
Deep SimNets

Nadav Cohen

The Hebrew University of Jerusalem

cohennadav@cs.huji.ac.il

Or Sharir

The Hebrew University of Jerusalem

or.sharir@cs.huji.ac.il

Amnon Shashua

The Hebrew University of Jerusalem

shashua@cs.huji.ac.il

Abstract

We present a deep layered architecture that generalizes

convolutional neural networks (ConvNets). The architec-

ture, called SimNets, is driven by two operators: (i) a sim-

ilarity function that generalizes inner-product, and (ii) a

log-mean-exp function called MEX that generalizes maxi-

mum and average. The two operators applied in succession

give rise to a standard neuron but in ”feature space”. The

feature spaces realized by SimNets depend on the choice

of the similarity operator. The simplest setting, which cor-

responds to a convolution, realizes the feature space of

the Exponential kernel, while other settings realize feature

spaces of more powerful kernels (Generalized Gaussian,

which includes as special cases RBF and Laplacian), or

even dynamically learned feature spaces (Generalized Mul-

tiple Kernel Learning). As a result, the SimNet contains a

higher abstraction level compared to a traditional ConvNet.

We argue that enhanced expressiveness is important when

the networks are small due to run-time constraints (such as

those imposed by mobile applications). Empirical evalua-

tion validates the superior expressiveness of SimNets, show-

ing a significant gain in accuracy over ConvNets when com-

putational resources at run-time are limited. We also show

that in large-scale settings, where computational complex-

ity is less of a concern, the additional capacity of SimNets

can be controlled with proper regularization, yielding accu-

racies comparable to state of the art ConvNets.

1. Introduction

Deep neural networks, and convolutional neural net-

works (ConvNets) in particular, have had a dramatic im-

pact in advancing the state of the art in computer vision,

speech analysis, and many other domains (cf. [23, 36, 17]).

It has been demonstrated time and time again, that when

ConvNets are trained in an end-to-end manner, they deliver

significantly better results than systems relying on manually

engineered features.

The goal of this paper is to introduce a generalization of

ConvNets we call Similarity Networks (SimNets), that pre-

serves the simplicity and effectiveness of ConvNets, yet has

a higher abstraction level. In a nutshell, the inner-product

operator, which lies at the core of the ConvNet architecture,

is replaced by an inner-product in “feature space”. The fea-

ture spaces are controlled by a family of kernel functions

which include in particular the conventional (linear) inner-

product as a special case.

We argue that the incentive for designing deep networks

with a higher abstraction level than ConvNets, arises from

the need for small networks that could fit into mobile plat-

forms in terms of space and run-time. With small networks

the approximation error becomes a limiting factor, which

could be ameliorated through network architectures that are

based on a higher level of abstraction.

The SimNet architecture is based on two operators. The

first is analogous to, and generalizes, the inner-product op-

erator of neural networks. The second, as special cases,

plays the role of non-linear activation and pooling, but has

additional capabilities that take SimNets far beyond Con-

vNets. In a detailed set of experiments, the SimNet architec-

ture achieves state of the art accuracy using networks with

complexity comparable to that of top performing ConvNets.

However, when network complexity is limited, SimNets de-

liver a significant boost in accuracy.

Recently, the task of reducing run-time complexity of

ConvNets is receiving increased attention. For example, a

method named FitNets ([29]), based on the knowledge dis-

tillation principle ([18]), has been suggested in order to as-

sist in compressing deep networks. In [34], a form of gating

inspired by Long Short-Term Memory recurrent networks is

introduced, allowing training of very deep and narrow net-

works. Another line of work considers imposing structural

constrains on network weights, such as sparsity, in order

4782

to improve run-time efficiency ([11, 9, 16, 3, 4]). Alterna-

tively, network weights may be factorized using matrix or

tensor decompositions, reducing storage and computational

complexity, at the expense of marginal deterioration in ac-

curacy ([10, 20, 39, 24, 28, 38, 5]). All of these approaches

consider ConvNets (or neural networks) as a baseline, and

use supplementary techniques to reduce run-time complex-

ity. In this work, we propose the alternative (generalized)

SimNet architecture, and argue that it is inherently more

efficient than ConvNets. The techniques listed here for re-

ducing run-time complexity of ConvNets could just as well

be applied to SimNets, thereby resulting in even more com-

putationally efficient models.

2. The SimNet architecture

A feed-forward fully-connected neural network, also

known as a multilayer perceptron (MLP), is based on a sin-

gle operator. Given x ∈ R
d as input to a layer of neurons,

the output of the r’th neuron in the layer is σ(w⊤
r x + br),

where σ(·) is a non-linear activation function. An MLP is

constructed by forward chaining the input/output operation

to create a layered network. The learned parameters of the

network are the weight vectors wr and biases br, per neu-

ron.

The SimNet architecture consists of two operators. The

first operator is a weighted similarity function between an

input x ∈ R
d and a template z ∈ R

d:

similarity operator : u⊤φ(x, z)

where u ∈ R
d
+ is a weight vector and φ : Rd ×R

d → R
d is

a point-wise similarity mapping. We consider two forms of

similarity mappings: the “linear” form φlin(x, z)i = xizi,
and the “ℓp” form φℓp(x, z)i = −|xi − zi|

p defined for

p > 0. Note that when setting u = 1, the corresponding

similarities reduce to inner-product and p-distance (by the

power of p) respectively. Note also that unlike the MLP

operator, the similarity does not include a bias term. This

functionality is covered, in a much more general sense, by

the second operator described below.

For the second SimNet operator we define MEX – a log-

mean-exp function:

MEXβ
i=1,...,n

{ci} :=
1

β
log

(

1

n

n
∑

i=1

exp{β·ci}

)

(1)

The parameter β ∈ R spans a continuum between maxi-

mum (β → +∞), average (β → 0) and minimum (β →
−∞), and for a fixed value of β the function is smooth and

exhibits the following “collapsing” property 1:

MEXβ{MEXβ{cij}1≤j≤m}1≤i≤n

=MEXβ{cij}1≤j≤m,1≤i≤n

Given the definition in eqn. 1, the second SimNet oper-

ator consists of taking MEX over an input x ∈ R
d with a

bias vector b ∈ R
d – one per input coordinate 2:

MEX operator : MEXβ>0{xi + bi}i=1,..,d

Note that unlike a conventional MLP unit which has a bias

scalar, a MEX unit has a vector of biases. We may choose

to omit part or all of the biases as part of a network design.

For example, when all biases are dropped the MEX operator

implements a soft trade-off between maximum and average.

3. SimNet MLP

A SimNet analogy of an MLP with a single hidden layer

is obtained by applying the two operators defined in sec. 2

one after the other – similarity followed by MEX. The re-

sulting network is illustrated in fig. 1(a). It includes n hid-

den similarity units corresponding to weighted templates

{(zl,ul)}
n
l=1, and k output MEX units associated with bias

vectors {br}
k
r=1. Denote by hr(x) the value of the r’th

output unit when the network is fed with input x ∈ R
d:

hr(x) := MEXβ{u
⊤
l φ(x, zl) + brl}

n
l=1

3. As a classifier

of x into one of k categories, the network predicts the label

r for which hr(x) is maximal:

ŷ(x) = argmax
r=1,...,k

MEXβ{u
⊤
l φ(x, zl) + brl}

n
l=1

As it turns out, SimNet MLP is closely related to kernel

machines. In particular, with linear similarity, i.e. with the

1The collapsing property, as well as smoothly generalizing maximum

and average, will prove to be essential for us. We are not aware of other

functions that meet these three requirements. Specifically, the common

softmax function 1

β
log

(
∑

i exp{β·ci}
)

collapses and generalizes maxi-

mum but does not generalize average, and the alternative softmax function
∑

i cie
βci/

∑

i e
βci generalizes maximum and average but does not col-

lapse.
2The MEX operator can be viewed as an “inner-product in log-space”.

More accurately, if x and b are log-space representations of two vec-

tors c and d respectively (i.e. xi = log ci and bi = log di), then

MEXβ=1{xi + bi}i = log 〈c,d〉 − log d. In words, the MEX op-

erator (with β = 1) taken over the log-space representations of c and d is

equal (up to an additive constant) to the log-space representation of their

inner-product.
3Note that with uniform weights (ul ≡ 1), linear similarity map-

ping φ and β → +∞ we have hr(x) = max
{

z
⊤

l x+ brl
}n

l=1
,

i.e. the network outputs are “maxout” units ([13]). SimNet MLP is

not the first to generalize maxout. Other generalizations have been sug-

gested, notably the recently proposed Lp unit ([15]), which is defined by

(
∑

l |z
⊤

l x+ brl|
p)1/p, and tends to maxl

{

|z⊤l x+ brl|
}

as p → +∞.

The differences between SimNet MLP and Lp unit as maxout generaliza-

tions are: (i) Lp unit generalizes maximum of absolute values which only

coincides with maxout if the arguments are non-negative, and (ii) Lp unit

tries to realize maxout with a single operator whereas SimNet MLP imple-

ments maxout with a succession of two operators.

4783

inner-product operator on which neural networks are based,

it is a support vector machine (SVM) based on the Exponen-

tial kernel. Replacing the linear similarity with ℓp boosts the

abstraction level of SimNet MLP, by lifting it to a General-

ized Multiple Kernel Learning (GMKL, [37]) engine with a

Generalized Gaussian kernel. The remainder of this section

provides the details.

SimNet MLP outputs can be written as:

hr(x) = MEXβ{u
⊤
l φ(x, zl) + brl}

n
l=1

=
1

β
ln

(

1

n

n
∑

l=1

αrl exp

{

β

d
∑

i=1

ul,iφ(x, zl)i

})

= σ

(

n
∑

l=1

αrl ·Kθ(x, zl)

)

where αrl := exp{βbrl}, θ = (φ,u), and σ(t) =
(1/β) ln(t/n) is a non-linear activation function. The map-

pingKθ for the linear and ℓp similarities takes the following

forms:

Klin(x, z) = exp
{

βx⊤z
}

Kℓp(x, zl) = exp

{

−β
d
∑

i=1

ul,i|xi − zl,i|
p

}

Klin is known as the Exponential kernel ([30]), and Kℓp

is a GMKL. Specifically, fixing uniform weights (ul ≡ 1)

and p ≤ 2 reduces Kℓp to what is known as the General-

ized Gaussian kernel. For the particular cases p = 2 and

p = 1 we get the radial basis function (RBF) and Laplacian

kernels respectively. When the weights ul and/or order p
are learned, the exact underlying kernel is selected during

training and we amount at a GMKL.

Denoting by ψθ a feature mapping associated with Kθ,

we get:

hr(x) = σ (〈ψθ(x),wr〉)

where wr :=
∑n

l=1 αrlψθ(zl) is a learned vector in feature

space. We thus conclude that SimNet MLP output units are

“neurons in feature space”, where the space corresponds to

the Exponential kernel in the case of linear similarity, and

to the Generalized Gaussian kernel in the case of ℓp simi-

larity with fixed weights ul and order p. When the weights

and/or order are learned, the feature space is selected during

training, which is equivalent to saying that SimNet MLP is

a GMKL.

One may ask if perhaps a different choice of kernel,

more elaborate than Generalized Gaussian, will suffice in

order to capture SimNet MLP with ℓp similarity and learned

weights as a simple kernel machine. Apparently, as theo-

rem 1 (proven in [8]) shows, such a kernel does not exist,

i.e. a GMKL is indeed necessary in order to represent Sim-

Net MLP in all its glory.

Theorem 1. For any dimension d ∈ N, and constants c > 0
and p > 0, there are no mappings Z : R

d → R
d and

U : R
d → R

d
+ and a kernel K : (Rd × R

d
+) × (Rd ×

R
d
+) → R

d ×R
d
+, such that for all z,x ∈ R

d and u ∈ R
d
+:

K ([Z(x), U(x)], [z,u]) = exp
{

−c
∑d

i=1 ui|xi − zi|
p
}

.

4. Deep SimNets for processing images

In the previous section we presented the basic MLP ver-

sion of SimNets. In this section we describe two (orthog-

onal) directions of extension. The first is the addition of

locality, sharing and pooling for processing images (Sim-

Net MLPConv, sec. 4.1), while the second focuses on deep-

ening the network (adding layers) for enhanced capacity

(sec. 4.3). In this context we introduce a “whitened” ℓp
similarity layer through a succession of a convolution (lin-

ear similarity) followed by ℓp similarity with receptive field

1× 1.

4.1. SimNet MLPConv

The extension of SimNet MLP for processing images

follows the line of the MLPConv structure suggested

in [26], and we accordingly refer to it as SimNet MLPConv.

In particular, [26] convolved a standard MLP across an in-

coming 3D array by successively applying it to patches and

stacking the outputs in a spatially coherent manner. This re-

sults in a bank of feature maps, which may be summarized

into prediction scores through global average pooling. Sim-

Net MLPConv follows the same principles – a SimNet MLP

is convolved across an incoming 3D array, and the resulting

feature maps are summarized via global MEX pooling. An

illustration of SimNet MLPConv is provided in fig. 1(c). In

the figure, xij ∈ R
hwD refers to the input patch in location

ij, zl ∈ R
hwD and ul ∈ R

hwD
+ denote similarity templates

and weights respectively, φ : RhwD × R
hwD → R

hwD is

the similarity mapping (linear or ℓp), β1 ∈ R and brl ∈ R

are the MEX parameter and offsets of the underlying Sim-

Net MLP, and β2 ∈ R is the MEX parameter of the final

global pooling layer.

When used to classify images, the prediction rule

associated with SimNet MLPConv is given by: ŷ(input) =
argmaxrMEXβ2

{

MEXβ1

{

u⊤
l φ(xij , zl) + br,l

}

l

}

i,j
.

Setting β1 = β2 = β, and using the collapsing property of

MEX, we get a “patch-based” version of SimNet MLP’s

classification:

ŷ(input) = argmax
r

MEXβ
i,j,l

{u⊤
l φ(xij , zl) + br,l}

It can be shown ([8]) that all results put forth in sec. 3 for

relating SimNet MLP to kernel machines apply to SimNet

MLPConv as well, but with the underlying kernels being

based on “patch-representations”. In other words, SimNet

MLPConv – a “patch-based” extension of SimNet MLP,

4784

Figure 1. (a) SimNet MLP – SimNet analogy of MLP with single hidden layer (sec. 3) (b) conv→ ℓp-sim structure – implements whitened ℓp similarity

(sec. 4.2) (c) SimNet MLPConv – single layer SimNet for processing images (sec. 4.1) (d) L-layer SimNet for processing images (sec. 4.3). Best viewed

in color.

maintains all kernel relations of the latter, with a “patch-

based” extension of the underlying kernels.

4.2. Whitening with convolutional layer

We now describe a simple yet powerful addition to the ℓp
similarity operator. Recall that the ℓp similarity between an

input x ∈ R
d and a template z ∈ R

d with weights u ∈ R
d
+,

is defined by −
∑d

i=1 ui|xi−zi|
p. Up to a constant that de-

pends on u (and p), this is equal to the log probability den-

sity of the input x being drawn from a Generalized Gaussian

distribution with independent components, shape p, mean

z, and scales u−1/p. These ideas are further developed in

sec. 5, however it is clear at this point that in order to cap-

ture this probabilistic model, it would be desirable for the

input x to have statistically independent coordinates. Com-

mon practice in such cases is to seek for a matrix W for

which the linearly transformed vector Wx has independent

coordinates. This is referred to in the literature as ICA –

independent component analysis ([19]). Assuming such a

matrix is found, it would then be natural to “whiten” inputs,

i.e. multiply them by W , before measuring their ℓp similar-

ities to weighted templates. Besides better compliance with

the coordinate independence assumption, this also gives rise

to the possibility of dimensionality reduction. In particular,

we may set the matrix W to cancel-out low-variance prin-

cipal components of x, thereby producing whitened vectors

of a lower dimension. This can be useful for both noise

reduction and computational efficiency.

In the context of SimNet MLPConv, adding support for

whitening before ℓp similarity is simple – it merely requires

a convolutional layer (linear similarity) followed by an ℓp
similarity layer with receptive field 1 × 1. Such a con-

struct, which we refer to as conv→ ℓp-sim, is illustrated

in fig. 1(b). In this figure, input patches xij are trans-

formed into d-dimensional vectors yij by a convolutional

layer with d filters wt that hold the rows of the whiten-

ing matrix W . The whitened vectors yij are then matched

against n weighted templates in the ℓp similarity layer, pro-

ducing n similarity maps as output. To recap, one may add

whitening to ℓp similarity by replacing the similarity layer

with a conv→ ℓp-sim structure, which consists of convolu-

tion followed by 1× 1 similarity.

In sec. 5 we describe how to pre-train a conv→ ℓp-sim

structure, and in particular how to initialize the filters so

that they perform the whitening transformation they are in-

tended for. Before that however, we show how SimNet

MLPConv can be extended into an image processing Sim-

Net of arbitrary depth.

4.3. Going deep with SimNet MLPConv

After laying out the basic SimNet construct (SimNet

MLP – sec. 3), equipping it with spatial structure (SimNet

MLPConv – sec. 4.1), and adding whitening to its ℓp simi-

larity (conv→ ℓp-sim – sec. 4.2), we are finally in a position

to define an arbitrarily deep SimNet for processing images.

4785

Our starting point is SimNet MLPConv with whitened ℓp
similarity. This network accounts for a single layer (conv→
ℓp-sim) followed by a classifier (classification MEX and

global MEX pooling). Adding depth to the network simply

amounts to appending preceding conv→ ℓp-sim layers, op-

tionally separated by MEX pooling. A general L-layer Sim-

Net following this architectural prescription is illustrated in

fig. 1(d). In this structure, conv→ ℓp-sim layers measure

whitened ℓp similarities of incoming patches to weighted

templates, MEX pooling operations summarize spatial re-

gions in similarity maps by MEX’ing them together (note

that both average pooling and max pooling are special cases

of this), the MEX classification uses its offsets brl to clas-

sify each location in the final similarity maps, and the fi-

nal global MEX pooling summarizes the local classifica-

tions into global class scores. The parameters that may be

learned during training are: W (1). . .W (L) – linear filters

in conv→ ℓp-sim; z
(1)
l . . .z

(L)
l and u

(1)
l . . .u

(L)
l – similar-

ity templates and weights in conv→ ℓp-sim; p(1). . .p(L) –

similarity orders in conv→ ℓp-sim; β(1). . .β(L) – MEX pa-

rameters in local pooling; β(c) – MEX parameter in clas-

sification; brl – MEX offsets in classification; β(p) – MEX

parameter in global pooling. In the following section we

describe methods for initializing these parameters prior to

training (pre-training).

5. Pre-training

In this section we briefly describe a method for pre-

training an L-layer SimNet as illustrated in fig. 1(d).

Our initialization scheme covers the parameters of conv→
ℓp-sim layers (linear filters W (1), ...,W (L), similarity

templates z
(1)
l , ..., z

(L)
l , weights u

(1)
l , ...,u

(L)
l and orders

p(1), ..., p(L)), assuming predetermined local MEX pooling

parameters (β(1), ..., β(L)). Two attractive properties of the

scheme are: (i) it is unsupervised (does not require any

labels), and (ii) it gives rise to automatic selection of the

number of channels in the convolutions and similarities of

conv→ ℓp-sim layers.

The initialization is applied layer by layer in a forward

sweep, thus in order for it to be defined, it suffices to con-

sider a single conv→ ℓp-sim layer (fig. 1(b)). Recall from

sec. 4.2 that we interpret the convolution in conv→ ℓp-

sim as a linear transformation that whitens (and possibly

reduces the dimension of) input patches prior to similar-

ity measurements. Accordingly, we initialize its filters

w1, ...,wd as the rows of a whitening matrix W estimated

via ICA ([19]) on patches.

Turning to the initialization of similarity templates

(z1, ...zn), weights (u1, ...,un) and order (p), we recall that

an ℓp similarity between an input y ∈ R
d and a tem-

plate z ∈ R
d with weights u ∈ R

d
+, is defined to be

−
∑d

t=1 ut|yt − zt|
p. Consider now a probability distribu-

tion over Rd defined by a mixture of n Generalized Gaus-

sians (with priors λl ≥ 0,
∑

l λl = 1), all having the same

shape parameter (β > 0), and each having independent

coordinates with separate scales and means (αl,t > 0 and

µl,t ∈ R respectively, for coordinate t of component l):

P (y) =

n
∑

l=1

λl

d
∏

t=1

β

2αl,tΓ(1/β)
e−(|yt−µl,t|/αl,t)

β

The log probability density of a vector drawn from this dis-

tribution being equal to y and originating from component

l is: logP (y ∧ comp. l) = −
∑d

t=1 α
−β
l,t |yt − µl,t|

β + cl,

where cl := log
{

λl
∏d

t=1
β

2αl,tΓ(1/β)

}

is a constant that

does not depend on y. This implies that if we model

whitened patches yij with a Generalized Gaussian mixture

as above, initializing the similarity templates via zl,t = µl,t,

the weights via ul,t = α−β
l,t and the order via p = β would

give:

u⊤
l φℓp(yij , zl) = logP (y ∧ comp. l)− cl

In words, similarity channel l would hold, up to a constant,

the probabilistic heat map of component l and the whitened

patches yij . This observation suggests estimating the pa-

rameters of the mixture (shape β, scales αl,t and means µl,t)

based on whitened patches (via EM, cf. [1]), and initializing

the similarity parameters accordingly. We note in passing

that it is possible to append additive biases bl to the simi-

larity (through offsets of the succeeding MEX operator), in

which case initializing these via bl = cl would make the

probabilistic heat maps exact (not up to a constant).

Finally, as stated above, the initialization scheme pre-

sented induces an automatic selection of the number of con-

volution and similarity channels in conv→ ℓp-sim. The

number of convolution channels corresponds to the dimen-

sion to which input patches are reduced during whitening,

thus may be set via methods for estimating effective di-

mensionality of data (e.g. [31]). Similarity channels corre-

spond to components in the mixture estimated for whitened

patches, thus may be set via methods for estimating the

number of components in a mixture (e.g. [2]).

6. Experiments

To evaluate the effectiveness of SimNets, we compared

them against alternative ConvNets in three experiments of

increasing complexity. In the first experiment, we ran a sin-

gle layer SimNet against an equivalent single layer Con-

vNet, and studied the effect of model size (number of con-

volution/similarity channels) on the accuracy of the two net-

works. In a second experiment, we compared compact two

layer SimNets against the best performing publicly avail-

able ConvNet we are aware of that has comparable com-

plexity. In the third and final experiment, we constructed a

4786

Figure 2. (a) Single layer ConvNet compared against single layer SimNet on CIFAR-10 (b) CIFAR-10 cross-validation accuracies of single-layer networks

as a function of the number of floating-point operations required to classify an instance (c) Caffe ConvNet compared against two layer SimNet on CIFAR-10

and SVHN (for CIFAR-100, number of output units increased from 10 to 100). Best viewed in color.

large three layer SimNet designed to compete against state

of the art ConvNets. Our experiments demonstrate that Sim-

Nets are significantly more accurate than ConvNets when

networks are constrained to be compact, i.e. when compu-

tational load at run-time is limited. This complies with our

theoretical analysis in sec. 3, which shows that weighted

ℓp similarity exhibits an expressive power that goes beyond

kernel machines, whereas linear similarity (the case associ-

ated with ConvNets) is fully captured by the Exponential

kernel. Asymptotically as the dimension increases, even

a simple kernel machine becomes expressive enough for a

given problem, and more elaborate expressiveness may ac-

tually be a burden, as it aggravates overfitting. Nonetheless,

we see in our experiments that with proper regularization,

large-scale SimNets achieve accuracies comparable to state

of the art ConvNets.

6.1. Experimental details

The datasets used in our experiments are CIFAR-10 and

CIFAR-100 ([22]), as well as SVHN ([27]). These three

datasets together form an image recognition benchmark that

is diverse and challenging on one hand, yet simple enough

to enable granular controlled experiments such as those

needed to evaluate a new architecture. All datasets con-

sist of 32x32 color images. SVHN (Street View House

Numbers) represents a rather simple classification bench-

mark, where various methods are known to produce near-

human accuracies. It contains approximately 600K images

for training and 26K images for testing, partitioned into 10

categories that correspond to the digits 0 through 9. CIFAR-

100 contains 50K images for training and 10K images for

testing, equally partitioned into 100 categories. With a rel-

atively large number of categories, and only a few hundred

training examples per class, CIFAR-100 represents a chal-

lenging classification task. CIFAR-10 contains 50K im-

ages for training and 10K images for testing, equally par-

titioned into 10 categories. It brings forth a balanced trade-

off between the simplicity of SVHN and the complexity of

CIFAR-100, and accordingly served as the central dataset

throughout our experiments. Namely, all cross-validations

were carried out on CIFAR-10 (with 10K training images

held out for validation), with SVHN and CIFAR-100 used

for final evaluation only. In terms of implementation, we

have integrated SimNets into Caffe toolbox ([21]), with the

aim of making our code publicly available in the near future.

In all our experiments, we trained both SimNets and

ConvNets by minimizing softmax loss using SGD with

Nesterov acceleration ([35]). Batch size, momentum,

weight decay and learning rate were chosen through cross-

validation, though we observed, at least for the case of

SimNets, that the following choices consistently produced

good results: batch size 128, momentum 0.9, weight de-

cay 0.0001 and learning rate 0.01 decreasing by a factor

of 10 after 200 and 250 epochs (out of 300 total). Un-

like ConvNets which are mostly initialized randomly nowa-

days ([23]), SimNets are naturally pre-trained using statis-

tical estimation methods (sec. 5). For computational effi-

ciency, we implemented stochastic versions of these algo-

rithms. Unless otherwise stated, all reported SimNet results

were obtained using its pre-training scheme.

6.2. Single layer SimNet

As an initial experiment we compared a single layer Sim-

Net, i.e. a SimNet MLPConv with whitened ℓp similarity

(conv→ ℓp-sim), to an equivalent single layer ConvNet de-

fined for this purpose. We chose to design the ConvNet in

accordance with the prescription given by Coates et al. in

their study of single layer networks ([7]). The resulting net-

work is illustrated in fig. 2(a). As can be seen, it includes

a single convolutional layer with 5x5 receptive field and

ReLU activation, followed by max pooling over quadrants

and dense linear classification. To align the SimNet with

4787

this structure, we applied the whitened similarity to patches

with spatial size 5x5, and since these have relatively low di-

mension already (75), we did not reduce it further during

whitening.

To compare the networks as they vary in size (and

run-time complexity), we set the number of convolu-

tion/similarity channels (denoted n in fig. 2(a) and fig. 1(c))

to 50, 100, 200, 400 and 800. Since the ConvNet requires

less computations for a given number of channels, we also

tried it with 1600 and 3200 channels. CIFAR-10 cross-

validation accuracies produced by the ConvNet, the SimNet

with ℓ1 similarity, and the SimNet with ℓ2 similarity, are

plotted in fig. 2(b) against the number of FLOPs (floating-

point operations) required to classify an image 4 5. As can

be seen, for a given computational budget, the accuracies

of ℓ1 and ℓ2 SimNets are comparable, whereas the ConvNet

falls significantly behind.

6.3. Two layer SimNet

The purpose of this second experiment was to compare

SimNets against the best publicly available compact Con-

vNet we could find. We are interested in a clean SimNet

vs. ConvNet architectural comparison, and thus did not in-

clude in the experiment model compression techniques such

as those listed in sec. 1 (e.g. FitNets [29]), which may be

applied to both architectures. An additional reason to ex-

clude these techniques, as well as other works dealing with

compact ConvNets (e.g. [12, 40]), is that all results they

report relate to networks that are significantly larger than

those we are interested in evaluating, in many cases too

large to fit a real-time mobile application. With the stated

purpose of this experiment being a comparison against an

off-the-shelf ConvNet that was not altered by us, we eventu-

ally chose to work against the compact CIFAR-10 ConvNet

that comes built-in to Caffe, the structure of which is illus-

trated in fig. 2(c). As the figure shows, the network includes

three 5x5 convolutions, each followed by ReLU activation

and pooling. Two dense linear layers (separated by ReLU)

map the last convolutional layer into network outputs (class

scores). The SimNet to which we compared Caffe ConvNet

is a two layer network that follows the general structure out-

lined in fig. 1(d), with ℓ2 similarity and architectural choices

taken to maximize the alignment with Caffe ConvNet: 5x5

4In this paper, we consider FLOPs to be a measure of computational

complexity. We do not compare actual run-times, as our implementation

of SimNets is relatively naı̈ve, not nearly as efficient as the highly opti-

mized ConvNet code that comes built-in to Caffe. One may argue that like

Caffe, many other hardware or software platforms are specifically designed

for convolutions, and therefore ConvNets have a computational edge over

SimNets. While this is true for some off-the-shelf systems, our goal in this

paper is to address inherent algorithmic complexities, not specific plat-

forms currently in the market.
5To circumvent the computational price of exp and log functions in-

cluded in SimNets, we used approximations that require up to 10 FLOPs

per operation. The resulting degradation in accuracy is marginal.

Network Acc. (%) FLOP Param.

CIFAR-10

Caffe ConvNet 81.1 24.8M 145.6K

Two layer SimNet 85.5 14.2M 64.6K

SVHN

Caffe ConvNet 94 24.8M 145.6K

Two layer SimNet 93.8 14.2M 64.6K

CIFAR-100

Caffe ConvNet 52.4 24.8M 151.4K

Two layer SimNet 54.6 14.6M 70.3K

Table 1. Two layer SimNet vs. Caffe ConvNet on CIFAR-10,

SVHN and CIFAR-100 – comparison of test accuracies, number of

floating-point operations required to classify an image, and num-

ber of learned parameters.

receptive field and 32 channels in the first similarity layer,

5x5 receptive field and 64 channels in the second similar-

ity layer, and MEX pooling between the similarities fixed

to 3x3 max pooling with stride 2.

The networks were initially evaluated on CIFAR-10.

Training hyper-parameters for the SimNet were configured

via cross-validation, whereas for Caffe ConvNet we used

the values that come built-in to Caffe. After measuring

CIFAR-10 test accuracies, the same settings (network archi-

tectures and training hyper-parameters) were used to evalu-

ate test accuracies on SVHN. For evaluation of test accura-

cies on CIFAR-100, we again used the exact same settings

as in CIFAR-10, but this time increased the number of out-

put channels in both networks from 10 to 100. The results of

this experiment are summarized in table 1. As can be seen,

the SimNet is roughly twice as efficient as Caffe ConvNet,

yet achieves significantly higher accuracies on the more

challenging benchmarks (CIFAR-10 and CIFAR-100). On

SVHN accuracies are comparable, the reason being that in

this simple benchmark classification error is dominated by

overfit, to which the enhanced expressiveness of SimNets

does not contribute.

6.4. Three layer SimNet

In the previous experiments we have seen that SimNets

are more accurate than ConvNets when networks are con-

strained to be compact, i.e. when classification run-time

is limited. In such a setting, the lower approximation er-

ror of SimNets plays an important role. In contrast, when

networks are over-specified (i.e. are much larger than nec-

essary in order to model the problem at hand) – standard

practice for achieving state of the art accuracy, the approxi-

mation error is virtually zero, and the advantage of the Sim-

Net architecture fades. Moreover, the additional expressive

power of SimNets could actually be a burden, as additional

regularization for controlling overfit would be required. It

is therefore of interest to explore the ability of SimNets to

4788

reach state of the art accuracy with over-specified networks.

This is the aim of our third and final experiment, carried out

on CIFAR-10.

In this experiment we used a three layer SimNet as de-

scribed in fig. 1(d), with the following architectural choices

(determined via cross-validation): ℓ2 similarities; 192 sim-

ilarity channels in all three layers with receptive field sizes

5x5, 5x5 and 3x3 (respectively); max pooling after layer

1, average pooling after layer 2, in both cases pooling win-

dows are 3x3 in size with stride 2 between them. We trained

the network with basic data augmentation, and regularized

using multiplicative Gaussian noise6 in conv→ ℓp-sim lay-

ers. We did not make use of ensembles ([6]) or aggressive

data augmentation that includes rescaling images ([14]).

These practices are known to improve accuracy, but are or-

thogonal to the SimNet vs. ConvNet distinction. We did

not include them in our study in order to facilitate a simpler

comparison between the two architectures. Table 2 draws a

comparison between the test accuracy reached by the Sim-

Net and reported state of the art results that did not make

use of ensembles or aggressive data augmentation. As the

table shows, SimNets compare to state of the art ConvNets,

even in the over-specified setting.

As a final sanity check, we compared extremely com-

pact versions of our three layer SimNet and Network in Net-

work (NiN, [26]) 7. Specifically, we changed the number of

channels in all layers of both networks to 10, and removed

dropout (NiN) and multiplicative Gaussian noise (SimNet),

leaving all other hyper-parameters intact. The resulting net-

works had only 5K parameters each, and required just 3.5M

FLOPs to classify an image. With such limited resources we

expect the SimNet to benefit from its inherent expressive-

ness, and indeed, it outperformed NiN significantly, provid-

ing 76.8% accuracy compared to 72.3% reached by NiN.

7. Conclusion

We presented a deep layered architecture called SimNets

that generalizes convolutional neural networks. The archi-

tecture is driven by two operators: (i) the similarity opera-

tor, which is a generalization of the inner-product operator

on which ConvNets are based, and (ii) the MEX operator,

that can realize non-linear activation and pooling, but has

additional capabilities that make SimNets a powerful gener-

alization of ConvNets. An interesting property of the Sim-

Net architecture is that applying its two operators in succes-

sion – similarity followed by MEX, results in what can be

viewed as an artificial neuron in a high-dimensional feature

6This regularization technique was shown to be more effective than

dropout ([33]), and better suits the nature of SimNets (zeroing out an input

coordinate does not neutralize its effect on ℓp similarity).
7We chose to work against NiN since it bears an architectural resem-

blance to our SimNet, thus it was clear how both networks can be made

compact in an analogous way.

Method Acc. (%)

Network in Network ([26]) 91.19

Deeply Supervised Nets ([25]) 92.03

Highway Network ([34]) 92.4

ALL-CNN ([32]) 92.75

Three layer SimNet 92.18

Table 2. Three layer SimNet vs. state of the art ConvNets on

CIFAR-10 (ensemble and aggressive data augmentation methods

excluded) – comparison of test accuracies.

space (sec. 3). This also holds for the more elaborate im-

age processing SimNet incorporating locality, sharing and

pooling (sec. 4.1).

The feature spaces realized by SimNets depend on the

choice of similarity type: linear or ℓp with/without weights.

We have shown that the simplest setting using linear sim-

ilarity (corresponding to regular convolution) realizes the

feature space of the Exponential kernel, while ℓp settings re-

alize feature spaces of more powerful kernels (Generalized

Gaussian, which includes as special cases RBF and Lapla-

cian), or even dynamically learned feature spaces (General-

ized Multiple Kernel Learning). These observations suggest

that SimNets, when equipped with ℓp similarity, have higher

abstraction level than ConvNets, which correspond to linear

similarity.

We argue that a higher abstraction level for the basic net-

work building blocks carries with it the advantage of ob-

taining higher accuracies with small networks, an impor-

tant trait for mobile and real-time applications. Through

a detailed set of experiments we validated the conjecture

of higher accuracy for small networks, and we have also

shown that SimNets can achieve state of the art accuracy in

large-scale settings where computational efficiency is not a

concern (and thus the higher abstraction per given network

size is not an advantage).

Finally, the SimNet architecture is endowed with a nat-

ural pre-training scheme based on unlabeled data. Besides

its aid in training, the scheme also has the potential of de-

termining the number of channels in hidden layers based on

statistical analysis of patterns generated in previous layers.

This implies that the structure of SimNets can potentially

be determined automatically based on (unlabeled) train-

ing data. Future work includes a study of this capability,

and more generally, further analysis of probabilistic prop-

erties of SimNets and unsupervised/supervised algorithms

derived thereof.

Acknowledgments

We thank Ronen Tamari for his dedicated contribution to

the experiments. The work is partly funded by Intel grant

ICRI-CI 9-2012-6133 and ISF grant 1790/12. Nadav Cohen

is supported by a Google Fellowship in Machine Learning.

4789

References

[1] Yakoub Bazi, Lorenzo Bruzzone, and Farid Melgani. Image

thresholding based on the em algorithm and the generalized

gaussian distribution. Pattern Recognition, 40(2):619–634,

2007.

[2] Gilles Celeux and Gilda Soromenho. An entropy criterion

for assessing the number of clusters in a mixture model.

Journal of classification, 13(2):195–212, 1996.

[3] Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q

Weinberger, and Yixin Chen. Compressing Neural Networks

with the Hashing Trick. In International Conference on Ma-

chine Learning, 2015.

[4] Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q

Weinberger, and Yixin Chen. Compressing Convolutional

Neural Networks. CoRR abs/1506.04449, 2015.

[5] Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok

Choudhary, and Shih-Fu Chang. An exploration of parame-

ter redundancy in deep networks with circulant projections.

In International Conference on Computer Vision, 2015.

[6] Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-

column deep neural networks for image classification. In

Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pages 3642–3649. IEEE, 2012.

[7] Adam Coates, Andrew Y Ng, and Honglak Lee. An anal-

ysis of single-layer networks in unsupervised feature learn-

ing. In International Conference on Artificial Intelligence

and Statistics, pages 215–223, 2011.

[8] Nadav Cohen and Amnon Shashua. Simnets: A generaliza-

tion of convolutional networks. NIPS 2014 Deep Learning

Workshop, 2014.

[9] Maxwell D Collins and Pushmeet Kohli. Memory Bounded

Deep Convolutional Networks. CoRR abs/1412.1442, 2014.

[10] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun,

and Rob Fergus. Exploiting Linear Structure Within Convo-

lutional Networks for Efficient Evaluation. In Advances in

Neural Information Processing Systems, 2014.

[11] Michael Figurnov, Dmitry Vetrov, and Pushmeet Kohli. Per-

foratedCNNs: Acceleration through Elimination of Redun-

dant Convolutions. CoRR abs/1202.2745, cs.CV, 2015.

[12] Chelsea Finn, Lisa Anne Hendricks, and Trevor Darrell.

Learning compact convolutional neural networks with nested

dropout. arXiv preprint arXiv:1412.7155, 2014.

[13] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron

Courville, and Yoshua Bengio. Maxout networks. arXiv

preprint arXiv:1302.4389, 2013.

[14] Benjamin Graham. Fractional max-pooling. arXiv preprint

arXiv:1412.6071, 2014.

[15] Caglar Gulcehre, Kyunghyun Cho, Razvan Pascanu, and

Yoshua Bengio. Learned-norm pooling for deep feedfor-

ward and recurrent neural networks. In Machine Learn-

ing and Knowledge Discovery in Databases, pages 530–546.

Springer, 2014.

[16] Song Han, Jeff Pool, John Tran, and William J Dally. Learn-

ing both Weights and Connections for Efficient Neural Net-

works. CoRR abs/1202.2745, cs.NE, 2015.

[17] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro,

Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh,

Shubho Sengupta, Adam Coates, et al. Deepspeech: Scal-

ing up end-to-end speech recognition. arXiv preprint

arXiv:1412.5567, 2014.

[18] Geoffrey E Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. In NIPS 2014 Deep

Learning Workshop, 2014.

[19] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Indepen-

dent component analysis, volume 46. John Wiley & Sons,

2004.

[20] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.

Speeding up Convolutional Neural Networks with Low Rank

Expansions. In British Machine Vision Conference, 2014.

[21] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey

Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,

and Trevor Darrell. Caffe: Convolutional architecture for fast

feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[22] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Computer Science De-

partment, University of Toronto, Tech. Rep, 2009.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[24] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba,

Ivan V Oseledets, and Victor S Lempitsky. Speeding-

up Convolutional Neural Networks Using Fine-tuned CP-

Decomposition. In International Conference on Learning

Representations, 2015.

[25] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou

Zhang, and Zhuowen Tu. Deeply-supervised nets. arXiv

preprint arXiv:1409.5185, 2014.

[26] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-

work. arXiv preprint arXiv:1312.4400, 2013.

[27] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. In NIPS work-

shop on deep learning and unsupervised feature learning,

volume 2011, page 5. Granada, Spain, 2011.

4790

[28] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin,

and Dmitry Vetrov. Tensorizing Neural Networks. In Ad-

vances in Neural Information Processing Systems, 2015.

[29] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. FitNets:

Hints for Thin Deep Nets. CoRR abs/1412.6550, 2014.

[30] Bernhard Schölkopf and Alexander J Smola. Learning with

kernels: support vector machines, regularization, optimiza-

tion, and beyond. MIT press, 2002.

[31] Abd-Krim Seghouane and Andrzej Cichocki. Bayesian esti-

mation of the number of principal components. Signal Pro-

cessing, 87(3):562–568, 2007.

[32] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas

Brox, and Martin Riedmiller. Striving for simplicity: The

all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[33] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. The Jour-

nal of Machine Learning Research, 15(1):1929–1958, 2014.

[34] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmid-

huber. Training Very Deep Networks. In Advances in Neural

Information Processing Systems, 2015.

[35] Ilya Sutskever, James Martens, George Dahl, and Geoffrey

Hinton. On the importance of initialization and momentum

in deep learning. In Proceedings of the 30th International

Conference on Machine Learning (ICML-13), pages 1139–

1147, 2013.

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. arXiv preprint arXiv:1409.4842, 2014.

[37] Manik Varma and Bodla Rakesh Babu. More generality

in efficient multiple kernel learning. In Proceedings of the

26th Annual International Conference on Machine Learning,

pages 1065–1072. ACM, 2009.

[38] Zichao Yang, Marcin Moczulski, Misha Denil, Nando

de Freitas, Alexander J Smola, Le Song, and Ziyu Wang.

Deep Fried Convnets. In International Conference on Com-

puter Vision, 2015.

[39] Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and

Jian Sun. Efficient and accurate approximations of nonlinear

convolutional networks. In Conference on Computer Vision

and Pattern Recognition. IEEE, 2015.

[40] Zejia Zheng, Zhu Li, Abhishek Nagar, and Woosung Kang.

Compact deep convolutional neural networks for image clas-

sification.

4791

