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Abstract

We study the problem of online prediction for realtime

camera planning, where the goal is to predict smooth trajec-

tories that correctly track and frame objects of interest (e.g.,

players in a basketball game). The conventional approach

for training predictors does not directly consider temporal

consistency, and often produces undesirable jitter. Although

post-hoc smoothing (e.g., via a Kalman filter) can mitigate

this issue to some degree, it is not ideal due to overly strin-

gent modeling assumptions (e.g., Gaussian noise). We pro-

pose a recurrent decision tree framework that can directly

incorporate temporal consistency into a data-driven pre-

dictor, as well as a learning algorithm that can efficiently

learn such temporally smooth models. Our approach does

not require any post-processing, making online smooth pre-

dictions much easier to generate when the noise model is

unknown. We apply our approach to sports broadcasting:

given noisy player detections, we learn where the camera

should look based on human demonstrations. Our exper-

iments exhibit significant improvements over conventional

baselines and showcase the practicality of our approach.

1. Introduction

We investigate the problem of determining where a cam-

era should look when broadcasting a team sporting event,

such as basketball or soccer (see Fig. 1). Realtime camera

planning shares many similarities with online object track-

ing: in both cases, the algorithm must constantly revise an

estimated target position as new evidence is acquired. Noise

and other ambiguities can cause non-ideal jittery trajecto-

ries, which in camera planning lead to unaesthetic results

(see Fig. 2). In contrast to object tracking, smoothness is of

paramount importance in camera control: fluid movements

that maintain adequate framing are preferable to erratic mo-

tions that constantly pursue perfect composition.

Non-parametric or model-free estimation methods, such

as random forests [10], are very popular because they can

learn (almost) arbitrary predictors directly from training

Figure 1. Camera Planning. The goal is to predict the pan angle

for a broadcast camera based on noisy player detections. Con-

sider two planning algorithms (the blue and red curves) which

both make the same mistake at time A but recover to a good fram-

ing by C (the ideal camera trajectory is shown in black). The blue

solution quickly corrects by time B using a jerky motion, whereas

the red curve conducts a gradual correction. Although the red

curve has a larger discrepancy with the ideal motion curve, its

velocity characteristics are most similar to the ideal motion path.

data. When applied to smooth trajectory prediction, the esti-

mator is often learned within a time-independent paradigm,

with temporal regularization integrated afterwards as a post-

processing stage (e.g., via a Kalman filter) [28, 30]. One

major limitation of this two-stage approach for camera plan-

ning is that the smoothing is done in a context-independent

way, which can lead to uninformed tradeoffs between accu-

racy and smoothness (see Fig. 1).

In this paper, we propose a recurrent decision tree frame-

work that can make predictions conditioned on its own pre-

vious predictions, which allows it to learn temporal patterns

within the data (in addition to any direct feature-based re-

lationships). However, this recursive formulation (similar

to reinforcement learning [31]) makes the learning problem

much more challenging compared to the time-independent

approach. We develop a learning algorithm based on the

“search and learn” (SEARN) approach [12] to efficiently

converge to a stable recurrent model.

We applied our approach to autonomous camera control

in sports, where the goal is to generate smooth camera mo-

tion that imitates a human expert. We provide both quan-

titative and qualitative evidence showing our approach sig-

nificantly outperforms several strong baselines.
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2. Related work

Sequential Supervised Learning Sequential supervised

learning is broadly applied in many domains, including nat-

ural language processing tasks such as part-of-speech tag-

ging [9] and computational biology tasks such as protein

alignment [32]. Unlike standard supervised learning, se-

quential supervised learning operates on sequences: each

training example pxi,yiq is a sequence of features xi “
〈xi,1, xi,2, . . . , xi,Ti

〉 and a corresponding sequence of la-

bels yi “ 〈yi,1, yi,2, . . . , yi,Ti
〉. The learned predictor out-

puts a sequence of labels for an input sequence of features.

Our setting is distinguished from conventional sequential

learning because we must learn an online predictor. In other

words, conventional sequential learning typically assumes

access to all of x before predicting y [1, 9, 13, 23, 24, 32].

Our setting is further distinguished from most previous se-

quential prediction work by aiming to learn model-free or

non-parametric predictors. For instance, the bulk of previ-

ous work utilize linear predictors and thus require a well-

specified feature representation [1, 9, 24, 32].

One approach for utilizing arbitrary predictors is via a

sliding window [13, 14, 23], in which any supervised learn-

ing method can be used to learn the sliding window predic-

tor. However, if the predictor is defined recurrently (i.e., it

depends on its previous predictions), then it is not obvious

what values to use for previous predictions when generat-

ing supervised training examples. One way to address this

issue is via “stacked” sequential learning [8, 28, 30], which

is essentially the two-stage approach of first training a non-

recurrent predictor, and then employing recurrent smooth-

ing (e.g., a hidden Markov model or Kalman filter).

Our approach instead directly trains a predictor to make

good predictions given previous predictions, which leads

to a “chicken and egg” problem of how to define a train-

ing set that depends on the predictions of the model to be

trained. We employ a learning reduction approach, based

on SEARN [12], that iteratively constructs a sequence of

supervised training sets such that the resulting sequence of

predictors efficiently converges to a stable recurrent pre-

dictor. Other learning reduction approaches for sequential

learning include DAgger [29], which can be more efficient

in the number of iterations needed to converge, but with

each iteration being more computationally expensive.

Camera Planning Algorithms for determining where a

camera should look have been investigated for a variety

of scenarios from scripted cooking shows and college lec-

tures to team sports [5, 22]. It is widely accepted that a

smoothly moving camera is critical for generating aesthetic

video [16]. One approach is post-processing to regulate the

sequential predictions, which leads to a trade-off between

smoothness and responsiveness [6]. Alternatively, offline

batch processes [19] can be used if there is not an online re-

Figure 2. Jitter and Overshooting Artifact. (a) A plan generated

by [6] includes a sudden direction change (green dashed box) and

jitter. (b) Post-processing independent predictions with a Kalman

filter reduces jitter but causes over shooting (black dashed box).

quirement. Significant filtering constrains the motion of the

camera, making it unable to track fast moving objects [26].

Other approaches can offer more refined control but first re-

quire users to select the main features of interest [17].

Camera Motion Models Camera motion is well-studied

in the context of stabilization. Liu et al. [26] used a low-pass

filter to create constant angular velocity motions for video

stabilization. The rotation component was filtered by lin-

earizing the rotation space using derivatives with respect to

time to obtain angular velocities [25]. The method was ex-

tended to polynomial eigen-trajectories for subspace video

stabilization [27]. In contrast, we are interested in the prob-

lem of camera planning. In other words, rather than trying

to reconstruct a stable camera trajectory from existing tra-

jectories, our goal is to plan a brand new trajectory.

3. Problem Setup

Let dx denote a distribution of input sequences: x “
xx1, . . . , xT y „ dx. In camera planning, x can be a se-

quence of (noisy) detected player locations from stationary

cameras. For clarity, we assume each sequence has the same

length T , but in general T can vary and/or be unknown.

Let Π denote a class of policies that our learner is con-

sidering. Given a stream of inputs x “ xx1, . . . , xT y, each

π P Π generates a stream of outputs y “ xy1, . . . , yT y. In

camera planning, y can be a sequence of pan angles of the

broadcast camera. Section 4 describes our recurrent deci-

sion tree framework that instantiates Π in our experiments.

Operationally, each π is a streaming predictor that takes

a state st “ txt, . . . xt´τ , yt´1, . . . , yt´τu composed of the

recent inputs and predictions, and generates a new predic-

tion yt “ πpstq. Note that the next state st`1 depends only

on the new input xt`1, the current state st, and the current

prediction yt. Hence, for any input sequence x, π equiva-

lently generates a state sequence s “ xs1, . . . , sT y. We also

abuse notation to say that y “ πpxq denotes the sequence

of predictions y generated by streaming x into π (with the

construction of the state sequence s being implicit).

For any policy π P Π, let dπt denote the distribution

of states at time t if π is executed for the first t ´ 1 time
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steps (dπt is defined exactly by dx and π). Furthermore, let

dπ “ 1

T

řT

t“1
dπt be the average distribution of states if we

follow π for all T steps. The goal of the learner is to find

a policy π̂ P Π that minimizes the imitation loss under its

own induced distribution of states:

π̂ “ argmin
πPΠ

Es„dπ
rℓps, π, π˚qs . (1)

Since our goal is to learn a policy π that both imitates the

(human) expert π˚ and is also smooth, we decompose our

loss function into precision and smoothness components:

ℓps, π, π˚q “ ℓ˚ps, π, π˚q ` ωℓRps, πq, (2)

where ℓ˚ measures how well πpsq agrees with π˚psq, and

ℓR measures how smooth the prediction of πpsq is relative

to the current state s, with ω ě 0 controlling the trade-off

between the two. The precision error ℓ˚ is typically the

squared deviation: ℓ˚ps, π, π˚q “ }π˚psq ´ πpsq}2.

A standard way to instantiate the smoothness error ℓR
is via the squared deviation of the velocity: ℓRps, πq “
}vpsq ´ vpπpsqq}2, where vpsq denotes the velocity in state

s, which can be computed from the information encoded in

s. One can thus interpret the smoothness error as encourag-

ing the curvature of the predicted trajectories to be low.

We assume the agnostic setting, where the minimizer

of (1) does not necessarily achieve 0 loss (i.e., we cannot

perfectly imitate the human expert). In practice, we ap-

proximate the expectation in (1) with a finite sample (e.g.,

a training set of basketball gameplay sequences), and also

solve (1) via alternating minimization: collect training data

according to current π̂, and then train a new π̂ using that

training data (see Section 5 for more details).

Discussion and Interpretation. By utilizing a recurrent

policy class Π, such as our recurrent decision tree frame-

work (see Section 4), the learner is able to reason about

inherent temporal relationships. For instance, suppose the

learner incorrectly predicted a previous value (see Fig. 1).

Then the learner could make a drastic correction (blue line)

to minimize the discrepancy as quickly as possible, which

might result in unaesthetic high-frequency camera motion.

Instead, a more gradual correction (red line) may better

trade off between instantaneous error and smooth motion.

Estimating the best π̂ is challenging due to its depen-

dence on its own previous predictions. Most notably, this

recurrent relationship makes it nontrivial to extract a set of

independent training examples to use with conventional su-

pervised learning. This issue is formally highlighted in the

learning objective (1), where the distribution that the loss is

evaluated over is induced by the policy under consideration.

In other words, the distribution dπ that the loss is evaluated

on in (1) depends on the π being considered, which leads

to complicated learning problem since conventional super-

vised learning assumes that distribution is fixed.

One straightforward approach is to approximate dπ in (1)

using the distribution of states, dπ˚ , that the human expert

π˚ induces on dx, and then select the π̂ P Π to minimize:

π̂ “ argmin
πPΠ

Es„d
π˚

rℓps, π, π˚qs . (3)

Note that (3) is easy to evaluate since the expectation is over

dπ˚ and does not depend on the policy π under considera-

tion.1 However, as soon as the behavior of π̂ deviates from

π˚, then the distribution of states experienced by π̂ will dif-

fer from π˚, and thus optimizing (3) will not be aligned with

optimizing (1).2 We show in Section 5 how to address this

distribution mismatch problem via an alternating minimiza-

tion approach that efficiently converges to a stable solution.

4. Recurrent Decision Tree Framework

Decision trees are amongst the best performing learn-

ing approaches, and are popular whenever a non-parametric

predictor is desirable [10, 14, 23]. We propose a recurrent

extension, where the prediction at the leaf node is not nec-

essarily constant, but rather is a (smooth) function of both

static leaf node prediction and previous predictions from the

tree. For simplicity, we present our framework using a sin-

gle decision tree, although our approach extends trivially to

ensemble methods such as random forests [3, 10].

A decision tree specifies a partitioning of the input

space (i.e, the space of all possible states s). Let D “
tpsm, y˚

mquMm“1
denote a training set of state/target pairs.

Conventional regression tree learning aims to learn a parti-

tioning such that each leaf node, denoted by node, makes

a constant prediction to minimize the squared loss:

ȳnode “ argmin
y

ÿ

ps,y˚qPDnode

py˚ ´ yq2, (4)

where Dnode denotes the training data from D that has par-

titioned into the leaf node. The solution to (4) is:

ȳnode “
1

sizepDnodeq

ÿ

ps,y˚qPDnode

y˚ (5)

One typically trains via greedy top-down induction [10],

which is an iterative process that repeatly chooses a leaf

node to be split based on a binary query of the input state s.

The above formulation (4) can be viewed as the simplest

version of our recurrent decision tree framework. In partic-

ular, the decision tree is allowed to branch on the input state

1In practice, optimizing (3) reduces to a standard supervised learning

scenario. One simply collects the decisions made by the human expert π˚

to use as a static training set, and then choose the π̂ P Π that agrees most

with π˚ on the states induced by π˚.
2One simplified interpretation is that training on (3) does not teach the

predictor how to recover from its own mistakes.
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s, which, as discussed in Section 3, includes the previous

predictions ty´1, . . . , y´τu. Thus, decision trees that mini-

mize (4) form a valid recurrent policy class, and can be used

to instantiate Π. In the following, we will describe a more

general class of recurrent decision trees that enforce more

explicit smoothness requirements.

Note that recurrent neural networks (RNNs) [2] impose

a slightly different notion of “recurrent” than our approach.

Whereas our approach is only recurrently defined with re-

spect to the previous predictions of our approach, RNNs are

recurrently defined with respect to the previous hidden unit

activations and (or) previous predictions.

4.1. Jointly Capturing Dynamics and Control

Let fπpy´1, . . . , y´τ q denote an autoregressor of the

temporal dynamics of π over the distribution of input se-

quences dx, while ignoring the exogenous inputs x. In other

words, at time step t, fπ predicts the behavior yt ” πpstq
given only yt´1, . . . , yt´τ . Typically, fπ is selected from a

class of autoregressors F (e.g., smooth autoregressors). For

our experiments, we use regularized linear autoregressors

as F , although one could also use more complex functions

(e.g., based on Kalman filters). See the supplemental mate-

rial for more details on linear autoregressors.

We now present a policy class Π of recurrent decision

trees π that make smoothed predictions by regularizing to

be close to its autoregressor fπ . For any tree/policy π, each

leaf node is associated with a “control” or “target” signal

ȳnode such that the prediction ŷ given input state s is:

ŷ ” πpsq ” argmin
y

py ´ ȳnodepsqq2 ` λpy ´ fπpsqq2, (6)

where nodepsq denotes the leaf node of the decision tree

that s branches to, and λ ě 0 trades off between ŷ matching

the target signal ȳnodepsq versus the smooth autoregressor

fπpsq. The closed-form solution to (6) is:

ŷpsq “
ȳnodepsq ` λfπpsq

1 ` λ
. (7)

Compared to just predicting ŷ ” ȳnodepsq, the prediction in

(6) varies much more smoothly with s, since ŷ is now an

interpolation between the target signal ȳnodepsq and smooth

extrapolation fπpsq from previous predictions.

Training requires estimating both the autoregressor fπ
and the decision tree of target signals ȳnode. In practice,

given training data D, we perform greedy training by first

estimating fπ on D (which ignores the exogenous inputs

x),3 and then estimating the decision tree of target signals

to “course correct” fπ . Given a fixed fπ and decision tree

3Intuitively, if we train fπ on D, then the state distribution of D should

be similar to the state distribution that will be induced by the resulting

trained π. We address this point further in Section 5.

structure, one can set ȳnode as:

ȳnode “ argmin
y

ÿ

ps,y˚qPDnode

py˚ ´ ŷps|yqq2, (8)

for ŷps|yq defined as in (7) with y ” ȳnodepsq. Similar to
(5), we can write the closed-form solution of (8) as:

ȳnode “
1

sizepDnodeq

ÿ

ps,y˚qPDnode

`

p1 ` λqy˚ ´ λfπpsq
˘

. (9)

Note that when λ “ 0, then the autoregressor has no influ-

ence, and (9) reduces to (5). Note also that (8) is a simplified

setting that only looks at imitation loss ℓ˚, but not smooth-

ness loss ℓR. We refer to the supplemental material for more

details regarding our full training procedure.

One can interpret our recurrent decision tree framework

as holistically integrating model-based temporal dynamics

f with model-free control ȳnode. The target signal ȳnode
can thus focus on generating “course corrections” of the

smooth temporal dynamics imposed by f . In practice, the

target signal ȳnode can also be set using an ensemble such

as random forests [3, 10, 18], or regression trees that pre-

dict piecewise-linear variables in the leaf nodes [15]. In this

way, our framework is completely complementary with pre-

vious work on learning smoother regression tree predictors.

Extensions. One could also define the predictions y as ve-

locity rather than absolute coordinates, which coupled with

the current state s, will encode the absolute coordinates.

Such an approach would be desirable if one wants to do per-

form autoregressor regularization in the velocity domain.

Another extension is to replace the L2 autoregression

penalty in (8) with an L1 penalty. With an L1 penalty, small

target signals would not deviate the prediction from the au-

toregressor, thus making the temporal curvature potentially

piecewise linear (which may be desirable). However, the

non-smooth nature of L1 regularization would make the

prediction more sensitive to the choice of λ.

5. Iterative Training Procedure

In general, it can be difficult to exactly solve (1) due to

the circular dependency between the distribution of states

and the policy under consideration. One meta-learning ap-

proach is to alternate between estimating dπ over a fixed π,

and optimizing π over a fixed dπ . At a high level, this can

be described as:

1. Start with some initial policy π̂0

2. At the i-th iteration, use the previously estimated poli-

cies π̂0, . . . , π̂i´1 to construct a new distribution di

3. Estimate the best policy π̂i via:

π̂i “ argmin
πPΠ

Es„di
rℓips, π, π

˚qs . (10)
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Note that the loss function ℓi need not be the original

loss function, but simply needs to converge to it.

4. Repeat from Step 2 with i Ð i ` 1 until some termi-

nation condition is met.

One typically initializes using the human expert π̂0 “
π˚, which we have demonstrations for in the training set

(i.e., π˚ is memorized on the training set). The estimation

problem in (10) can be solved via standard supervised learn-

ing (see the supplemental material for how we solve (10) for

our recurrent decision tree framework). It remains to decide

how to construct a stable and converging sequence of distri-

butions di. For instance, it is known that simply choosing

di “ dπ̂i´1
does not guarantee stable behavior [12, 29].

We build upon the SEARN approach [12] to iteratively

construct a stable sequence of distributions di for training

each π̂i. Algorithm 1 describes our approach, which is a

meta-learning approach that can be applied to other policy

classes beyond our recurrent decision tree framework (i.e.,

by using a different implementation of Learn). Note also

that we approximate each state distribution di using a finite

empirical sample S̃i — i.e., S̃i is constructed from the given

input sequences X and the predictions iteration i, Ỹi.

Algorithm 1 is an instance of the alternating procedure

described above. Given a state distribution di, the training

problem is a straightforward supervised learning problem

(Line 7). Note that the iteration-specific loss ℓi is simply

the original loss ℓ using a (potentially) modified imitation

target Y˚
i that converges to the original Y (Line 6).

The key innovation of SEARN [12] is that the new dis-

tribution di should be induced by an exponentially decay-

ing interpolation between every π̂0, . . . , π̂i´1. In practice,

we found it more convenient to interpolate the trajectories

Ŷ0, . . . , Ŷi´1 (Line 10), which leads to a set of trajectories

Ỹi that can be combined with the input X to form an empir-

ical sample of states S̃i to approximate di (Line 5). Because

of this interpolation, the sequence of distributions di will

converge in a stable way (see [12] for a rigorous analysis

of the convergence behavior). This stable behavior is espe-

cially important considering our greedy training procedure

for our recurrent decision tree framework: if the resulting π̂i

has a very different behavior from the training distribution

di, then fπ̂i
will not be a good autoregressor of π̂i.

5.1. Implementation Details

Choosing β. A straightforward choice of interpolation

parameter is to set β to a small constant (close to 0) to

ensure that the new distribution di stays close to the pre-

vious distribution di´1, which is the original approach of

SEARN [12]. One drawback of this conservative approach

is slower convergence rate, especially when the learner

needs to quickly move away from a bad policy π̂i.

We can also adaptively select β based on relative empir-

ical loss of learned policies (Line 9 of Algorithm 1). Let

Algorithm 1 Iterative Training Procedure

Input: input sequences X

Input: expert demonstrations Y for X

Input: autoregression function class F

Input: history time horizon τ for generating states //see Section 3

Input: βp. . .q //distribution drift step size

1: Initialize S̃0 Ð state sequences defined by Y and X

2: π0 Ð LearnpS̃0,Yq.

3: Initialize Ỹ1 Ð tπ0pxq|x P Xu //initialize exploration

4: for i “ 1, . . . , N do

5: S̃i Ð state sequences defined by Ỹi and X

6: Y˚
i Ð expert feedback on each s̃ P S̃i //see Section 5.1

7: π̂i Ð LearnpS̃i,Y˚
i q //minimizing (10)

8: Ŷi Ð tπ̂ipxq|x P Xu //roll-out π̂i

9: β̂i Ð βperrorpŶiq,errorpỸiqq //see Section 5.1

10: Ỹi`1 Ð β̂iŶi ` p1 ´ β̂iqỸi //distribution interpolation

11: end for

12: return π̂ P tπ̂1, . . . , π̂Nu with best validation performance

errorpŶiq and errorpỸiq denote the loss (2) of rolled-

out trajectories Ŷi, Ỹi, respectively, with respect to ground

truth Y. We can then set β as:

β̂i “
errorpỸiq

errorpŶiq ` errorpỸiq
. (11)

This adaptive selection of β encourages the learner to dis-

regard bad policies when interpolating, thus allowing fast

convergence to a good policy.

Choosing Y˚. Intuitively, whenever the current policy π̂i

makes a mistake, the expert feedback y˚ should recommend

smooth corrections (e.g., follow the red line in Figure 1). In

many cases, it suffices to simply use the original expert tra-

jectories Y˚
i Ð Y. However, when Ỹi differs substantially

from Y, especially during early iterations, it can be benefi-

cial to use “smoothed” expert feedback Y˚
i in place of Y.

Specifically, each step along Y˚
i is computed to be a

gradual 1-step correction of Ỹi towards Y, which will grad-

ually converge to Y in later iterations. It is not strictly nec-

essary, as our recurrent decision tree framework can offset

non-smooth corrections by enforcing a larger regularization

parameter λ (trading higher smoothness for lower imita-

tion accuracy, cf. 8). Generally however, given the same

smoothness weight λ, smoothed expert feedback leads to

more stable learning. One simple way to provide smoothed

Y˚
i is to reduce the distance ratio py˚ ´ yq{pỹ ´ yq by a

small decaying rate: y˚ “ y ` e´ηpỹ ´ yq.

6. Experiments

We evaluate our approach automated broadcasting for

basketball and soccer (see Fig. 3). A high-school basketball

match was recorded using two cameras: one near the ceiling
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Figure 3. Features and Labels. (a) player detections, (b)

pan/tilt/zoom parameters, and (c) spherical quantization scheme

for generating features.

for player detection, and one at ground level for broadcast-

ing (operated by a human expert). The videos were syn-

chronized at 60fps. ‘Timeouts’ were manually removed, re-

sulting in 32 minutes of ‘in-play’ data divided into roughly

50 segments (each about 40 seconds long), with two held

out for validation and testing.

A semi-professional soccer match was recorded using

three cameras: two near the flood lights for player detec-

tion, and a robotic PTZ located at mid-field remotely oper-

ated by a human expert. The videos were synchronized at

60 fps. About 91 minutes was used for training, and two 2

minute sequences were held out for validation and testing.

Features The ground locations of players were deter-

mined from 3D geometric primitives which best justified

the background subtraction results [4]. Each ground po-

sition was projected to a spherical coordinate system cen-

tered and aligned with the broadcast camera. Because the

number of detections varies due to clutter and occlusions,

a fixed length feature vector was constructed using spatial

frequency counts. The surface of the sphere was quantized

at three resolutions (1 ˆ 2, 1 ˆ 4, and 1 ˆ 8) resulting in a

14 dimensional feature vector xt [6].

Labels Pan/tilt/zoom parameters are estimated for each

frame of the broadcast video by matching detected SIFT

key points to a collection of manually calibrated reference

frames in a similar fashion to [20]. The homography be-

tween the current frame and the best match in the database

of reference images is estimated, from which the camera’s

pan-tilt-zoom settings are extracted. Because the tilt and

zoom of the broadcast camera do not vary significantly over

the dataset, our experiments only focus on building an esti-

mator for online prediction of pan angles.

6.1. Baselines

Savitzky-Golay. [6] learns a predictor using a random for-

est trained using only current player locations. A Savitzky-

Golay (SG) filter smooths the predictions, but induces a de-

lay. Our implementation of this method augments the cur-

rent player locations with previous player locations. This

modification makes the instantaneous predictions more re-

liable, as the predictor has more temporal information.

Kalman Filter. We replace the Savitzky-Golay filter with

a Kalman filter employing a constant velocity process

model. Parameters were determined through validation (see

supplemental material).

Dual Kalman Filter. A dual Kalman filter [21] simulta-

neously estimates the unknown state of the system, as well

as its process matrix. Similar to our formulation, we as-

sume the system adheres to an autoregressive model. This

method then applies two Kalman filters in parallel: one to

estimate the coefficients of the autoregressive function, and

a second to estimate the trajectory of the camera, based on

the current estimate of the autoregressive model. Again, pa-

rameters were tuned through validation.

Conditional Regression Forests. Conditional regression

forests (CRFs) [11] split the training data into multiple sub-

sets. We tested various splitting methods based on camera

position and velocity, such as dividing the data into 4, 8 and

16 subsets of pan angle. We also tried both disjoint sets and

joint sets with different overlap ratios. We report the best

result from 8 subsets with 50% overlap. The output of the

CRF is further smoothed by a SG filter.

Filter Forests. Filter forests (FF) [15] is an efficient dis-

criminative approach for predicting continuous variables

given a signal. FF can learn the optimal filtering kernels

to smooth temporal signals. Our implementation includes

some adaptations, such as limited candidate window sizes,

to improve the performance on our datasets.

6.2. Benchmark Experiments

Fig. 4 shows the benchmark performance evaluated for

both basketball and soccer. We evaluate using joint loss (2)

with ω “ 500. The precision and smoothness losses are

plotted separately to illustrate their relative contributions to

the joint loss. For both settings, we see that our approach

achieves the best performance, with the performance gap

being especially pronounced in basketball.

We note that the soccer setting is significantly more chal-

lenging than basketball, and no method performs particu-

larly well for soccer. One possible explanation is that soccer

camera planning using only player detections is unreliable

due to players not following the ball (unlike in basketball).

A visual inspection of the generated videos also suggests

that lack of ball tracking in the input signal x is a significant

limitation in the soccer setting.

We also observe that our approach achieves very low

smoothness loss, despite not utilizing a post-processing

smoothing step (see Table 1 for a summary description of
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Figure 4. Prediction loss. (a) Basketball; (b) Soccer. Loss mea-

sured by (2). Our method achieves the lowest overall loss.

Method Noise Model Post-Smooth Delay

SG & CRF high-freq required Yes

KF & Dual KF Gaussian required No

FF self-learned not-required No

Ours self-learned not-required No

Table 1. Qualitative comparison. Both our method and FF [15]

learn noise model from the data, do not require post-processing

and achieve real-time response. However, our model requires less

data and is efficient for both training and testing.

the different approaches). For instance, in the basketball

setting, our approach actually achieves the smoothest per-

formance. In fact, for the basketball setting, our approach

dominates all baselines in both imitation loss and smooth-

ness loss. The KF and FF baselines tend to achieve compet-

itive smoothness loss, but can suffer substantial imitation

loss. For soccer, the SG and CRF baselines achieve lower

imitation loss, suggesting that they might be better able to

track the action. However, they suffer from substantial jitter.

6.3. Visual Inspection

Figs. 5 and 6 show a visualization of the predictions.

From this visual inspection, we can verify qualitatively

that our method achieves the best balance of precision and

smoothness. Our predicted trajectory remains close to the

human operator’s trajectory and has less jitter than the other

methods. Even with post-smoothing, SG and CRF exhibit

significant jitter. KF struggles between jitter and over shoot-

ing when the noise is not Gaussian. Surprisingly, dual KF

performance is worse than KF, which is again presumably

because the noise is not Gaussian, and errors in the pro-

cess estimation propagate to the state estimation (see sup-

plemental material). FF is very competitive in the basket-

ball dataset, but its performance suffers from large jitter in

the more challenging soccer dataset.

Table 1 summarizes qualitative properties of all the

methods. SG and CRF assume the noise only has high-

frequency components. As a result, they struggle with low-

frequency noise. KF and dual KF rely on a Gaussian noise

assumption, which is not reasonable on our datasets.

Both our method and FF [15] learn control and dynamics
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Figure 5. Comparison on basketball data. (a) Method of [6], (b)

Kalman filter, (c) Dual Kalman filter , (d) Conditional regression

forests [11], (e) Filter forests [15], (f) Our method. The blue line

is from human operators and the red line is from predictions. Note

our method does not need any post-processing.
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Figure 6. Comparison on soccer data.. (a) Method of [6], (b)

Kalman filter, (c) Dual Kalman filter , (d) Conditional regression

forests [11], (e) Filter forests [15], (f) Our method. The blue line

is from human operators and the red line is from predictions. Note

our method does not need any post-processing.

aspects from the data. Neither requires post-processing and

both are able to generate a zero delay response. In camera

planning, our method has three advantages over FF. First,

our method has fewer parameters so that it requires less data

to train. Second, our model can be trained much faster than

FF because FF has to solve a large linear equation in each

split. Third, the experimental results show that our method

is more stable in both datasets.

Fig. 7 provides a visual comparison of our framework

using a random forest of 100 trees and varying influence of

the autoregressor, λ. When λ “ 0, the autoregressor has no

influence, and so the smoothness of the prediction depends

solely on the smoothness of decision tree ensemble and the

size of the history window, τ . Since decision trees are non-
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Figure 7. Comparing varying λ for basketball data. λ “ 300

is a good trade-off between smoothness and accuracy. Very small

λ allows more accurate but noisier predictions, and very large λ

leads to smoother but less accurate predictions.

parametric, one could in principle learn a smooth predic-

tor given sufficient training examples and enough trees, but

the data and computational costs would be immense. As

λ increases, the autoregressor causes the predictions to be

increasingly smooth. Recall that the learner (Algorithm 1)

always seeks to find the predictor within the policy class

with the lowest loss, and so it can adaptively trade off be-

tween smoothness and accuracy depending on the input sig-

nal x (rather than rely on post-processing). As λ becomes

very large, the policy class becomes restricted to extremely

smooth predictors. In practice, λ can be set via a user pref-

erence study or validation performance.

6.4. User Preference Study

We also conducted a user preference study to comple-

ment our benchmark experiments. Fig. 8 shows our user

study interface. Videos were generated by warping the

video captured by the human operator. We evaluated our

approach against the five baseline algorithms for both bas-

ketball and soccer. In each trial, participants were instructed

to choose the video that was more appealing (our method

was randomly assigned the left or right view).

Table 2 shows the results. For basketball, our method

is significantly preferred over the other methods based on a

two-tailed binomial test (p ă 0.001). For soccer, none of

the methods performed particularly well (see Section 6.2),

making it challenging for users to judge which method gen-

erated better videos. Note that there is still a sizable prefer-

ence gap compared to the human expert.

7. Discussion

Although our approach achieved good results for basket-

ball, the results for soccer were much poorer. It is likely that

we require more expressive inputs in order to learn good

policy, such as tracking the ball in addition to the players.

Figure 8. User study screenshot. Users were asked which video

was more pleasant to watch, and to consider both composition and

smoothness in their assessment.

Basketball Soccer

Comparison win / loss win / loss

vs SG 22 / 3 14 / 11

vs KF 23 / 2 12 / 13

vs dual KF 25 / 0 24 / 1

vs CRF 24 / 1 12 / 13

vs FF 23 / 2 14 / 11

vs human 1 / 24 4 / 21

Table 2. User study results. For basketball, our method is signif-

icantly preferred over all baselines. For soccer, all methods per-

formed poorly, and users did not have a strong preference. There

is still a sizable preference gap compared to expert human.

The human demonstrations in the soccer dataset were al-

most entirely piece-wise linear. In other words, the human

expert is almost always directing the camera in a straight

line with very sharp course corrections. As such, it may be

that we require L1 regularization to an autoregressor that

prefers zero acceleration in order to better capture the tem-

poral dynamics of camera planning in soccer.

We chose decision trees due to their non-parametric or

model-free properties as well as ease of training. Using

other complex predictors, such as deep neural nets or Gaus-

sian processes, could potentially also work well.

Finally, our approach only addresses the planning prob-

lem, and cannot be directly applied to physical camera con-

trol without a control model. It would be interesting to

jointly learn to both planning and physical control [7].

8. Summary

We have introduced the problem of smooth online im-

itation learning, where the goal is to learn a predictor to

smoothly imitate a human expert given a stream of in-

put signals. We have also presented a recurrent non-

parametric model class for generating smooth predictions,

which jointly integrates a model-free control signal with a

model-based autoregressor. In order to guarantee stability

of training, we extended previous work on iterative learning

of dynamical models to our setting. We applied our ap-

proach to camera control in sports, where we demonstrated

significant improvements over several strong baselines.
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