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Abstract

In this paper, we present a novel attention-modulated vi-

sual tracking algorithm that decomposes an object into mul-

tiple cognitive units, and trains multiple elementary track-

ers in order to modulate the distribution of attention ac-

cording to various feature and kernel types. In the integra-

tion stage it recombines the units to memorize and recognize

the target object effectively. With respect to the elementary

trackers, we present a novel attentional feature-based cor-

relation filter (AtCF) that focuses on distinctive attentional

features. The effectiveness of the proposed algorithm is val-

idated through experimental comparison with state-of-the-

art methods on widely-used tracking benchmark datasets.

1. Introduction

When tracking objects, humans readily find useful fea-

tures to distinguish the tracking target from background

clutter. The ability to find useful features is one of the most

powerful aspects of the human visual system. With this ro-

bust visual system, humans are capable of adapting stably

and rapidly to complex environments, even when encoun-

tering background clutter or drastic changes of the target.

Over the last 10 years, remarkable advances have been

achieved in visual tracking research, as surveyed in [28,29].

However, even with the advances in performance, the tech-

nical level of the current visual tracking cannot achieve the

performance of the human visual system. Hence, current vi-

sual tracking algorithms have much room for improvement

via a human-mimetic approach.

In this paper, we propose a structuralist cognitive model

for visual tracking (SCT). As shown in Fig. 1, the SCT

is composed of two separate stages: disintegration and in-

tegration. In the disintegration stage, the target is divided

into a number of small cognitive structural units, which are

memorized separately. Each unit includes a specific color or

a distinguishable target shape, and is trained by elementary

trackers with different types of kernel.

In the integration stage, an adequate combination of the

Disintegration Integration

Cognitive unit 1

Cognitive unit 2

Cognitive unit 3

Cognitive unit 4

Cognitive unit 5

Cognitive unit 6

Various Features Memory
Memory

Combination 1

Combination 2

Combination 3

Tiger

Testing

Updating

Color

Shape

Combine

Figure 1. Structuralist cognitive model for tracking (SCT). Our

SCT model works with two stages: disintegration and integration.

By cooperating between the two stages, the target can be trained

and found from the input image patch.

structural units is created and memorized to express the tar-

get’s appearance. When encountering a target with chang-

ing appearance in diverse environments, the SCT utilizes all

the responses from the cognitive units memorized in the dis-

integration stage and then recognizes the target through the

best combination of cognitive units, referring to the memo-

rized combinations.

Through disintegration and integration synergies, the

SCT produces robust responses to complex inputs. When

background clutter appears, the disintegration stage trains

the cognitive units to effectively distinguish the target from

the clutter. In addition, the best combination of the cogni-

tive units is learned and memorized in the integration stage,

which enlarges the discriminability between the clutter and

target. If the target is deformed into a sudden change of ap-

pearance, the integration reduces the influence of the previ-

ously influential cognitive units and enlarges the influence

of new appropriate units, which helps the SCT to adapt it-

self rapidly to the change.

With respect to the elementary trackers, we propose

an attentional feature-based correlation filter (AtCF). The

AtCF focuses on the attentional features discriminated from

the background, which is motivated by the concentration

cognition model of human [46]. Each AtCF consists of an
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attentional weight estimator and a kernelized correlation fil-

ter (KCF) [1]. As a result of the AtCF, the SCT can avoid the

problems caused by background features misplaced in the

bounding box, such as drift and a missing target. In the dis-

integration stage, multiple AtCFs are updated using various

feature and kernel types. The integration stage combines the

responses of AtCFs by ordering the AtCFs following their

performance.

2. Related Research

Recent papers provide benchmark datasets containing

a large number of videos with ground truth to acceler-

ate the improvement of trackers [27, 42]. Generative track-

ers [8, 9, 36, 45] generate the features that are robust to the

changes of the target’s appearance without extracting back-

ground clutter. In [8,9,45], Kwon and Lee proposed trackers

that generate robust features with PCA-based sparse repre-

sentation. Gauglitz et al. [36] tried to track a target by reg-

istering and matching the features obtained from the target.

Distinctive trackers [1–7, 22, 25] exploit background clutter

to extract distinctive features of the target from the back-

ground. Kalal et al. [3] presented a tracker by simultane-

ously updating a target tracker and a negative estimator.

Hare et al. [4] introduced a structured SVM for tracking,

which was trained by structured labels. MEEM [7], which

is one of the state-of-the-art trackers, trains multiple linear

SVM-based trackers from which one major expert was se-

lected. Gall et al. [22] developed a tracker utilizing a ran-

dom forest and Henriques et al. [1] used the ridge regression

to consider the samples neighboring the targets.

Recently, correlation filter-based trackers have become

increasingly popular [1, 2, 5, 6, 25]. The correlation filter

can be trained quickly based on the property of the circu-

lant matrix in the Fourier domain, so the trackers show high

performance with low computational load [2]. In particular,

Henriques et al. [1] improved the performance of the cor-

relation filter-based tracker by extending it to multi-channel

input and kernel-based training. Because of the high per-

formance of correlation filter-based trackers, many recent

trackers [5,6,25] have utilized correlation filter-based track-

ers as a baseline. Danellijan et al. [6] developed a corre-

lation filter covering the scale change of the target, and

Ma et al. [25] and Hong et al. [5] used the correlation filter

as a short-term tracker with an additional long-term mem-

ory system. However, the previous correlation filter-based

trackers have utilized one fixed type of feature and kernel,

so there has been limitations in performance. In this paper,

multiple correlation filters using various types of feature

and kernel are updated in the disintegration stage, which

improves the distinctiveness of target.

Among previous trackers, some approaches [13, 23]

also built one strong tracker by combining many trackers

as the proposed algorithm. Grabner et al. [13] built one

strong tracker combined from many equivalent trackers us-

ing a boosting algorithm. Yang et al. [23] used many track-

ers trained by various types of feature and kernel, which

were combined by bootstrap learning. Unlike the trackers

based on boosting and bootstrap learning, elementary track-

ers of the proposed algorithm are updated independently

using samples only from the current frame. The indepen-

dent update enables the use of a large number of negative

samples to improve the performance. Contrary to the previ-

ous trackers based on the multiple weak trackers [7,47,49],

the proposed algorithm uses a fast correlation filter as weak

trackers to work in real-time. In addition, against the hybrid

trackers fusing the trackers of different structure [5, 48, 50],

the proposed framework can be extended easily by supple-

menting additional feature or kernel type.

The scheme to estimate the attentional features in the

AtCF is similar to saliency detection. Research in saliency

detection can be categorized into top-down and bottom-

up approaches. Top-down saliency [14, 17, 18, 44] is ob-

tained by a classifier pre-trained by the dataset of salient

objects and bottom-up saliency [12, 15, 16, 19, 20, 30, 31]

is estimated by utilizing only the input image without pre-

training. Bottom-up saliency has been applied to foreground

detection [30], activity recognition [31], classification and

segmentation problems [21, 32–34] and saliency has been

applied to a tracker [35]. Contrary to Hong et al. [35], the

proposed framework does not find the target location di-

rectly from saliency map but use the saliency map as a

weight map for correlation filters. In addition, the atten-

tional scheme of the proposed algorithm includes both top-

down (in the tracking phase) and bottom-up (in the updating

phase) factors, while working much faster than [35].

3. Proposed Tracker

3.1. Overview

Our proposed algorithm consists of two stages: disinte-

gration and integration. The scheme of the algorithm is de-

picted in Fig. 2. In the disintegration stage, multiple AtCFs

are generated and updated to cover the various properties of

the target. Each AtCF utilizes one of various feature types

(HOG, color, etc.) and one of various kernel types (Gaus-

sian, linear, etc.) so that the types of the used feature and

kernel are different from those of other AtCFs. When F fea-

ture types and K kernel types are used, FK AtCFs are gen-

erated in the disintegration stage. In the integration stage, an

integrated tracking response is estimated by combining the

responses of AtCFs. The combination is updated in every

frame, based on priority and reliability measures evaluated

by the response of each AtCF.

In the tracking phase, a candidate patch in the new frame

is located at the same position, with the previous tracking

bounding box under the assumption that the new position
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Figure 2. Proposed Algorithm Scheme. Our proposed tracker is divided into disintegration and integration stages, which cooperate to

maximize the ability to discriminate the target from background clutter. The disintegration consists of multiple AtCFs with various types

of feature and kernel, which are combined in the integration to get an integrated tracking response according to the priority and reliability

of each AtCF.

of the target is not far from the previous one. However,

to cover the movement of the target, the size of the can-

didate patch is enlarged with sp times width and height of

the bounding box at the same center. The candidate patch

is divided into sg × sg pixel-wise grids, and a feature vec-

tor is extracted from each grid following the used feature

type f ∈ {1, ..., F}, which constitutes a feature map Zf .

Because every AtCF works in the same manner, we omit

the index of the used feature in the disintegration stage and

embed it to the index of each AtCF implicitly in the in-

tegration stage: each AtCF is indexed in order by embed-

ding the feature index and kernel index. Letting C be the

dimension of feature vector, the grid features from a chan-

nel c ∈ {1, ..., C} forms a layer of a 2-dimensional channel

feature map Zc. Then we obtain a cubic-type map Z stacked

with the layers of all Zc, c ∈ {1, ..., C}. From Z, the atten-

tional weight map (AWM) W(Z) is calculated by the at-

tentional weight estimator (AWE) updated in the previous

frame. The AWE estimates the grid-wise weights from the

feature vector of each grid by multiple decision trees, and it

assigns a higher weight to the feature vector distinct from

the background. Then, the attentional feature map Z̃ for

tracking is obtained by the element-wise product between

W(Z) and Z. The responses of AtCFs are evaluated by ap-

plying their own correlation filters to Z̃. The KCF [1] is

used for the correlation filter of the AtCF. The responses

are combined into the integrated tracking response on the

basis of the priorities and reliabilities updated at the previ-

ous frame. Finally, the target is determined to be centered at

the maximum point of the integrated response. The calcula-

tion of the AWM is described at length in section 3.2.1, the

calculation procedures for AtCF responses in section 3.2.2,

and the integrated tracking response in section 3.2.3.

In the updating phase, each AtCF in the disintegration

stage and the priority and reliability for each AtCF are up-

dated. The updating patch is centered at the location of

the target determined by the tracking phase. At the first

frame, the input target box is centered at the initial tar-

get box. The size of the updating patch is set to the same

size of the candidate patch in tracking. The updating fea-

ture map extracted from the updating patch is denoted by

X. The updating feature map X has the same structure with

the tracking feature map Z and is constructed in the same

way with Z. The update of the AtCF includes the update of

both the AWE and its correlation filter. To efficiently update

the AWE, a partially growing decision tree (PGDT) [26] is

used. The updated AWE produces the AWM W(X) for X,

and a smoothed AWM Wo is obtained by temporally inter-

polating W(X) for stable updating. The attentional feature

map X̃ for updating is obtained by element-wise multiplica-

tion of Wo and X. Then, the correlation filter of the AtCF is

updated by using X̃. In the integration stage, the priority and

reliability of each AtCF are updated from the discrimination

ability of the AtCF. The update of the AWE is described in

detail in section 3.3.1, the update of the correlation filter in

section 3.3.2, and the update for integration in section 3.3.3.

3.2. Tracking

3.2.1 Attentional Weight Map Calculation

AWM W is obtained by weighted-sum of a strong Atten-

tional Weight Map (sAWM) Ws and a weak Attentional

Weight Map (wAWM) Ww. Ws gives high weights to the

grids inferred as the target and low weights to the grids with

similar features to the background. The examples of Ws are

shown in Fig. 3. Ww is evaluated by the prior knowledge

that the target is generally located at the center of an input

image patch.

Strong Attentional Weight Map: To obtain Ws, we use

AWE trained continuously in every previous frame. AWE is

an ensemble of NT decision trees. An attentional weight for

a feature vector from a grid is allocated at a final leaf of ev-

ery decision tree in the ensemble. This weight is assigned

to an instant attentional weight of a grid whose feature ar-

rives at the leaf. The strong attentional weight of the ith
grid in Ws is estimated by averaging the instant attentional

weights obtained by applying xi into all the decision trees.
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Figure 3. Attentional Weight Map. (a) shows AWM obtained by

color features from ‘Car4’, which is influenced by wAWM due to

the trustless sAWM. (b) represents AWM acquired by color fea-

tures from ‘Tiger2’, which is determined mainly by sAWM be-

cause the sAWM is reliable. (b) also shows that AWM makes the

tracker robust to partial occlusion by reducing the weights for the

occluding backgrounds like a leaf.

The method to train AWE is explained in Section 3.3.1.

Weak Attentional Weight Map: Following the centered

prior of Ww, a cosine window is used as follows:

Ww(x, y) =
(
1− cos(2π x

W )
) (

1− cos(2π y
H )

)

x ∈ {1, ...,W}, y ∈ {1, ..., H}, (1)

where (x, y) has its origin at the left-top corner and en-

larges as going to right-bottom, and W and H indicate the

width and height of Z. By applying the cosine window, high

weights are allocated to the grids near the center, while low

weights are assigned to the grids close to the boundary.

Final Attentional Weight Map: W is obtained by the

weighted sum of Ws and Ww as

W = (1− wf )Ww + wfWs, (2)

where wf is the dependency on Ws which controls the

influence of Ws based on the credibility of Ws. The de-

pendency is determined in updating phase at the previous

frame, and Fig. 3 shows the effect resulted by varying wf .

3.2.2 Response of the AtCF

Let W(Z) be AWM obtained by applying the feature map

Z to AWE and (2). Then, the AWM Z̃ is obtained by the

element-wise multiplication of W(Z) and Z for every chan-

nel. Thus, Z̃c for the channel c is calculated by

Z̃c = Zc ⊙W(Z), c ∈ {1, ..., C}, (3)

where ⊙ represents the element-wise multiplication. By im-

puting Z̃ to KCF [1], the response of each AtCF to Z̃ is

obtained by

f(Z̃) = F−1

(
C∑

c=1
k̂(M̄c,Z̃

c) ⊙ α̂c

)

k
(X1,X2)
i = κ(vec(X2), P

i−1vec(X1)),

(4)

where F−1(•) is the inverse discrete fourier transformation

(DFT) operator, v̂ represents the vector transformed by DFT

from v, and vec(•) is a function vectorizing the input map.

k
(X1,X2)
i is ith value of k(X1,X2), κ is a function estimating

a distance on the kernel type used in a current AtCF, and

P represents a unit cyclic permutation matrix. αc and M̄c

are respectively a filter vector and a model feature map for

channel c ∈ {1, ..., C}, which are updated at the previous

frame. For more detail, KCF [1] can be referred.

3.2.3 Integrated Tracking Response

The position of target is determined by the integrated track-

ing response. The integrated tracking response is obtained

by combining the responses of AtCFs according to the rel-

ative performance (priority) and the absolute performance

(reliability). The priority is given to each AtCF based on the

order of the performance among the entire AtCFs. The reli-

ability is introduced to additionally control the importance

of AtCF on the basis of their own performance.

The response of jth AtCF at the tracking phase is

Tj = f j(Z̃S(j)), j ∈ {1, ..., FK}, (5)

where S(j) is a mapping function which returns the index

f of the feature type used by jth AtCF. Then, the integrated

tracking response F is obtained by

F(T1, ...,TFK) =

FK∑

j=1

(
1

Pj

)λP

QjT
j , (6)

where Pj is a priority of jth AtCF and Qj is a reliability

for jth AtCF. Both Pj and Qj is estimated in the updating

phase at the previous frame. In the equation, the first weight

term assigns a large weight to the front order of priority,

while the second weight term additionally controls the inte-

gration based on the reliability. A predefined parameter λP

determines the degree of influence by the priority order of

AtCFs. When λP is close to zero, every elementary tracker

has the same influence in the integration regardless of the

priority order. On the contrary, when λP is large enough,

the elementary tracker at the first order of priority is used

greedily. Finally, the tracking bounding box is determined

to be centered at the maximum point of the integrated track-

ing response.

3.3. Updating

3.3.1 Update of Attentional Weight Estimator (AWE)

AWE is the ensemble of NT decision trees, and one tree

per each frame is newly created by training and stacked

into the ensemble by first-in-first-out strategy. By utilizing

the ensemble of decision trees trained from the consecu-

tive multiple frames, AWE can avoid being overfitted by
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one frame and biased by a wrong tracking result. The deci-

sion tree is trained in non-parametric way without assum-

ing the distribution model of training samples, and it can be

tested rapidly. Therefore, the decision tree is proper for the

tracking problem where the algorithm should adapt itself

to various environments and work fast. However, it takes

too much time to be trained at every frame in real-time. To

reduce the computational load, we utilize a PGDT structure

[26]. PGDT is composed of one main tree and multiple sub-

trees, where the main tree is trained at the first frame and, in

the following frames, only the subtrees are trained and con-

nected to ambiguous leaves of the main tree. The ambiguous

leaves are the leaves requiring further decision procedure, in

which the similar number of the differently labeled features

are left. In a general tracking problem, the large portion of

features in the target are kept even in changing appearance.

Hence a decision tree trained in the first frame can be shared

in other frames. By fixing the main tree, we can reduce the

training time because a majority of the duplicated split pa-

rameters are reused.

Training of PGDT: At the first frame, only the main

tree is trained. For the afterward frames, all the grid features

of X are tested by the main tree to find ambiguous leaves.

When ambiguous leaves occur at the main tree, we create

subtrees connected to the ambiguous leaves to divide the

features left at the leaves. To prevent a memory overflow, all

the subtrees are removed and newly created at every frame.

The training sample for the decision tree is a grid feature xi

with a label αi. For xi located in the bounding box, αi is set

to 1, while the others are labeled by αi = 0. At the leaves

of the entire tree, the attentional weight is assigned by the

ratio of the labels of the samples remaining at the leaves.

The main tree and subtrees of PGDT follow a structure

of classification decision tree [24]. The samples of a node

are divided to its child nodes by a linear split function as

N (c,τ)
L = {xi|xc

i ≤ τ,xi ∈ Np}
N (c,τ)

R = {xi|xc
i > τ,xi ∈ Np},

(7)

where Np is the sample set of a parent node to be divided,

and N (c,τ)
L and N (c,τ)

R are the sample sets of a left child

node and a right child node, respectively, when the split

parameter of Np is set to (c, τ). The best split parameters

(c, τ) are determined by the split parameters minimizing a

gini-diversity index (gdi) given by

gdi(c, τ) =
∑

l∈{N
(c,τ)
L

,N
(c,τ)
R

}

{r(l)× (1− r(l))}

r(l) = nα=1
l /(nα=1

l + nα=0
l ),

(8)

where nα=1
l and nα=0

l are the number of the features with

αi = 1 and αi = 0 in a node l, respectively. The split se-

quence is repeated until one of the following stop criteria is

satisfied.

• All remaining features have same label αi.

• Remaining features cannot be divided anymore.

• The number of remaining features is under 10.

The ambiguous leaves La of the main tree are deter-

mined by

La = {l|ε ≤ r(l) ≤ 1− ε, l ∈ Lm}, (9)

where ǫ is a predefined threshold and Lm represents a set

containing the entire leaves of the main tree.

Finally, the attentional weight at leaf is assigned by

f(l) =
nα=1
l

nα=1
l + nα=0

l

. (10)

Therefore, a small attentional weight is assigned for the fea-

ture vector similar to the background features because sim-

ilar features gather at same leaf.

Update of dependency on sAWM: The dependency on

sAWM wf , which is needed for aggregating sAWM and

wAWM in (2), is estimated by

wf = exp(−βw ‖Ws −Mo‖2), (11)

where Mo is the initial teaching label map, where the grids

in bounding box are assigned by 1 and the others are by

0. βw is a predefined parameter to control the value of the

dependency on sAWM. When βw is very large, AWM be-

comes similar to a cosine window of KCF as sAWM is ig-

nored. When βw is too small, the tracker can be failed easily

by a wrong sAWM caused by distractors.

Full Occlusion Handling: When the target is fully oc-

cluded, AWE is trained wrongly by the background occlud-

ing the target. To prevent the problem, we detect the full

occlusion of the target by

1
WH

∑
(x,y)∈U

(1−W(x, y)) > ǫfo

U = {(x, y)|Mo(x, y) = 1} ,
(12)

where ǫfo is a pre-defined threshold. In other words, when

the entire sum of the attentional weights inside the bound-

ing box becomes too small, the algorithm determines that

the full occlusion happens. When the full occlusion is de-

tected, we set the dependency on sAWM w to 0 and stop

the updating of AWE during Nfo frames.

3.3.2 Update of correlation filter

The correlation filter is updated intensively on the atten-

tional features obtained by AWM. The AWM W(X) for up-

dating is obtained through the newly updated AWE and the

weighted sum as (2). However, when the original W(X) is

used to update the correlation filter, the filter can be fluc-

tuated by drastically changing AWM, causing its unstable
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update. To prevent the problem, we estimate a smoothed

AWM Wo by temporally smoothing W(X).

Wo= Wo
(t)= γWo

(t−1)+(1−γ)W(X), Wo
(0)=Ww, (13)

where γ is a predefined learning rate. Then, the AFM X̃ for

updating is obtained by

X̃c = Xc ⊙Wo, c ∈ {1, ..., C} (14)

where ⊙ represents the element-wise multiplication.

We train the filter αo
c = [αo

1,c, ...,α
o
N,c] of KCF for ev-

ery channel c ∈ {1, ..., C} as

α̂
o
i,c = ŷi

k̂
(X̃c,X̃c)
i

+λ

y = [yo
(⌊WH/2+1⌋:WH),y

o
(1:⌊WH/2⌋)]

yo = vec
(
G
(
(W/2, H/2), σ2

G,W,H
))

,

(15)

where λ represents a predefined regularization weight, N
is the number of every grid in updating patch, and k uses

the same definition in (4). yi is the value of ith element on

the desired response vector y. G((x, y), σ2,W,H) is a 2-

dimensional Gaussian window with size W ×H , of which

the mean and the variance equal (x, y) and σ2, respectively.

σG is fixed by 0.025
√
WH as represented in KCF [1].

To train KCF online, we estimate a smoothed filter αc

for channel c by temporally smoothing the estimated filter

α
o
c . In addition, we hold on a model feature map M̄c for

channel c to calculate a kernel distance in tracking phase,

which is obtained by temporal smoothing as

αc=αc,(t)= γαc,(t−1)+(1−γ)αo
c , αc,(0) = α

o
c

M̄c=M̄c,(t)= γM̄c,(t−1)+(1−γ)X̃c, M̄c,(0)=X̃c,
(16)

where γ is set to the same value in (13). We estimate αc and

M̄c for each channel c ∈ {1, ..., C}. For the detail explana-

tion of KCF, refer to [1].

3.3.3 Update of Priority and Reliability

To find an adequate combination of AtCF, we update prior-

ity and reliability estimates for each AtCF. Both the priority

and reliability are newly estimated at every frame to rapidly

adapt the integrated response for sudden changes of target.

The jth AtCF response map Rj for updating is obtained by

applying the filter to Xf as

Rj = f j(X̃S(j)), j ∈ {1, ..., FK}, (17)

where f j(•) performs equally as (4) for jth AtCF.

Priority Estimation: We update the priority Pj for each

AtCF according to the relative tracking performance. Let-

ting N be the number of grids in Xf , R
j
i , i = 1, ..., N

is the response value of the jth AtCF for the ith grid fea-

ture, and yi is the ith value of the desired response vector

in (15). The priority is assigned successively by the order of

low error obtained by the weighted-sum of grid errors be-

tween R
j
i and yi, for all i = 1, ..., N . In every assignment

of priority, each grid weight wi, i = 1, ..., N , is increased

by multiplying a term proportional to the grid error of the

assigned AtCF. This implies the large grid error leads to a

large grid weight which increases the possibility to select

the next AtCF with small error for the grid. Therefore, in

the next priority assignment, we can select an AtCF well-

discriminating the clutter which is hard to be distinguished

by the previously assigned AtCFs. The update scheme is

summarized in Algorithm 1.

Algorithm 1: The update of priority

V = {1, ..., FK}, ωi = 1 for ∀i ∈ {1, ..., N};

for k = 1...FK do

j = argl min
l∈V

N∑
i=1

ωi

∥∥Rl
i − yi

∥∥2
2
, Pj = k

ωi = ωi exp

(∥∥∥Rj
i − yi

∥∥∥
2

2

)
for i ∈ {1, ..., N}

V = V − {j}
end

Reliability Estimation: The reliability is obtained by

the error between the response of updated filter and the de-

sired response without any comparison to the other AtCFs.

The reliability for jth AtCF is estimated by

Qj = exp
(
−λQ

∥∥Rj − y
∥∥
2

)
, (18)

where λQ is a predefined parameter and y equals the desired

filter response of (15).

4. Experimental Result

We implemented two trackers: an SCT with six AtCFs

(SCT6) and an SCT with four AtCFs (SCT4). For SCT6 and

SCT4, we used two feature types, including a six-channel

average of RGB and lab color and 31-bin histogram of ori-

ented gradients (HOG) [43]. The kernel types used by SCT6

were Gaussian, polynomial, and linear kernel, while the lin-

ear kernel was excluded in SCT4. In addition, to analyze the

variants of the proposed algorithm, we implemented two ad-

ditional trackers: SCT-KCF6 and SCT-DT6. SCT-KCF6 is a

tracker combining six KCFs by the SCM-based framework,

so the attentional weight map is not utilized against SCT6.

SCT-DT6 exchanged PGDT of SCT6 to a general classifi-

cation decision tree [24].

4.1. Implementation

We selected the design parameters by experiments and

from references. Fig. 4 (a) shows the performance with var-

ious βw in (11) and λP in (6), which are two major pa-

rameters of the framework. Following the experiments, βw
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(b) Part-wise performance comparison

��
��

(a) Parameter selection

Figure 4. Precision plot for self-comparison. The scores next to

the name of tracker are the precision values when the location error

threshold equals 20 pixel. Only the top 10 trackers are presented.

and λP are set to 3 and 1.5, respectively. We select a mod-

erately small value, 0.01, for λQ in order not to invert the

order of weights determined by the priority. ǫfo in (3) and

Nfo are set to 0.4 and 10 by some experiments with frames

of full occlusion. The other parameters, such as ǫ = 0.4 in

(6), sp = 2.5 and sg = 4 in Sec. 3.1, λ = 10−4 in (15),

γ = 0.98 in (13) and (16), and the other parameters for ker-

nel distances of KCFs, were set to the values presented in

their references [1,26]. Following the protocols proposed in

[27], all the parameters were fixed for every video sequence.

We used the first bounding box obtained from ground truth

as an initial input for the trackers.

The program was implemented in MATLAB, except for

the decision tree of SCT-DT6 and the PGDT developed by

the Piotr library [37]. The test environment was using a 4

core 3.40GHz CPU, 16GB memory, and NVIDIA GTX650.

With the unoptimized program, SCT4 and SCT6 reported

40fps and 37fps, respectively, as an average computational

speed for the OOTB dataset [27]. The program and bench-

mark results are uploaded online.1

4.2. Evaluation

The proposed algorithms were evaluated using an OOTB

dataset [27] containing 50 video sequences with ground

truth. Because the sequences of OOTB include various envi-

ronments to evaluate the general performance of a tracker,

OOTB has been frequently utilized by visual tracking re-

search groups [1, 4, 5, 7].

For the performance measure, we used an average preci-

sion curve of one-pass evaluation (OPE) proposed in [27].

The average precision curve was estimated by averaging the

precision curves of all sequences, which was obtained us-

ing two bases: location error threshold and overlap thresh-

old. The precision curve based on the location error thresh-

old shows the percentage of correctly tracked frames on the

basis of a distance between the centers of the tracked box

and ground truth. The precision curve based on the over-

lap threshold indicates the percentage of correctly tracked

frames on the basis of the overlap region between the

tracked box and ground truth. Therefore, a higher precision

at a lower threshold means that the tracker works more ac-

1https://sites.google.com/site/jwchoivision/

Figure 5. Precision Plot for Entire Sequences. Two precision

curves based on the location error threshold and the overlap thresh-

old are presented. For a left graph, the scores next to the name of

tracker are the precision values when the location error threshold

is 20 pixel. For a right graph, the AUC scores is presented instead.

Only the top 10 trackers are presented.

Table 1. Summary of Experiments for Entire Sequences

Algorithm
Mean pre.

(20px)
Mean FPS

Proposed

SCT4 84.5% 40.0

SCT6 83.6% 37.1

SCT-KCF6 79.2% 96.2

SCT-DT6 79.1% 22.90

Other

algorithms

MUSTer [5] 83.1% 3.85

MEEM [7] 83.3% 19.5

KCF [1] 74.2% 223.8

Struck [4] 65.6% 10.0

SCM [10] 64.9% 0.4

TLD [3] 60.8% 21.7

curately. The precision curve is efficient because all the pre-

cisions can be obtained with fixed parameters.

4.3. Experiments on the full dataset

We conducted an experiment to show the performance

of each part, which is shown in Fig. 4 (b). Each single

AtCF shows a better performance than KCFs using the same

feature and kernel, which means AWM improves trackers.

When the performance of SCT6 and SCT-KCF6 is com-

pared to their individual trackers, it can be verified that

the integration part of the SCM-based framework also con-

tributes to the meaningful improvement of performance.

The quantitative results compared with the previous

works are summarized in Fig. 5 and Table 1. The re-

sults of the state-of-the-art methods, including MUSTer [5],

MEEM [7], and KCF [1], were obtained by the authors’

programs. In the case of MUSTer, we averaged the re-

sults of the experiments repeated using five computers.

For a large comparison, we additionally used the results

of Struck [4], SCM [10], TLD [3], VTS [9], DFT [41],

CSK [40], ASLA [11], MIL [38], and CT [39], which were

available in the OOTB dataset.

As shown in Fig. 5, SCT4 and SCT6 demonstrated com-

parable performance to the state-of-the-art methods. Inter-

estingly, even with a small number of elementary trackers,

SCT4 presented a higher performance than SCT6. Gaussian
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SCT4 MUSTer KCFMEEM TLD Struck

Figure 6. Qualitative Results. The tracking results of several trackers are shown. The used sequences are Tiger1, Soccer, David3, Crossing,

Bolt, Skating1, Football, Freeman1, Coke, Jogging, Matrix, and Shaking, respectively. The frame indexes are in the top-left of each image.

kernel and polynomial kernel can separate the samples dis-

tinguished by the linear kernel, which causes two or more

elementary trackers to learn the same property. As a conse-

quence, the duplicated elementary trackers might be redun-

dant or cause an overfitting, although these are trivial.

In Table 1, the precision scores of the top-ranked 10

trackers are presented with their computational speed. The

precision score is the average precision when the location

error threshold is 20 pixels. The proposed algorithms run

sufficiently fast to be used in real time, which is up to

10 times faster than the state-of-the-art methods such as

MUSTer and MEEM. The results of SCT6 and SCT-DT6

show that the use of the PGDT outperforms the general de-

cision tree in addition to the merit of fast computational

speed. The improvement came from the PGDT, which pre-

vented overfitting by retaining the split parameters of the

main tree. The qualitative results of SCT4 and the represen-

tative trackers (MUSTer, MEEM, KCF, TLD, Struck) are

shown in Fig. 6.

4.4. Experiments with attribute subsets

The sequences of the OOTB dataset [27] are annotated

by attributes that are challenging problems in visual track-

ing. To prove the contributions of the proposed algorithm,

we executed the experiments using subsets with four at-

tributes: background clutter, occlusion, illumination varia-

tion, and deformation.

The results are shown in Fig. 7, where SCT4 and

SCT6 outperform the state-of-the-art methods for all the

attributes. According to the results for the subset of back-

ground clutter, the proposed algorithm has the potential to

distinguish the target from background clutter by updating

multiple AtCFs with various feature and kernel types. The

results for the subsets of illumination variation and defor-

mation show that the proposed algorithm can adapt rapidly

to drastic changes of the target’s appearance through the in-

stant update of combination in the integration stage. The

results for the subset of occlusion show robustness against

occlusions as a result of the AtCF reducing the weights for

the background features occluding the target.

Figure 7. Precision Plots for Attribute Subsets. The plots show

the results from the experiments using the subsets of 4 attributes:

background clutter, occlusion, illumination variation, and defor-

mation. The precision scores are shown in the legend. Only the

top 10 trackers are presented.

5. Conclusion

In this paper, a new visual tracking framework was pro-

posed. The proposed tracker worked in two major stages:

disintegration and integration. In the disintegration stage,

the target was trained by multiple elementary trackers with

various types of feature and kernel, which improved the

ability to discriminate the target from background clutter. In

the integration stage, the responses of the multiple elemen-

tary trackers were combined according to the memorized

priorities and reliabilities, with quick adaptation against

sudden changes of the target’s appearance. As the elemen-

tary tracker, the AtCF was suggested, which demonstrated

robustness to partial occlusion and drift by reducing the

weights for the background features in the bounding box of

the target. The contributions of the proposed tracker were

validated in experiments using a number of sequences con-

tained in the OOTB datasets.
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