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Abstract

Because of the limitations of matrix factorization, such

as losing spatial structure information, the concept of ten-

sor factorization has been applied for the recovery of a low

dimensional subspace from high dimensional visual data.

Generally, the recovery is achieved by minimizing the loss

function between the observed data and the factorization

representation. Under different assumptions of the noise

distribution, the loss functions are in various forms, like L1

and L2 norms. However, real data are often corrupted by

noise with an unknown distribution. Then any specific for-

m of loss function for one specific kind of noise often fails

to tackle such real data with unknown noise. In this pa-

per, we propose a tensor factorization algorithm to model

the noise as a Mixture of Gaussians (MoG). As MoG has

the ability of universally approximating any hybrids of con-

tinuous distributions, our algorithm can effectively recover

the low dimensional subspace from various forms of noisy

observations. The parameters of MoG are estimated under

the EM framework and through a new developed algorithm

of weighted low-rank tensor factorization (WLRTF). The ef-

fectiveness of our algorithm are substantiated by extensive

experiments on both of synthetic data and real image data.

1. Introduction

The problem of recovering a low dimensional linear sub-

space from high dimensional visual data naturally arises in

the fields of computer vision, machine learning and statis-

tics, and has drawn increasing attention in the recent years.

Typical examples include representation and recognition of

faces [25, 20, 22, 1], structure from motion [21], recogni-

tion of 3D objects under varying pose [15], motion segmen-

tation [23].In such contexts, the data to be analyzed usually

can be formulated as high-order tensors, which are natural

generalization of vectors and matrices. Existing approach-
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Figure 1. High-order data represented by tensorization better pre-

serves the essential data structure compared with matricizaiton.

es, including LRMF and RPCA, proceed by unfolding ten-

sors into matrices and then applying common matrix tech-

niques to deal with tensor problems. However, as shown in

[10], such matricization fails to exploit the essential tensor

structure and often leads to suboptimal procedure. Figure 1

illustrates the difference between the matrix based method

and tensor based method in dealing with the high-order ten-

sor data. The upper row is the matrix based factorization

method, which needs to preliminarily unfold or vectorize

the tensor; the lower row is the tensor based method which

directly factorize the tensor without destroying the spatial

structures. Given a high-order tensor data, an efficient way

to extract the underlying useful information is low-rank ten-

sor factorization (LRTF), which aims to extract low-rank

subspaces underlying those vector spaces so that the orig-

inal tensor can be suitably expressed through reasonably

affiliating these subspaces. In the recent years, the appli-

cation of LRTF has been extended to a wide range of fields

throughout science and engineering [7].

The notation in this paper are defined as follows. S-

calars are denoted by lowercase letters (a, b, ...) and vectors

are denoted by bold lowercase letters (a,b, ...) with ele-

ments (ai, bj , ...). Matrices are represented by uppercase

letters (A,B, ...) with column vectors (a:j ,b:j , ...) and el-

ements (aij , bij , ...). The calligraphic letters (A,B, ...) s-

tand for the the high-order tensors. A K-order tensor X ∈
R

I1×I2×···×IK is a rank-1 tensor, if it can be written as the

outer product of K vectors, i.e., X = a
1◦a2◦···◦aK . Then
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the element of the tensor can be represented as: xi1i2···iK =
a1i1a

2
i2
· · · aKiK . The slice of a K-order tensor is a matrix de-

fined by fixing every index but two. Therefore the slice of

a 3-order tensor X ∈ R
I×J×K has the form: frontal slices

X::k, lateral slices X:j:, horizontal slices Xi::.

As discussed in [7], although there are several tensor

factorization forms, our framework for LRTF is based on

the CANDECOMP/PARAFAC (CP) decomposition. The

main reason is that the CP decomposition can be viewed as

a higher-order generalization of the matrix singular value

decomposition [2] and has been widely used in many real

applications [31, 26, 17]. Mathematically, a K-order ten-

sor X ∈ R
I1×I2×···×IK , with the integer Ik (1 ≤ k ≤ K)

indicating the dimension of X along the k-th order, is rep-

resented in the CP decomposition form as:

X =
r

∑

d=1

u
d ◦ vd ◦ · · · ◦ td, (1)

where r is assumed to be the rank of the tensor X . Then

each element of the tensor has the following form:

xij...k =
r

∑

d=1

ud
i v

d
j · · · tdk. (2)

It is known that the canonical fit function for the CP

LRTF is based on the Frobenius norm function which as-

sumes the noise to follow a Gaussian distribution. However,

for many real data, such as the fMRI neuroimaging data [5]

and the video surveillance data [8], a relative large perturba-

tion in magnitude only affects a relatively small fraction of

data points, which often violates the Gaussian assumption

and instead follows a Laplacian distribution.

Therefore, it is necessary to consider other loss function

that is robust to Laplacian noise. To alleviate this problem,

one commonly used strategy is to replace the Frobenius nor-

m function (say, LF norm) by the L1-type norm [6, 3],

which is known to be robust to gross Laplacian perturba-

tions. Unfortunately, in many real applications, the noise

often exhibits very complex statistical distributions rather

than a single purely Gaussian or Laplacian noise [29]. This

motivates us to consider more flexible modeling strategies

to tackle such complex noise cases.

Under the framework of low-rank matrix factorization

(LRMF), Meng and De la Torre [13] firstly proposed to

model the noise as Mixture of Gaussians (MoG). They

showed that the MoG model is a universal approximator

to any continuous distribution, and hence could be capa-

ble of modeling a wider range of noise distributions. Along

this line, Zhao et al. [30] further extended the MoG model

to deal with robust PCA (RPCA) problem. Extensive ex-

periments on synthetic data, face modeling and background

subtraction demonstrated the merits of MoG model.

As such, to share the same light of matrix MoG model,

we aim to introduce a novel MoG model to the tensor case

for the LRTF task to overcome the drawbacks of existing

models, which only model one simple Gaussian or Lapla-

cian noise.

The contributions of this paper can be summarized as

follows: (1) We propose a new low-rank subspace learn-

ing approach called weighted low-rank tensor factorization

(WLRTF), which preserves the essential tensor structure;

(2) We apply MoG to the proposed WLRTF called weight-

ed low-rank tensor factorization based on MoG (MoG

WLRTF); (3) For solving the proposed model, we pro-

pose efficient algorithms to estimate the parameters un-

der the EM framework and through the proposed algo-

rithm of WLRTF. Our strategy is different from not only

the traditional EM algorithm for solving matrix/tensor de-

composition models, but also conventional alternative least

squares (ALS) techniques for solving other tensor decom-

position problems. A series of synthetic and real data ex-

periments are then provided to validate the effectiveness

of our method. The source codes of our algorithm are

published online: http://vision.sia.cn/our%20team/Hanzhi-

homepage/vision-ZhiHan(English).html.

2. Weighted low-rank tensor factorization

based on MoG

In this section, a new tensor model for modeling com-

plex noise is proposed. Firstly, MoG is applied to model

the noise element of the input tensor and thus have the log-

likelihood optimization objective. Then through assuming a

latent variable with higher dimension, we solve the problem

iteratively under the EM framework. Finally, based on CP

decomposition, we design a new algorithm that is different

from ALS to solve the weighted low-rank tensor factoriza-

tion in order to update each factorized tensor component.

2.1. CP decomposition with MoG

Taking the noise part (denoted as εijk) into considera-

tion, each element xijk (i = 1, 2, ..., I, j = 1, 2, ..., J, k =
1, 2, ...,K) of the 3-order tensor X in CP decomposition

can be written as:

xijk =

r
∑

d=1

ud
i v

d
j t

d
k + εijk. (3)

As MoG has the ability to universally approximate any

hybrids of continuous distributions, it is adopted for mod-

eling the unknown noise in the original data. Hence every

εijk follows an MoG and the distribution p(ε) is defined as:

p(ε) ∼
N
∑

n=1

πnN (ε|µn, σ
2
n), (4)
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where πn is the mixing proportion with πn ≥ 0 and
N
∑

n=1

πn = 1. N (ε|µn, σ
2
n) denotes the Gaussian distribu-

tion with mean µn and variance σ2
n.

Then every xijk in Eq. (3) follows a MoG distribution

with mean Λn =
r
∑

d=1

ud
i v

d
j t

d
k + µn and variance σ2

n. The

probability of each element xijk in the input tensor X can

thus be represented as:

p(xijk | Π,Λ,Σ) =
N
∑

n=1

πnN (xijk |Λn, σ
2
n), (5)

where Π = {π1, π2, ..., πN} ,Λ = {Λ1,Λ2, ...,Λn},Σ =
{σ1, σ2, ..., σN}.

We then define the likelihood of X as

p(X |Π,Λ,Σ) =
∏

i,j,k∈Ω

N
∑

n=1

πnN (xijk |Λn, σ
2
n), (6)

where Ω is the index set of the non-missing entries of X .

The goal is to maximize the log-likelihood function with

respect to the parameters Π,Λ,Σ, i.e.

max
Π,Λ,Σ

L(Π,Λ,Σ) =
∑

i,j,k∈Ω

log

N
∑

n=1

πnN (xijk |Λn, σ
2
n).

(7)

2.2. EM algorithm

EM algorithm [4] is proven to be effective for solv-

ing the maximization problem of the log-likelihood func-

tion. Therefore, for solving Eq. (7), we assume a high-

er dimensional latent variable under the EM framework.

Then the original problem can be viewed as a Gaussian

Scale Mixtures (GSM) with µn assumed to be 0, which

has been widely used in previous works [19, 24]. De-

fine U = {u1,u2, ...,ur}, V = {v1,v2, ...,vr}, T =
{t1, t2, ..., tr}, and then Eq. (7) can be rewritten as:

max
U,V,T,Π,Σ

L(U, V, T,Π,Σ)

=
∑

i,j,k∈Ω

log

N
∑

n=1

πnN (xijk

∣

∣

∣

∣

∣

r
∑

d=1

uidvjdtkd, σ
2
n).

(8)

In the model, the variables U, V, T are shared by all the

clusters of MoG and the mean for each cluster of the stan-

dard EM algorithm is represented by them. Thus our pro-

posed algorithm will iterate between computing responsi-

bilities of all Gaussian components (E Step) and maximiz-

ing the parameters Π,Σ and U, V, T in the model (M Step).

E Step: A latent variable zijkn is assumed in the model,

with zijkn ∈ {0, 1} and
N
∑

n=1

zijkn = 1, representing the

assigned value of the noise εijk to each component of the

mixture. Here we denote Z = {zijkn|i = 1, 2, ..., I; j =
1, 2, ..., J ; k = 1, 2, ...,K;n = 1, 2, ..., N}. The posterior

responsibility of the n-th mixture for generating the noise

of xijk can be calculated by

E(zijkn) = γijkn

=

πnN (xijk

∣

∣

∣

∣

r
∑

d=1

uidvjdtkd, σ
2
n)

N
∑

n=1

πnN (xijk

∣

∣

∣

∣

r
∑

d=1

uidvjdtkd, σ2
n)

.
(9)

The M step maximizes the upper bound given by the E step

with regard to U, V, T,Π,Σ:

EZp(X , Z|U, V, T,Π,Σ) =
∑

i,j,k∈Ω

N
∑

n=1

γijkn(logπn

− log
√
2πσn −

(xijk −
r
∑

d=1

uidvjdtkd)
2

2πσ2
n

).

(10)

This maximization problem can be solved by alternative-

ly updating the MoG parameters Π,Σ and the factorized

matrices U, V, T as follows:

M Step to update Π,Σ: The closed-form updates for the

MoG parameters are:

mn =
∑

i,j,k

γijkn, πn =
mn

∑

n

mn

,

σ2
n =

1

mn

∑

i,j,k

γijkn(xijk −
r

∑

d=1

uidvjdtkd)
2
.

(11)

M Step to update U, V, T: Re-write Eq. (10) only with

regard to the unknown components U, V, T as follows:

∑

i,j,k∈Ω

N
∑

n=1

γijkn(−
(xijk −

r
∑

d=1

uidvjdtkd)
2

2πσ2
n

)

= −
∑

i,j,k∈Ω

N
∑

n=1

(
γijkn
2πσ2

n

)(xijk −
r

∑

d=1

uidvjdtkd)
2

= −
∥

∥

∥

∥

∥

W ⊙ (X −
r

∑

d=1

u:d ◦ v:d ◦ t:d)
∥

∥

∥

∥

∥

2

LF

.

(12)

Here ⊙ denotes the Hadamard product (component-wise

multiplication) and the element wijk of W ∈ R
I×J×K is

wijk =











√

N
∑

n=1

γijkn

2πσ2
n
, i, j, k ∈ Ω

0, i, j, k /∈ Ω.

(13)
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The whole MoG WLRTF optimization process is sum-

marized in Algorithm 1. Note that in the M Step,

U, V and T are evaluated by solving the WLRTF mod-

el min
U,V,T

∥

∥

∥

∥

W ⊙ (X −
r
∑

d=1

u:d ◦ v:d ◦ t:d)
∥

∥

∥

∥

2

LF

, which will be

introduced in details in the following section.

Algorithm 1 (EM algorithm for MoG WLRTF)

Input: X ∈ R
I×J×K , each image size is I × J and the

number of images is K.

Output: U, V, T
1: Initialize Π,Σ, U, V, T , MoG number N, small thresh-

old ϵ.
2: while not converged do

3: E Step:

Evaluate γijkn for i = 1, 2, ...I; j = 1, 2, ..., J ; k =
1, 2, ...,K;n = 1, 2, ..., N by Eq. (9).

4: M Step for Π,Σ:

Evaluate πn, σ
2
n for n = 1, 2, ..., N by Eq. (11)

5: M Step for U, V, T :

Evaluate U, V, T by solving

min
U,V,T

∥

∥

∥

∥

W ⊙ (X −
r
∑

d=1

u:d ◦ v:d ◦ t:d)
∥

∥

∥

∥

2

LF

,

where W is calculated by Eq. (13).

6: end while

2.3. Weighted lowrank tensor factorization

The WLRTF error model of the three-dimensional tensor

X ∈ R
I×J×K is written as

min
U,V,T

∥

∥

∥

∥

∥

W ⊙ (X −
r

∑

d=1

u:d ◦ v:d ◦ t:d)
∥

∥

∥

∥

∥

LF

, (14)

where U ∈ R
I×r, V ∈ R

J×r, T ∈ R
K×r are low-

dimensional matrix with rank r. W ∈ R
I×J×K is the

weighted tensor which is composed by the standard vari-

ance of the input tensor elements.

Because of the effectiveness and implementation conve-

nience of ALS, we adopt its idea to update U, V, T of the

tensor one at a time.

Suppose I
0

1
, ..., I0

n
∈ R

w×h are data matrices. In order

to stack each of the above matrix as a vector, we define the

operator vec : Rw×h → R
wh.

For each slice of the higher-order tensor, it can be viewed

as a linear combination of the corresponding slices of all the

rank-1 tensors. Different from other methods for solving the

problem of LRTF, we stack each frontal slice of the higher-

order tensor as a vector of a new matrix denoted as MF .

Correspondingly, the vectorized horizontal slices and lateral

slices are represented as MH and ML, respectively.

Firstly we have

Xnew = W ⊙X . (15)

Then taking term T as an example, the vectorized frontal

slice MF of the higher-order tensor can be written as fol-

lows:

MF = [vec(Xnew
::1 )|...|vec(Xnew

::K )] ∈ R
IJ×K . (16)

For the i-th frontal slice of the higher-order tensor, the

vectorized corresponding slices of all the rank-1 tensors can

be viewed as the i-th element of the cell F which can be

represented as:

Fi = [vec(W::i⊙(u:1 ◦ v:1))|...
|vec(W::i ⊙ (u:r ◦ v:r))] ∈ R

IJ×r.

(17)

Then the i-th vector of term T can be updated as follows:

Ti: = (F †
i MF :i)

T ∈ R
1×r, (18)

where A† represents the pseudo-inverse matrix of matrix A,

and BT denotes the transposed matrix of matrix B.

Similarly, we have the term V and U updated as follow-

ing:

ML = [vec(Xnew
:1: )|...|vec(Xnew

:J: )] ∈ R
IK×J , (19)

Li = [vec(W:i:⊙(t:1 ◦ u:1))|...
|vec(W:i: ⊙ (t:r ◦ u:r))] ∈ R

IK×r,

(20)

Vi: = (L†
iML:i)

T ∈ R
1×r. (21)

MH = [vec(Xnew
1:: )|...|vec(Xnew

I:: )] ∈ R
JK×I , (22)

Hi = [vec(Wi::⊙(v:1 ◦ t:1))|...
|vec(Wi:: ⊙ (v:r ◦ t:r))] ∈ R

JK×r,

(23)

Ui: = (H†
i MH :i)

T ∈ R
1×r. (24)

The WLRTF optimization process is summarized in Al-

gorithm 2.

Algorithm 2 (WLRTF)

Input: The input tensor X , initialized tensor factors

U, V, T , weighted tensor W , number of iteration and

the threshold ϵ.
Output: U, V, T .

1: while not converged do

2: update T with Eq. (16), (17), (18);

3: update V with Eq. (19), (20), (21);

4: update U with Eq. (22), (23), (24).

5: end while
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Table 1. Predictive performance of competing methods with varied missing rate.
MC ALM MoG LRMF HaLRTC BM4D LRTA PARAFAC MSI DL CWM LRTF WLRTF MoG WLRTF

E1 7.37 0.08 2.55e+02 7.67e+02 4.40e+02 4.38e+02 2.98e+02 3.51e+02 8.79e-05 1.61e-08

20% E2 5.40 1.08e-04 6.50e+04 1.47e+03 6.47e+02 6.47e+02 3.70e+02 3.93e+02 2.11e-11 6.82e-19

E3 7.25e+02 0.09 2.68e+04 9.69e+02 6.07e+02 5.95e+02 4.10e+02 4.63e+02 1.20e-04 2.03e-08

E4 2.96e+02 0.57 3.76e+06 1.90e+03 9.62e+02 9.48e+02 5.82e+02 5.34e+02 3.69e-11 8.85e-19

E1 8.28 1.24 2.55e+02 7.77e+02 5.28e+02 5.30e+02 3.58e+02 4.38e+02 0.25 8.84e-09

40% E2 10.9 0.02 6.50e+04 2.06e+03 1.24e+03 1.23e+03 7.95e+02 8.07e+02 2.10e-04 3.18e-19

E3 1.82e+03 7.36e+02 5.20e+04 1.29e+03 9.93e+02 9.78e+02 6.54e+02 8.00e+02 0.51 1.90e-08

E4 6.08e+02 1.41e+02 7.06e+06 3.23e+03 2.28e+03 2.22e+03 1.50e+03 1.56e+03 5.87e-04 9.63e-19

E1 40.8 5.01 2.55e+02 8.31e+02 7.11e+02 6.63e+02 4.85e+02 5.57e+02 6.93 2.49e-07

60% E2 90.2 0.66 6.50e+04 2.99e+03 2.34e+03 2.21e+03 1.67e+03 1.90e+03 0.21 2.77e-16

E3 2.86e+03 1.51e+04 7.89e+04 2.03e+03 1.86e+03 1.81e+03 1.25e+03 1.73e+03 34.6 1.12e-06

E4 8.99e+02 1.57e+03 1.09e+07 7.20e+03 6.26e+03 6.21e+03 4.32e+03 6.22e+03 5.42 4.21e-15

Table 2. Reconstruction performance of competing methods with unknown noise.
MC ALM MoG LRMF HaLRTC BM4D LRTA PARAFAC MSI DL CWM LRTF WLRTF MoG WLRTF

E1 6.36 32.3 2.55e+02 1.00e+03 6.31e+02 6.41e+02 4.42e+02 4.69e+02 59.4 54.2

Gaussian E2 11.9 2.44 6.50e+04 2.74e+03 1.55e+03 1.57e+03 1.17e+03 7.04e+02 7.00 5.84

Noise E3 8.62e+02 11.4 1.05e+05 1.27e+03 8.59e+02 8.53e+02 6.02e+02 6.09e+02 32.2 29.2

E4 3.57e+02 72.0 1.41e+07 3.38e+03 2.10e+03 2.07e+03 1.53e+03 8.81e+02 1.77 1.52

E1 15.5 4.20e+02 5.10e+02 1.15e+03 1.05e+03 9.63e+02 7.70e+02 8.86e+02 7.00e+02 6.93e+02

Sparse E2 24.3 4.96e+02 1.30e+05 3.47e+03 2.96e+03 2.63e+03 2.24e+03 2.47e+03 1.30e+03 1.42e+03

Noise E3 1.87e+03 5.25e+03 1.02e+05 1.12e+03 1.02e+03 1.05e+03 7.47e+02 8.41e+02 7.08e+02 5.10e+02

E4 6.70e+02 1.04e+03 1.33e+07 2.64e+03 2.17e+03 2.34e+03 1.64e+03 1.77e+03 9.22e+02 4.33e+02

E1 17.4 4.63e+02 5.10e+02 1.39e+03 1.19e+03 1.15e+03 8.17e+02 1.07e+03 7.35e+02 6.68e+02

Mixture E2 26.3 6.05e+02 1.30e+05 4.77e+03 3.90e+03 3.70e+03 2.58e+03 3.31e+03 1.43e+03 1.37e+03

Noise E3 1.99e+03 1.23e+04 1.06e+05 1.34e+03 1.13e+03 1.17e+03 7.85e+02 1.10e+03 6.45e+02 4.59e+02

E4 7.15e+02 1.46e+03 1.50e+07 3.69e+03 2.84e+03 2.94e+03 1.93e+03 2.91e+03 7.70e+02 3.83e+02

3. Experiments

In this section, we conduct extensive experiments on

both synthetic data and real applications to validate the ef-

fectiveness of the proposed MoG WLRTF algorithm com-

pared with MC ALM [9], MoG LRMF [13], HaLRTC [10],

BM4D [12], LRTA [18], PARAFAC [11], MSI DL [16],

CWM LRTF [14] and our proposed tensor factorization al-

gorithm WLRTF without MoG. For the matrix based meth-

ods, the tensor is firstly unfolded into matrix structure be-

fore processing. The synthetic experiments are designed

to quantitatively assess our method from: i) predictive per-

formance over missing entries given an incomplete tensor;

ii) reconstruction performance given a both incomplete and

noisy tensor. The three real data applications are image in-

painting, multispectral image recovery and real hyperspec-

tral image restoration for evaluating the robust completion

performance.

3.1. Synthetic Experiments

The synthetic tensor is generated as follows: firstly, ma-

trices {U, V, T} are drawn from a standard normal dis-

tribution, i.e., ∀i, j, k, the vectors ui,vj , tk of the matri-

ces {U, V, T} comply with a standard normal distribution

N (0, IR); Secondly, construct the true tensor by Xgt =
[[U, V, T ]], and set the size to 10 × 10 × 10 and CP rank

r = 5. Then we conduct two synthetic experiments: i) for

validating the predictive performance, we vary the true ten-

sor missing entries rate (20%, 40%, 60%) ; ii) for verifying

the reconstruction performance, we randomly choose 20%
missing entries of the true tensor and further add certain

type of noise to it as the following procedure: (1) Gaussian

noise N (0, 0.1); (2) Sparse noise: 20% of the non-missing

entries with the uniformly distribution over [-5,5]; (3) Mix-

ture noise: 20% of the non-missing elements with the u-

niformly distribution over [-5,5], and 20% of the rest non-

missing with Gaussian noise N (0, 0.2) and the rest with

N (0, 0.01). The performance of each method is quanti-

tatively assessed by the following measurements as used

in [13]:

E1 = ∥W ⊙ (Xno −Xrec)∥L1
, E2 = ∥W ⊙ (Xno −Xrec)∥L2

E3 = ∥Xgt −Xrec∥L1

, E4 = ∥Xgt −Xrec∥L2

,

where Xno and Xrec are used to denote the noisy tensor and

the recovered tensor, respectively. As mentioned in [13],

E1 and E2 are the optimization objectives of existing meth-

ods, which assess how the reconstruction complies with the

noisy input, but E3 and E4 are more meaningful for e-

valuating the correctness of the clean subspace recoveries.

Therefore, we pay more attention to the quantitative indices

of E3 and E4. In the tables, the first and second best per-

formances are marked out with bold and underline, respec-

tively.

The performance of each method in the synthetic exper-

iments are summarized in Table 1 and Table 2, respectively.

From the tables, we can see that our methods perform bet-

ter in terms of E3 and E4 in most cases. Specifically, the

application of MoG makes the matrix based MoG LRMF

outperform MC ALM, and the tensor based MoG WLRT-

F outperform WLRTF. This validates that MoG is able to

model a wider range of noise distributions as a universal ap-

proximator. Besides, the superiority of MoG WLRTF over

MoG LRMF indicates that it better preserves the individual

structure of the tensor data.
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Figure 2. Facade with small mixture noise. (a) Noisy image. (b)-(k) Restored images obtained by competing methods. (l) Original image.

Figure 3. Facade with large mixture noise. (a) Noisy image. (b)-(k) Restored images obtained by competing methods. (l) Original image.

(b) Original

(c) Recovery

(a) Noisy

Figure 4. Ten randomly selected bands of strawberries. (a) Noisy bands. (b) Original bands. (c) Bands recovered by MoG WLRTF.

Table 3. Facade reconstruction performance of competing methods with mixture noise.
Facade MC ALM MoG LRMF HaLRTC BM4D LRTA PARAFAC MSI DL CWM LRTF WLRTF MoG WLRTF

PSNR 24.61 24.34 23.43 12.00 13.59 13.37 13.53 24.80 24.73 25.65

small scale noise RSE 0.1133 0.1169 0.1298 0.4838 0.4026 0.4129 0.4062 0.1109 0.1118 0.1005

FSIM 0.9091 0.8954 0.9407 0.8371 0.8318 0.7402 0.8258 0.9435 0.9473 0.9539

PSNR 22.09 22.18 14.20 9.204 18.51 16.95 16.71 22.82 17.14 23.69

large scale noise RSE 0.1515 0.1499 0.3755 0.6673 0.2287 0.2737 0.2817 0.1393 0.2679 0.1260

FSIM 0.8627 0.8525 0.6003 0.7619 0.7667 0.7101 0.7310 0.9117 0.7033 0.9268
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Figure 5. The 31st band of multispectral images. (a) Noisy band. (b)-(i) Restored bands obtained by competing methods. (l) Original band.

3.2. Real image restoration

The images used in this section to evaluate the perfor-

mance of the competing methods in image restoration are

chosen as follows: (1) the benchmark image: the colorful

building facade image; (2) a well-known data set: Columbia

Multispectral Image Database [27]1; (3) real hyperspectral

image: a HYDICE urban image2. Note that each real image

used here can be viewed as a 3-order tensor.

Three quantitative image quality indices are adopted to

evaluate the performance of each method: peak signal-to-

noise ratio (PSNR), relative standard error (RSE) and fea-

ture similarity (FSIM) [28]. Larger values of PSNR and

FSIM and smaller values of RSE mean a better restoration

results.

Simulated image restoration. Firstly, the facade im-

age is randomly sampled with 20% missing entries and

added with a relative small scale mixture noise: 20% of

the non-missing pixels with the uniformly distribution over

[−35, 35], 20% of the rest non-missing pixels with Gaussian

noise N (0, 20) and the rest with another uniformly distri-

bution N (0, 10). Both the visual and the quantitative re-

sults are demonstrated in Figure 2 and Table 3 (the upper

row). For better visual comparison, we have also provided

a zoom-in version of a local region in Figure 2. It demon-

strates that our method performs better in details than the

other competing methods when the mixture noise is not very

1http://www1.cs.columbia.edu/CAVE/databases/multispectral
2http://www.tec.army.mil/hypercube
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Table 4. Multispectral image restoration performance of competing methods with mixture noise.
MoG LRMF HaLRTC BM4D LRTA PARAFAC MSI DL CWM LRTF MoG WLRTF

PSNR 8.559 8.444 20.09 16.51 15.84 18.47 19.94 22.17

Jelly beans RSE 1.749 1.773 0.4637 0.7003 0.7565 0.5588 0.4720 0.3652

FSIM 0.5450 0.5312 0.7778 0.7025 0.6487 0.8213 0.8506 0.8864

PSNR 6.342 8.725 20.96 18.76 16.26 19.20 21.75 27.29

Paints RSE 1.757 1.336 0.3267 0.4209 0.5607 0.3998 0.2983 0.1576

FSIM 0.4997 0.4750 0.8016 0.7827 0.6367 0.8182 0.9165 0.9514

PSNR 9.032 7.480 21.65 18.40 16.54 19.15 22.72 26.17

Flowers RSE 2.110 2.522 0.4937 0.7173 0.8888 0.6583 0.4364 0.2933

FSIM 0.7690 0.4172 0.7833 0.8073 0.5271 0.8220 0.9126 0.9153

PSNR 9.187 7.109 22.04 18.59 17.01 19.43 23.20 25.22

Egyptian statue RSE 3.028 3.847 0.6898 1.026 1.231 0.9308 0.6032 0.4779

FSIM 0.8538 0.3696 0.7861 0.8245 0.4243 0.8142 0.9187 0.9439

PSNR 4.728 7.911 20.77 18.29 16.23 18.95 21.46 23.95

Chart and stuffed toy RSE 2.003 1.388 0.3160 0.4201 0.5327 0.3895 0.2919 0.2191

FSIM 0.7303 0.4534 0.7857 0.7729 0.5366 0.8092 0.8901 0.9221

PSNR 11.88 11.56 23.65 19.92 17.14 21.33 21.92 25.07

Beers RSE 0.7858 0.8150 0.2027 0.3114 0.4287 0.2646 0.2474 0.1722

FSIM 0.7875 0.4155 0.8035 0.7535 0.4423 0.8214 0.9430 0.9200

PSNR 8.782 8.380 20.90 18.74 16.49 18.89 21.66 26.66

Glass tiles RSE 1.933 2.025 0.4793 0.6140 0.7961 0.6038 0.4389 0.2467

FSIM 0.5692 0.4690 0.7267 0.7726 0.5738 0.7287 0.9075 0.9475

PSNR 8.068 7.762 22.10 19.22 16.78 19.54 18.99 24.80

Strawberries RSE 2.074 2.149 0.4123 0.5745 0.7607 0.5534 0.5900 0.3021

FSIM 0.7474 0.3997 0.7721 0.8059 0.4932 0.8128 0.9229 0.9283

large.

Secondly, in order to further compare the reconstruction

ability of each method, we add a larger mixture noise to the

facade and multispectral images. Each image is resized to

half for all channels/bands and rescaled to [0,1]. The larg-

er mixture noise are added as in the synthetic experiments:

20% missing entries, 20% of the non-missing pixels with

the uniformly distribution over [−5, 5], 20% of the rest non-

missing pixels with Gaussian noise N (0, 0.2) and the rest

with another uniformly distribution N (0, 0.01).

The facade reconstruction results are shown in Figure 3

and Table 3 (the lower row). In Figure 3, we also show a

zoom-in version of a local region for comparison. We can

see that our MoG WLRTF is more robust to larger mixture

noise than other methods.

For better visual demonstration of the multispectral im-

age restoration result, we randomly choose ten selected

bands of strawberries as shown in Figure 4. Meanwhile,

we select the 31st band of these multispectral images to

show our restoration results compared with other competing

methods as shown in Figure 5 and Table 4. The superiority

of the proposed MoG WLRTF method can be observed in

multispectral image restoration.

Real Hyperspectral image restoration. Here we use a

HYDICE urban image for demonstration. This real hyper-

spectral image contains several bands seriously polluted by

the atmosphere and water absorption, and traditional meth-

ods generally discarded these seriously polluted bands be-

fore processing [29]. Figure 6 shows the restoration results

of four seriously polluted bands in HYDICE urban image.

It can be observed that MoG WLRTF can still have a good

performance in dealing with such real gross noise.

band 107

band 107

 band 209

 band 209

 band 208

 band 208

 (a) Original polluted bands

 (b) Corresponding recovered bands

 band 207

 band 207

Figure 6. Real hyperspectral image restoration. (a) Original pol-

luted bands. (b) Corresponding bands recovered by MoG WLRTF.

4. Conclusion

In this paper, we propose a new MoG based weighted

low-rank tensor factorization method to estimate subspaces

from high-dimensional data which are disturbed by noises

with a complex distribution. Compared with the existing

matrix methods, which lose the salient structure of the in-

dividual data, our method is capable of better preserving

this information and performing better when the data are

polluted with a large percentage. Additionally, our method

also performs better than other tensor methods which are

just optimal for Gaussian or Laplace noise. Both synthetic

experiments and the real applications demonstrate the effec-

tiveness of our method under complex noisy tensor data.
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