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Abstract

This paper shows for the first time that is possible to re-

construct the position of rigid objects and to jointly recover

affine camera calibration solely from a set of object detec-

tions in a video sequence. In practice, this work can be con-

sidered as the extension of Tomasi and Kanade factorization

method using objects. Instead of using points to form a rank

constrained measurement matrix, we can form a matrix with

similar rank properties using 2D object detection proposals.

In detail, we first fit an ellipse onto the image plane at each

bounding box as given by the object detector. The collection

of all the ellipses in the dual space is used to create a mea-

surement matrix that gives a specific rank constraint. This

matrix can be factorised and metrically upgraded in order

to provide the affine camera matrices and the 3D position of

the objects as an ellipsoid. Moreover, we recover the full 3D

quadric thus giving additional information about object oc-

cupancy and 3D pose. Finally, we also show that 2D points

measurements can be seamlessly included in the framework

to reduce the number of objects required. This last aspect

unifies the classical point-based Tomasi and Kanade ap-

proach with objects in a unique framework. Experiments

with synthetic and real data show the feasibility of our ap-

proach for the affine camera case.

1. Introduction

Factorization methods for Structure from Motion (SfM)

deliver highly efficient solutions for the simultaneous cal-

ibration and 3D reconstruction using image point trajecto-

ries/matches. The seminal paper of Tomasi and Kanade [19]

was based on the intuition that if we form a matrix contain-

ing matched 2D image points, such resulting matrix is rank

constrained. This property can be used to obtain an initial

affine solution with Singular Value Decomposition (SVD)

for the camera matrices and 3D points. Such solution can

be then linearly upgraded to metric by imposing orthogonal-

ity constraints on the camera matrices, giving a closed-form

solution to the SfM problem. Even if modern 3D recon-

struction pipelines from images have reached impressive

results through non-linear optimization [1, 8, 18], factor-

ization methods still entails a theoretical appealing solution

to the SfM problem. Such approaches have been further up-

dated to more complex camera models [13, 21], to deal with

the case of missing data [11, 17] and multiple moving ob-

jects [4, 6], or to model articulated [22, 20] and deformable

[5]) objects, demonstrating that the research on this type of

methods is still very active and promising. As a peculiar

aspect, up to now, every factorization method for 3D recon-

struction mostly deals with points, while very few excep-

tions exist in the literature using different geometrical enti-

ties such as lines [15, 14] and conic features [12, 16]. The

limit of these methods is that they can reconstruct geomet-

ric primitives starting from projected outlines only, but they

cannot deal with image object detections and their gross in-

accuracies over size and position.

This work takes a different direction from previous SfM

methods by showing that it is possible to solve simultane-

ously for affine camera calibration and 3D structure in a

closed-form using multi-view relations given only by the lo-

cation of a set of objects in an image sequence (see Fig 1 for

a graphical representation). Instead of considering points as

an input of our method, here we use as measurements the

output of an object detector, i.e. a set of bounding boxes.

We show that, by fitting the bounding boxes with 2D el-

lipsoids, it is possible to form a measurement matrix that

contains the matrices of each 2D conics. If the collection of

conics is expressed in the dual space, the resulting matrix C

will show a specific rank constraint since the matrix of the

dual conics can be decomposed in terms of two factors as

C = G V where G contains the parameters of the affine cam-

era and V the 3D quadrics whose reprojection gives the 2D
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Figure 1. Given multiple views with a set of objects detected in

every image, the proposed factorization approach can simultane-

ously recover the affine camera calibration and the 3D quadrics

describing the location and pose of the objects in the scene.

conics stored in C. Then, given this initial affine solution

of the system, it is possible to find a metric upgrade that

solves for both the camera matrices and the 3D quadrics. In

practice this provides a self-calibration of the camera and

3D location of the objects with just a set of object detec-

tions. Moreover it is straightforward to show that image

points can still be included in the formulation as degener-

ate conics in dual space thus obtaining a joint objects/points

factorisation. Furthermore, since the framework recovers

a 3D quadric related to an object, this information can be

used to infer the coarse pose and size of the object shape in

3D. The rest of the paper is structured as follows. Section

2 defines the problem and the related mathematical formal-

isation. Section 3 presents the factorization problem in the

dual space while Section 4 describes how to perform the

metric upgrade. Experiments on real and synthetic data are

discussed in Section 5 and then followed by concluding re-

marks in Section 6.

2. From bounding boxes to conics in dual space

Let us consider a set of image frames f = 1 . . . F rep-

resenting a 3D scene under different viewpoints. A set of

i = 1 . . . N rigid objects is placed in arbitrary positions and

each object is detected in each of the F images. Each ob-

ject i in each image frame f is identified by a 2D bounding

box given by a generic object detector. In order to ease the

mathematical formalization of the problem, we move from

a bounding box representation of an object to an ellipsoid

one. This is done by associating at each bounding box an

ellipse fitting Dfi that inscribes the bounding box. The aim

of our problem is to find the 3D ellipsoids Ei whose pro-

jections onto the image planes, associated to each frame

f = 1 . . . F , best fit the 2D ellipses Dfi. This will solve

for both the 3D localisation and occupancy of each object

starting from image detections in the different views. In the

following, we represent each ellipse using the homogeneous

quadratic form of a conic equation:

u
⊤
Dfi u = 0, (1)

where u ∈ R
3 is the homogeneous vector of a generic 2D

point belonging to the conic defined by the symmetric ma-

trix Dfi ∈ R
3×3.

The conic has five degrees of freedom, given by the six

elements of the lower triangular part of the symmetric ma-

trix Dfi except one for the scale, since Eq. (1) is homo-

geneous in u. Similarly to the ellipses, we represent the

ellipsoids in the 3D space with the homogeneous quadratic

form of a quadric equation:

x
⊤
Ei x = 0, (2)

where x ∈ R
4 represents an homogeneous 3D point be-

longing to the quadric defined by the symmetric matrix

Ei ∈ R
4×4. The quadric has nine degrees of freedom, given

by the ten elements of the symmetric matrix Ei up to one for

the overall scale.

Since the relationship between Dfi and Ei is not straight-

forward in the primal space, i.e. the Euclidean space of 3D

points (2D points in the images), it is convenient to refor-

mulate it in dual space, i.e. the space of the planes (lines in

the images) [7]. In particular, the conics in 2D can be rep-

resented by the envelope of all the lines tangent to the conic

curve, while the quadrics in 3D can be represented by the

envelope of all the planes tangent to the quadric surface.

Hence, the dual quadric is defined by the matrix Qi =
adj(Ei), where adj is the adjoint operator, and the dual

conic is defined by Cfi = adj(Dfi) [9].

Each quadric Qi, when projected onto the image plane,

gives a conic denoted with Cfi ∈ R
3×3. The relationship

between Qi and Cfi is defined by the orthographic projection

matrix Pf ∈ R
3×4 as:

Pf =

[

Rf tf

0
⊤
3 1

]

=





p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1



 (4)

where Rf ∈ R
2×3 is an orthographic camera matrix such

that RfR
⊤
f = I2×2, the vector tf is the camera translation

and 0m denotes a vector of m zeros.

The dual conic Cfi and the dual quadric Qi are defined

up to an overall scale factor that can be arbitrarily fixed by

setting the elements (3,3) of Cfi and (4,4) of Qi to −1. After

such normalization, the relation between a dual quadric and

its dual conic projections can be written as:

Cfi = PfQiP
⊤
f . (5)

3. Dual conic matrix factorization

In order to recover Qi in closed form from the set of

dual conics {Cfi}f=1...F , we have to re-arrange Eq. (5)
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Gf =





























p11
2

2 p12p11 2 p13p11 2 p14p11 p12
2

2 p13p12 2 p14p12 p13
2

2 p13p14 p14
2

p21p11 p21p12 + p22p11 p23p11 + p21p13 p24p11 + p21p14 p22p12 p22p13 + p23p12 p22p14 + p24p12 p23p13 p23p14 + p24p13 p24p14

0 0 0 p11 0 0 p12 0 p13 p14

p21
2

2 p22p21 2 p23p21 2 p24p21 p22
2

2 p23p22 2 p24p22 p23
2

2 p23p24 p24
2

0 0 0 p21 0 0 p22 0 p23 p24

0 0 0 0 0 0 0 0 0 1





























(3)

into a linear system. Let us define vi = vech(Qi) and

cfi = vech(Cfi) as the vectorization of symmetric matrices

Qi and Cfi respectively1.

Then, let us arrange the products of the elements of Pf
and P⊤f in a unique matrix Gf ∈ R

6×10 as follows [10]:

Gf = Y(Pf ⊗ Pf )W (6)

where ⊗ is the Kronecker product and matrices Y ∈ R
6×9

and W ∈ R
16×10 are two matrices such that vech(X) =

Y vec(X) and vec(X) = W vech(X) respectively, where X is

a symmetric matrix2. Given Gf , we can rewrite Eq. (5) as:

cfi = Gfvi, (7)

The set of equations for each frame and object can be re-

written in a global matrix system by stacking all the equa-

tions for each frame and view such that:

C =







c11 · · · c1N

...
. . .

...

cF1 · · · cFN






=







G1
...

GF







[

v1 · · · vN

]

(8)

with

G
⊤ =

[

G⊤1 · · · G⊤F

]⊤
V =

[

v1 · · · vN

]

, (9)

with the dual conic matrix C being clearly rank constrained

since being the product of two rank constrained matrices

(i.e. rank(C) ≤ 10) given the dimensionality of the matrix

factors G6F×10 and V10×N .

The explicit form of Gf , function of the entries pmn of

Pf , as in Eq. 3, although complex, shows that the matrix

is strongly structured. Now, starting solely from the image

measurements, i.e. the dual conics stored in C, it is now

possible to obtain an initial, affine, solution by performing

SVD over C and truncating to the first 10 components thus

obtaining:

C = G̃ Ṽ. (10)

This factorization is not unique, since it is possible to define

a 10 × 10 full-rank transformation matrix such that C =
G V = G̃Z Z−1Ṽ. Finding the transformation matrix Z that

enforces the correct matrix structure of G or V is the core

problem of any factorization methods.

1The operator vech serializes the elements of the lower triangular part

of a symmetric matrix, such that, given a symmetric matrix X ∈ R
n×n,

the vector x, defined as x = vech(X), is x ∈ R
g with g =

n(n+1)
2

.
2The operator vec serializes all the elements of a generic matrix.

4. Upgrading to metric

Unlike the classical Tomasi and Kanade factorization

method, where Z is a 3 × 3 symmetric matrix, the solution

of the transformation matrix in our problem has a higher

dimensionality. However in the literature of factorization

methods there are several examples with increasing com-

plexity: Photometric stereo [3] solves for a 4× 4 and 9× 9
matrix while the non-rigid structure from motion problem

[5] has an increasing dimensionality given the complexity

of the shape (i.e. 3K×3K where K are the modes of defor-

mation of the shape). Regardless this, our problem entails

interesting differences that departs from the classical solu-

tion in structure from motion. In particular, we will show

that there is a feasible solution without computing the full

Z10×10. First of all, the orthographic camera matrix con-

straints, i.e. RfR
⊤
f = I2×2, have to be enforced for the so-

lution of the matrix Z. However, the reshuffling of the com-

ponents of Rf in the matrix Gf complicates further the prob-

lem. Yet, a key observation is that it is possible to re-arrange

some of the entries of Gf in a new matrix that expresses a

rank-3 constraint. This sub-problem can be solved and leads

to the computation of the ortographic camera matrices, as

well as translation parameters of the quadrics. Given this

solution, by re-substituting into the original problem and

with a careful normalization, it is possible to compute the

quadrics shape and size linearly. Notice that this approach

requires a minimum number of just three objects, linked to

the rank 3 constraint, instead of ten objects required by the

rank 10 factorization.

4.1. Solving for camera parameters and quadrics
translation

A key step to reduce the complexity of the problem con-

sists in enforcing a translation of each image frame accord-

ing to the average of the ellipses coordinate centers. To do

this, let us define t
c
fi ∈ R

2×1 as the center of ellipse i in

frame f and t
q
i ∈ R

3×1 as the center of ellipsoid i in 3D

space, and the related translation matrices Tcfi and T
q
i as:

T
c
fi =

[

I2×2 t
c
fi

0
⊤
2 1

]

, T
q
i =

[

I3×3 t
q
i

0
⊤
3 1

]

. (12)
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Ḡf =





























p11
2

2 p12p11 2 p13p11 p12
2

2 p13p12 p13
2

0 0 0 0

p21p11 p21p12 + p22p11 p23p11 + p21p13 p22p12 p22p13 + p23p12 p23p13 0 0 0 0

p21
2

2 p22p21 2 p23p21 p22
2

2 p23p22 p23
2

0 0 0 0

0 0 0 0 0 0 p11 p12 p13 0

0 0 0 0 0 0 p21 p22 p23 0

0 0 0 0 0 0 0 0 0 1





























(11)

It is easy to demonstrate that:

(T̄
c
f )

−1
Cfi(T̄

c
f )

−⊤ = P̄f (T̄
q
)−1Qi(T̄

q
)−⊤

P̄
⊤
f , (13)

where

T̄
c
f =

1

N

N
∑

i=1

T
c
fi, T̄

q
=

1

N

N
∑

i=1

T
q
i , (14)

P̄f =

[

Rf 02

0
⊤
3 1

]

=





p11 p12 p13 0
p21 p22 p23 0
0 0 1



 . (15)

Thus, centering every frame on the average of ellipses cen-

ters is equivalent to center the 3D space on the average of

ellipsoids centers, removing at the same time the transla-

tion components tf of each projection matrix related to the

cameras. Therefore, the relationship between quadrics and

conics in Eq. (5) can be recast in the following way:

C̄fi = P̄f Q̄iP̄
⊤
f , (16)

given that

C̄fi = (T̄
c
f )

−1
Cfi(T̄

c
f )

−⊤, Q̄i = (T̄
q
)−1Qi(T̄

q
)−⊤. (17)

An interesting fact arises here: If we calculate the ma-

trices Gf starting from P̄f , according to Eq. (6), we see

that all the entries of Gf containing p14 and p24 are ze-

roed, since p14 = p24 = 0 in Eq. (15). Now let us

permute the matrix Gf taking its rows and columns in the

order given by the index sets {1, 2, 4, 3, 5, 6} for the rows

and {1, 2, 3, 5, 6, 8, 4, 7, 9, 10} for the columns, so defining

a new matrix Ḡf as in Eq. (11). The matrix Ḡf has a block

diagonal structure, in which the 3×6 upper left block groups

all the entries quadratic in the pmn terms, the 2× 3 middle

block groups the entries linear in pmn and the lower right

block is a constant scalar. Given this structure, the bilinear

factorization problem based on the rank 10 constraint can

be decoupled into two sub-problems with rank 6 and 3 con-

straints respectively. The last block of size 1 × 1 does not

provide any additional information and can be discarded 3.

In particular, let us isolate the middle block of Ḡf , named

here Glf :

3Given that the last elements of all quadrics and conics are fixed to −1,

it is easy to see that the last row of Ḡf provides a redundant constraint

−1 = −1 for every frame and object.

G
l
f =

[

p11 p12 p13
p21 p22 p23

]

, (18)

where the index l recalls the linearity of Glf with respect to

the terms pij . Next, let us pick up the corresponding en-

tries of vectors c̄fi and v̄i, defined as c̄fi = vech(C̄fi) and

v̄i = vech(Q̄i), so obtaining the new reduced and permuted

vectors:

v
l
i = v̄i{4,7,9}, c

l
fi = c̄fi{3,5}. (19)

Finally let us group together all the frames and objects, sim-

ilarly as Eqs. (8) and (9), obtaining the following matrices:

G
l⊤ =

[

Gl1
⊤

· · · GlF
⊤
]⊤

, V
l =

[

v
l
1 · · · v

l
N

]

,

(20)

C
l =







c
l
11 · · · c

l
1N

...
. . .

...

c
l
F1 · · · c

l
FN






. (21)

In this way we end up with the following bilinear relation-

ship:

C
l = G

l
V
l, (22)

where Cl ∈ R
2F×N , Gl ∈ R

2F×3 and Vl ∈ R
3×N . By per-

forming an SVD on Cl and truncating to the third singular

value we obtain:

G
l
V
l = G̃

l
Z
l
Z
l−1

Ṽ
l
. (23)

The 3 × 3 mixing matrix Zl can be found by exploiting the

orthogonality and norm constraints of an orthographic cam-

era matrix. In this way we are able to find the whole camera

parameters and the elements 4, 7 and 9 of the vectorized

quadrics, given the measured elements 3 and 5 of the vec-

torized conics, by simply selecting the proper elements of

the recovered matrices Gl and Vl.

Geometrical interpretation. In order to gain more in-

sights into the geometrical meaning of this solution, the re-

lation between conics and quadrics will be made explicit.

Every dual conic Cfi can be expressed as a conic with

coordinate center (0, 0), denoted with C̆fi, pre- and post-

multiplied by a translation matrix Tcfi defined according to

Eq. (12). A similar property holds for quadrics, thus giving:

Cfi = T
c
fiC̆fiT

c⊤
fi , Qi = T

q
i Q̆iT

q⊤
i , (24)
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where:

C̆fi=





c11 c12 0
c12 c22 0
0 0 −1



 , Q̆i=









q11 q12 q13 0
q12 q22 q23 0
q13 q23 q33 0
0 0 0 −1









.

(25)

Given Eqs. (24) and (25), the vectorized dual conics and

dual quadrics assume the following form:

cfi =





























c11 − tc1
2

c12 − tc1t
c
2

−tc1

c22 − tc2
2

−tc2

−1





























vi =





















































q11 − tq1
2

q12 − tq1t
q
2

q13 − tq1t
q
3

−tq1

q22 − tq2
2

q23 − tq2t
q
3

−tq2

q33 − tq3
2

−tq3

−1





















































. (26)

Notice that the translation parameters tc1, t
c
2 and tq1, t

q
2, t

q
3 of

conic and quadric appear linearly in entries 3 and 5 of cfi
and 4, 7 and 9 of vi. Since these entries are the ones picked

up to form the matrices Cl and Vl we can conclude that el-

lipsoid centers can be recovered from ellipses centers by

decoupling them from the ellipsoid shape.

4.2. Solving for the ellipsoid shape

As can be seen from Eqs. (26), the terms describing

shape and size are contained in the elements {1, 2, 3, 5, 6, 8}
of the vectorized quadric vi and the elements {1, 2, 4} of

the vectorized conic cfi. Therefore, it is possible to express

the vectorized conics elements {1, 2, 4} as a product of the

3 × 6 upper left block of Ḡf times the vectorized quadrics

elements {1, 2, 3, 5, 6, 8} and exploit the rank-6 constraint

to find such quadric elements. However three drawbacks

make this option not so appealing.

First, the terms of the vectorized quadrics are mixed

with the quadratic component related to the translation, as

can be seen in Eq. (26). In the case of small ellipses far

from the image center, a likely case in many scenarios, the

terms related to the ellipse size and shape become negligi-

ble with respect to the translation terms, and consequently

even small errors on cfi affect negatively the reconstruc-

tion of the ellipsoid. This is because the information on

the ellipsoid shape, embedded in the elements c11, c12 and

c22 do not prevail over the translation errors on tc1 and tc2.

Second, by exploiting the rank-6 constraint, one can recon-

struct the six ellipsoid terms up to a 6 × 6 invertible ma-

trix. However doing a metric upgrade is not trivial involv-

ing quadratic equality constraints drawn from the structure

of Ḡf , thus leading to a nonlinear optimization procedure

with the risk to obtain a local solution. Finally, at least six

objects have to be visible in every frame in order to be able

to use a rank-6 constraint.

To fix these drawbacks, we propose a different proce-

dure. First of all, it is possible to remove the quadratic

translation terms by considering the centered ellipses and

ellipsoids. In fact, if Eq. (16) holds, then also:

C̆fi = P̄f Q̆iP̄
⊤
f (27)

holds, i.e. in the affine case centering every single ellipse

to the image center is equivalent to center every ellipsoid

in the 3D coordinates origin. The vectorized versions of

centered conics and quadrics, defined as v̆i = vech(Q̆i) and

c̆fi = vech(C̆fi) do not contain translation terms, while the

shape terms cmn and qmn have been left unchanged.

Therefore we can select the rows and columns account-

ing for shape in Ḡf , v̆i and c̆fi as follows:

G
s
f = Ḡf{1,2,3}×{1,2,3,4,5,6}, (28)

v
s
i = v̆i{1,2,3,5,6,8}, c

s
fi = c̆fi{1,2,4} (29)

and build the matrices:

G
s⊤ =

[

Gs1
⊤ · · · GsF

⊤
]⊤

, V
s =

[

v
s
1 · · · v

s
N

]

,
(30)

C
s =







c
s
11 · · · c

s
1N

...
. . .

...

c
s
F1 · · · c

s
FN






, (31)

where Cs ∈ R
3F×N , Gs ∈ R

3F×6 and Vs ∈ R
6×N . The

three matrices are linked by the bilinear relation:

C
s = G

s
V
s. (32)

At this point, instead of performing an SVD, we can exploit

the camera parameters pmn found by the rank 3 solution

in Eq. (23), to recover the matrix Gs by simple variable

assignments, exploiting the structure in Eq. (11). Next, we

can estimate the shape and size parameters independently

for each quadric, multiplying the pseudo inverse of Gs by

each column of Cs:

V
s = G

s+
C
s (33)

where Gs+ is the pseudo inverse of Gs. Finally, we recom-

bine the shape and size parameters contained in Vs with the

translation parameters in matrix Vl in Eq. (23), recovering

the correct ellipsoids.
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4.3. Solution with both points and objects

Interestingly, it is possible to include both point matches

and objects in the same factorization framework. This might

be convenient when the number of objects is not enough or

to make more accurate the estimation with additional infor-

mation from reliable 2D tracks.

To this end, P points can be included in this framework

by expressing them as P additional degenerate quadrics or

conics. In particular, we associate to each point an arbitrary

quadric (and a set of conics in images) whose center is equal

to the point coordinates, and then we evaluate the limit for

the size of quadric and conic going to zero. In detail, the P
additional quadrics and conics in function of a size param-

eter h are defined as:

Cf,N+p(h) = T
c
f,N+pH

c
C̆f,N+pH

c⊤
T
c⊤
f,N+p (34)

QN+p(h) = T
q
N+pH

q
Q̆N+pH

q⊤
T
q⊤
N+p (35)

for p = 1, . . . P , with:

H
c =





h 0 0
0 h 0
0 0 1



 , H
q =









h 0 0 0
0 h 0 0
0 0 h 0
0 0 0 1









. (36)

Notice that the point location information is given by the

translation matrices Tcf,N+p and T
q
N+p. The degenerate con-

ics and quadrics that correspond to a point can be written as:

Cf,N+p = lim
h→0

Cf,N+p(h) QN+p = lim
h→0

QN+p(h) (37)

Notice that in the corresponding vectorized quadrics and

conics the shape terms cmn and qmn are multiplied by h
and consequently vanish, leaving just the translation terms.

At this point the same approach described in Section 4.1

can be followed, simply adding to the number of objects N
the number of points N + P . Differently, once the camera

parameters, together with 3D points and ellipsoids centers

have been found, the matrix related to ellipsoids shape will

have the same dimension of Cs in Eq. (32), i.e. 3F × N
since the additional P columns related to the points contain

just zeros and can be removed.

5. Experiments

The proposed method has been tested on a synthetic sce-

nario and a real dataset. In every experiment, the accuracy

of the estimated 3D object position and pose was measured

by the volume overlap O3D given by the intersection be-

tween ground truth (GT) and estimated (ES) ellipsoids re-

spectively:

O3D =
1

N

N
∑

i=1

Qi ∩ Q̃i

Qi ∪ Q̃i

, (38)

where Qi and Q̃i denote the volume of GT and ES ellip-

soids respectively. This metric measures the success of the

algorithm in recovering the 3D position and occupancy of

an object. Moreover, we also evaluated the orientation er-

ror by using the measure θerr, which is the angle in radians

between the main axes of GT and ES ellipsoids. We tested

the proposed algorithm performance in two conditions: us-

ing ellipses from bounding boxes only (ELL) and using

ellipses plus a set of additional points (ELL+ P ).

5.1. Synthetic setup

We generated a synthetic 3D setup with a variable num-

ber of ellipsoids, randomly placed inside a cube of side 20
units. The length of the largest ellipsoid axis L ranges from

3 to 12 units, according to a uniform PDF. The lengths of

the other two axes are equal to γL with γ ∈ [0.3, 1]. Finally,

axes orientation was fixed randomly. Optionally, we added

a variable number of 3D points randomly generating their

positions. A set of 20 camera views were generated and the

camera trajectory was computed so that azimuth and ele-

vation angles span the range [0◦, 60◦] and [0◦, 70◦] respec-

tively. Given the orthographic camera matrix Pf of each

camera frame, GT ellipses and GT 2D points were calcu-

lated from the exact projections of the ellipsoids and 3D

points.

Synthetic tests were aimed at validating the robustness

of the proposed method against common inaccuracies af-

fecting object detectors, such as coarse estimation of the

object center, tightness of the bounding box with respect to

the object size and variations over the object pose. Thus,

each ellipse was corrupted by three errors, namely transla-

tion error (TE), rotation error (RE) and size error (SE). To

impose such errors, the ellipses centers coordinates tc1, tc2,

the axes length l1, l2 and the orientation α of the first axis

were perturbed as follow4:

t̂cj = tcj+ l̄νtj , α̂ = α+να, l̂j = lj
(

1 + νl
)

, (39)

where νtj , να and νl are random variables with uniform PDF

and mean value equal to zero, and l̄ = (l1 + l2)/2. Trans-

lation errors were also imposed to 3D points, with a magni-

tude calculated according to Eq. (39), assuming a random

ellipsoid associated to each point. In order to highlight the

specific impact of each error, they were applied separately.

Error magnitudes were set tuning the boundary values of

the uniform PDFs of νtj , να and νl. In detail, for each kind

of error, we considered 10 different values of νtj , νa and

νl, with uniform spacing, and we applied the resulting error

realizations to the ellipses reprojections related to all the el-

lipsoid. We run 100 trials for each setup, described by the

number of objects and error on ellipses.

In Fig. 2, O3D and θerr are displayed versus RE and SE.

Reconstruction is perfect for zero errors, with O3D = 1,

4We omit for simplicity the object and frame indexes.
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θerr = 0 and smoothly worsening as the error increases,

reaching a minimum O3D = 0.5 for RE = 45◦ or SE =

= 0.5. The pose error θerr reaches a maximum value of

about 50◦ for RE = 45◦, and 40◦ for SE = 0.5. Overall,

results appear to be quite robust to SE and RE. This fact is

particularly important since such errors are likely to happen

very frequently whenever ellipses are fitted to BBs. Even if

the detector is accurate, the bounding box quantises the ob-

ject alignment at steps of 90
◦

, yielding a maximum RE of

45
◦

. This tends to overestimate the object area, thus affect-

ing SE, whenever the object is not aligned to the bounding

box axes.

Notice that the performance does not vary with the num-

ber of ellipsoids present in the scene. Though this may seem

counterintuitive, it follows from the fact that RE and SE do

not affect the estimation of camera parameters, the latter be-

ing based on translation terms only, as can be seen from Eq.

(23). Once camera parameters are recovered, the ellipsoid

shape and size is estimated separately for each object (check

Eq. (33)), so making the overall performance simply the av-

erage of the performance for each single object. The above

reasoning is not valid for TE, as can be seen in Fig. 3. Both

O3D and θerr are dependent on the number of objects in

the scene, showing a notable increase in performance pass-

ing from 4 to 7 objects and a further slight increase with 10
objects.

Adding points to the setup improves in general the re-

sults and allows to overcome the minimal requirement of 3
objects. In Fig. 4 we report the results versus TE for 2, 3 and

4 objects with 2 and 5 additional points. In general, what

matters for the performance versus TE is the sum of num-

bers of objects and points. In particular the performance

grows strongly starting from 4 points/objects and tends to

saturate above about 10 points/objects. Differently the per-

formance versus RE and SE are not reported, since they are

independent from the number of points and very similar to

the case without objects (Fig. 2).

5.2. Real setup: KINECT dataset

We tested the proposed algorithm on the KINECT

dataset [2]. The dataset is composed of five sequences, each

one showing a different office desk, with about 10− 15 ob-

jects, from a variable number of frames (but always less

than a hundred). Bounding boxes associated to each objects

are also provided. The dataset is very challenging as the an-

gle spanned by the camera views is quite narrow. Moreover

bounding boxes are quite unprecise in terms of position and

aspect ratio. We selected a subset of about 8 − 25 frames

for each sequence, associating an ellipse to each BB at each

frame. We also extracted a set of points tracks and run the

proposed algorithm on ELL and ELL + P setups. In Fig.

5 we show the results for Seq. 2, 3 and 4 (ELL). Re-

projected ellipses match very well the position, shape and

Figure 2. Results for the synthetic tests without additional points

versus RE and SE errors. First row: 3D overlap; second row: pose

mismatch; first column: RE; second column: SE.

Figure 3. Results for the synthetic tests with 4, 7 and 10 objects

without additional points, versus TE. Left: 3D overlap; right: pose

mismatch.

Figure 4. Results for the synthetic tests versus RE for 2, 3 and

4 objects with 2 or 5 additional points. First row: 3D overlap;

second row: pose mismatch; first column 2 points; second column:

5 points.

pose of all the objects in all the frames, as exemplified by

the three image frames in Fig. 5. More importantly, the

object’s relative displacement along the z direction, visible

in the upper views of 3D reconstructions, is correctly esti-

mated as well as the objects size. Moreover, for the ma-

jority of objects, the aspect ratio and pose is also qualita-
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Figure 5. Results for the KINECT dataset for ELL setup on Sequences 2 (first column), 3 (second column) and 4 (third column.) First

row: a frame from the sequence with BBs (yellow), ellipses from BBs (red) and reprojected ellipses (green) . Second row: upper views of

the ES ellipsoids.

Figure 6. Results for the KINECT dataset for ELL + P setup on

Sequence 3. Left: a frame from the sequence with BBs (yellow),

ellipses from BBs (red), points (red), reprojected ellipses (green)

and points (blue). Right: upper views of the ES ellipsoids and 3D

points.

Figure 7. 3D estimated ellipsoids of Sequence 2 aligned to the

KINECT point cloud.

tively correct. Some exceptions like the mugs 2, 3 in Seq. 2

and 3, 4, 5 in Sequence 4 are due to their asymmetric shape

for which an ellipsoid represent an intrinsically coarse ap-

proximation. Sequence 3 was also tested in the ELL + P
setup, adding about 25 point tracks. The result reported in

Fig. 6 is structurally very similar to the corresponding ELL
case for the objects, though ellipsoids are more stretched

along the z direction. Also the 3D structure of the points is

correctly recovered and it is coherent with the objects dis-

placement. For example, points belonging to object 8 are

very close to the corresponding ellipsoid, while points from

the PC monitor and from the books on the shelf are located

at the correct depth with respect to all the objects. These

results witness the capability of the method to solve a gen-

eralized SfM problem, embedding in a single framework

both quadrics and points. Finally, to better understand the

goodness of the objects 3D estimation, Fig. 7 shows the

ellipsoid position being coherent with the point cloud: The

different objects are lying onto the table and with a correct

depth. Some inaccuracies are present for lateral objects due

to coarse depth estimates and the possible discrepancy be-

tween the perspective model of the Kinect camera and the

orthographic one assumed in our method.

6. Conclusions

A generalized SfM method has been proposed that is
able to recover, in closed-form, camera poses and objects
positions in 3D space, taking as input just a set of bound-
ing boxes from an object detector in a collection of image
frames. The devised method, exploiting the relationship be-
tween quadrics and conics in dual space, is able to recover
also a coarse estimation of objects size, shape and orien-
tation in space. Finally, 2D points can be easily included
in the framework as degenerate conics, so overcoming the
constraints on the minimal number of objects required. The
method has been tested on both synthetic and real data,
demonstrating its robustness against possible object detec-
tor inaccuracies, and proving to be effective in real chal-
lenging conditions. Further research on this topic will in-
clude solution refinement methods based on non-linear cost
functions able to solve in one step for all the unknowns.
Moreover, given the new ideas introduced in this work,
we will deal with the more general and complex case of
perspective SfM using dual matrix factorization with con-
ics.
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