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Abstract

In this paper, we propose a structured feature learning

framework to reason the correlations among body joints

at the feature level in human pose estimation. Different

from existing approaches of modeling structures on score

maps or predicted labels, feature maps preserve substan-

tially richer descriptions of body joints. The relationships

between feature maps of joints are captured with the intro-

duced geometrical transform kernels, which can be easily

implemented with a convolution layer. Features and their

relationships are jointly learned in an end-to-end learning

system. A bi-directional tree structured model is proposed,

so that the feature channels at a body joint can well receive

information from other joints. The proposed framework im-

proves feature learning substantially. With very simple post

processing, it reaches the best mean PCP on the LSP and

FLIC datasets. Compared with the baseline of learning fea-

tures at each joint separately with ConvNet, the mean PCP

has been improved by 18% on FLIC. The code is released

to the public. 1

1. Introduction

Human pose estimation is to estimate the locations of

body joints from images. It can assist a variety of vision

tasks such as action recognition [29, 33], tracking [6], per-

son re-identification [32], and human computer interaction.

Despite the long history of efforts, it is still a challenging

problem. The large variation in limb orientation, clothing,

viewpoints, background clutters, truncation, and occlusion

make localization of body joints difficult.

Independent prediction of body joint locations from ap-

pearance score maps can be refined by modeling the spa-

tial relationship among correlated body joints [35, 5, 19].

On score maps, the information at a location is summarized

1The code can be found at http://www.ee.cuhk.edu.hk/

˜xgwang/projectpage_structured_feature_pose.html.

For more technical details, please contact the corresponding authors Wanli

Ouyang and Xiaogang Wang
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Figure 1. (1) Our approach jointly learns feature maps at differ-

ent body joints and the spatial and co-occurrence relationships be-

tween feature maps. The information from different joints passes

at the feature level. (a) Two input images (I1 and I2) with different

poses. (c) Responses of feature channels for elbow (e1-e7). (I1,

b) is the response map of e5 for image I1. (I2, b) is the response

map of e4 for image I2. Similarly, (d) and (e) show the response

maps and responses of different feature channels for lower arm.

into a single probability value, indicating the likelihood of

the existence of the corresponding body joint. For example,

if a location on the score map of elbow has a large response,

we can only reach the conclusion that this location may be-

long to elbow, but cannot tell the in-plane and out-plane

rotation of the elbow, the orientations of the upper arm and

the lower arm associated with it, whether it is covered with

clothes, and its occlusion status. Such detailed information

is valuable for predicting the locations of other body joints,

but is missed from the score maps, which makes structural

learning among body joints much less effective.

We observe that these types of information are well pre-

served at the feature level, where hierarchical feature repre-

sentations are learned with Convolutional Networks (Con-

vNets) [16, 36, 22, 23, 24]. Fig. 1 shows the responses of

feature maps of elbow and lower arm for different input im-

ages. Given the V-shaped elbow covered with clothes in I1,
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the feature channel e5 has the largest response as shown in

(I1, c). In the meanwhile, the feature channel h2 for lower

arm has the largest response in (I1, e). Given the straight

elbow uncovered with clothes in I2, the feature channels e4
and h6 have the largest responses to elbow and lower arm

respectively. It indicates that different feature channels are

activated for different visual patterns. The feature maps of

different joints also have strong correlations. In Fig. 1, e5
is positively correlated with h2 and anti-correlated with h6.

Both the spatial distribution of the responses and the seman-

tic meaningful description of body joints are encoded at the

feature maps by activating different channels.

Some existing works [35, 5, 19] employed mixtures clus-

tered from spatial configuration among neighboring body

joints. However, the number of mixtures for each body

joint (fewer than 20) is incomparable to hundreds of fea-

ture channels from ConvNets, which not only include spa-

tial configuration of body joints, but also other information

such as occlusion status and clothing. Hence, we propose

to exploit the structure information of body joints at the fea-

ture level. Our proposed approach shows that the spatial

and co-occurrence relationship among feature maps can be

modeled by a set of geometrical transform kernels. These

kernels can be implemented with convolution and the rela-

tionships can be learned in and end-to-end learning system.

It is important to design proper information flow between

body joints, so that features at a joint can be optimized by

receiving messages from highly correlated joints and will

not be disturbed by less correlated joints in distance. A

bi-directional tree-structured model is proposed. The pro-

posed model connects correlated joints and passes messages

in both directions along the tree. Therefore, every joint can

receive information from all the neighboring joints.

The contributions of this work are summarized as three-

fold. First, it proposes an end-to-end learning framework to

capture rich structural information among body joints at the

feature level for pose estimation. Second, it is shown that

the relationships among feature maps of neighboring body

joints can be learned by the introduced geometrical trans-

form kernels and can be easily implemented with convolu-

tional layers. Third, a bi-directional tree-structured model

is proposed, so that each joint can receive information from

all the correlated joints and optimize its features.

Experimental results show that the proposed approach

can improve feature learning substantially. Compared with

learning features at each joint separately with ConvNet, it

improves the mean PCP by 18% on the FLIC dataset. It also

reaches the highest mean PCP 80.8% on the LSP dataset

and 95.2% on the FLIC dataset. This work focuses on fea-

ture learning and only adopts very simple post processing. It

already outperforms the state-of-the-art method which em-

ployed sophisticated post processing techniques with a large

margin.

2. Related Works

Previous pose estimation works can be divided into two

groups. The first is to model the geometrical distribution of

body joints [35, 30, 31, 19, 9, 6, 1, 11, 25, 2, 21, 17, 34, 7]

which can be viewed as post processing on detection score

maps and prediction labels. They are mainly based on hand-

crafted features. The Pictorial Structure Model [11] de-

fined pairwise terms to represent relationship between body

joint locations. Later, Yang et al. [35] proposed the flexi-

ble mixture-of-parts model to combine part detection results

with a tree-structured model, which provided simple and

exact inference. Nevertheless, it is believed that the tree-

structured model is “oversimplified”. In light of this, many

works introduced more complex structures, and researchers

have obtained improvement in performance. Loopy struc-

ture [31], latent variable [25], poselet [19, 31] and strong

appearance [20] modeled structural information at different

levels. They investigated different structures to model the

spatial constraints among body joints on score maps. In

our work, a bi-directional tree is used to model the correla-

tion among feature maps. In the future, the investigations

on structures in previous works can be incorporated in our

framework to guide the message passing at the feature level.

The second group focus on more powerful feature gen-

erators such as ConvNets [28, 10, 5, 27, 26, 4, 10]. The

use of deep models brings large progress [14, 18]. Deep-

Pose [28] used ConvNet to regress joint locations with mul-

tiple steps. Chen et al. [5] used ConvNet features and built

up image-dependent pairwise relations to measure relation-

ship among body joints. Fan et al. [10] combined local and

global features to jointly predict joint locations. Tompson

et al. [27, 26] implemented the multi-resolution deep model

and Markov random field within an end-to-end joint train-

ing framework. Carreira and Malik [4] proposed to build

up dependency among input and output spaces. In order

to iteratively refine prediction results, they concatenated the

body joint location predictions at the previous steps with

the image as the input of current step. However, existing

ConvNet models either learned the pair-wise relationship

among body joints from score maps or did not learn pair-

wise relationship. Learning relationship among parts at the

feature level was not investigated.

3. Structural Feature Learning

3.1. Feature maps of body joints

ConvNets employ multiple layers to learn hierarchical

feature representations of input images. Features in lower

layers capture low-level information, while those in higher

layers can represent more abstract concepts, such as poses,

attributes and object categories. Widely used ConvNets

(e.g. AlexNet [16], Clarifai [36], Overfeat [22], GoogleNet

[24], and VGG [23]) employ fully connected (fc) layers fol-
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Figure 2. Examples of response maps of different images to the

same feature channels. (a) A feature channel for the neck. (b) A

feature channel for the left wrist. (c) A feature channel for the left

lower arm.

lowing convolutional layers to capture the global informa-

tion. In fully convolutional nets (fcn), 1 � 1 convolution is

used to replace fc layers. In this work, we use fully convo-

lutional VGG net [23] as the base model and extract feature

maps in the fcn7 layer.

Each body joint has a separate set of 128 feature maps.

All the joints share lower layers up to the fcn6 layer, which

has 4, 096 feature channels. Denote h fcn 6(x, y) as the fea-

ture vector obtained at location (x, y) in the fcn6 layer and

it is a 4, 096 dimensional vector. The 128 dimensional fea-

ture vector for body joint k at (x, y) in the fcn7 layer is

computed as

hk
fcn 7(x, y) = f(h fcn 6(x, y) 
 w k

fcn 7 + b fcn 6), (1)

where 
 denotes convolution, f is a nonlinear function,

w k
fcn 7 is the filter bank for joint k including 128 filters,

b fcn 6 is the bias, and hk
fcn 7 is the feature tensor contains

128 feature maps for joint k.

The feature maps of body joints contain rich information

and detailed descriptions of human poses and appearance.

Fig. 2 shows the response maps of different images to the

same feature channels. In (a1) and (a2), a feature channel

for the neck is chosen. All the images in (a1) have high re-

sponses to this feature channel and the highest responding

regions locate on necks. Persons in these images all look to

the left with similar 3D orientations of head. Images in (a2)

have much lower responses to this feature channel and their

highest responding regions distribute randomly. Persons in

these images have various head orientations different than

those in (a1). Therefore, this feature channel captures spe-

cific head orientations. Similarly, the feature channel for the

left wrist in (b) describes left wrists occluding left shoulders

when persons hold cups or cell phones. The feature channel

in (c) can effectively localize downward lower arms without

clothes covered.

3.2. Information passing

Since spatial distributions and semantic meaning of fea-

ture maps obtained at different joints are highly correlated,

passing the rich information contained in feature maps be-

tween joints can effectively improve features learned at each

joint. In previous works, messages could be passed by dis-

tance transfer [12, 35, 18] and Conditional Random Field

(CRF) [37, 15]. We show that under a fully convolutional

neural network, messages can be passed between feature

maps through the introduced geometrical transform kernels.

The FCN filters and the kernels can be jointly learned.

Fig. 3 (a)-(c) shows that convolution with asymmetric

kernels could geometrically shift the feature responses. (a)

is a feature map assuming Gaussian distribution. (b) are

different kernels for illustration. (c) are the transformed

feature maps after convolution. The feature map has been

shifted towards different directions and sum up to different

values.

In order to illustrate the process of information passing,

an example is shown in Figure 3 (d)-(g). Given an input

image in (d), its feature maps for elbow and lower arm are

shown in (e) and (f). One of the lower-arm feature maps hm

has high response, since its feature channel describes down-

ward lower arm without clothes covered. Another elbow

feature map en also has high response and it is positively

correlated with hm . One expects to use hm to reduce false

alarms and enhance the responses on the right elbow. It is

not suitable to directly add en to hm , since there is a spatial

mismatch between the two joints. Instead, we first shift hm

towards the right elbow through the geometrical transform

kernels and then add the transformed feature maps to en .

The refined feature maps in (h) have much better predic-

tion. Since each feature map captures detailed pose infor-

mation of the joint, the relative spatial distribution between

the two maps is stable and the kernel can be easily learned.

Since some elbow feature maps may be anti-correlated with

hm , their kernels could have negative values to prevent un-

related feature channels from generating false alarms. (i)-

(k) show more examples to demonstrate the effectiveness of

information passing between joints on feature learning. The

geometric constraints among body joints could be consoli-

dated by shifting feature map of one body joint towards its

nearby joints. The information passing described above can

be easily implemented with convolution layers.

3.2.1 Stacked transform kernels

The kernel size decides how far a feature map can be

shifted. In order to reduce the number of parameters

and also support the cases when neighboring joints are in

distance, we employ successive convolutions geometrical

transform kernels to approximate a large kernel. Each con-

volution is followed by a nonlinear transform. In our ap-
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