTS thus identifies unin-

formative sub-branches. We did not use this pre-clustering

step on CaltechPedestrians because the temporal structure

is consistent in itself. MCTS on a shuffled data-set (suffix

“shuf”) performs as poorly as the uniform approach.

Figure 6 shows how many times a sequence of Caltech-

Pedestrians was selected as a function of its average number

of hard samples. One point is a sequence. Sequences with

few hard samples (left part of x-axis) are less visited, while

sequences with more hard samples are visited more often

(right part). MCTS methods have concentrated their sam-

pling on rich sequences hence the speed-up.

5. Conclusion

We propose a novel approach to collect hard negatives

from large databases of images. Instead of visiting images

in a uniform and unstructured manner, we use a hierarchical
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Figure 6: All sequences are equally visited by the uni-

form approach whereas richer sequences in hard samples

are much more selected by the bandit based strategies.

structure that goes from the level of collections of databases

down to the individual images, and to leverage that archi-

tecture with a bandit-base exploration strategy. This for-

mulation ensures a proper scalability by relying on sound

procedures for balancing exploration and exploitation.

Experiments on a collection of more than 100, 000 im-

ages show that this approach properly concentrates compu-

tation on “good images” and reduces the number of samples

to visit to find the same amount of false positives by a factor

of two for 2 types of detectors, ACF and DPM.

MCTS is well suited to concentrate properly compu-

tational resources on large databases for machine learn-

ing at large. It could be combined with active learning,

or extended to other tasks where the availability of hand-

provided labels is not critical, for instance large-scale unsu-

pervised feature learning.
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