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Abstract

Rich semantic relations are important in a variety of vi-

sual recognition problems. As a concrete example, group

activity recognition involves the interactions and relative

spatial relations of a set of people in a scene. State of the art

recognition methods center on deep learning approaches

for training highly effective, complex classifiers for inter-

preting images. However, bridging the relatively low-level

concepts output by these methods to interpret higher-level

compositional scenes remains a challenge. Graphical mod-

els are a standard tool for this task. In this paper, we

propose a method to integrate graphical models and deep

neural networks into a joint framework. Instead of using a

traditional inference method, we use a sequential inference

modeled by a recurrent neural network. Beyond this, the

appropriate structure for inference can be learned by im-

posing gates on edges between nodes. Empirical results on

group activity recognition demonstrate the potential of this

model to handle highly structured learning tasks.

1. Introduction

Relations between image entities are an important facet

of higher-level visual understanding. Building relation-

ships, such as the spatial distance between people in a scene,

their relative motions, or concurrent actions can be used to

drive recognition of higher-level activities. Models for in-

terpreting such scenes require the need to accurately inter-

pret image cues, determine relevant relations between enti-

ties, and infer the properties of these relations.

In this paper we present a general-purpose method for

this task, illustrated in Fig. 1. The method builds upon deep

networks for image analysis, endowing these networks with

the ability to reason over structures and relationships. This

is accomplished by building higher-level recurrent networks

that equip the model with the ability to perform inference

over lower-level network outputs, including learning struc-

tures that are effective for higher-level tasks.

We ground the work by developing specific models for
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Figure 1. Structure learning in a deep network. Analyzing group

activity requires reasoning about relations between the actions of

individual people. Our structure inference machine iteratively rea-

sons about which people in a scene are interacting and which are

involved in a group activity.

group activity analysis. Group activity analysis involves

reasoning over individual people in a scene and considering

their relations. Multiple people in a scene could either be

performing the same action at the same time, or have varied

actions and interactions that compose a collective activity.

Effective models need to jointly consider the rich relations

between components of visual appearance.

Standard approaches to this problem utilize graphical

models to encode spatial relations and interactions. Recent

work in this vein includes Choi et al. [8], who discover sub-

groups of interacting people. Lan et al. [26] proposed a

hierarchical graphical model that considers the interactions

on the social role level. Hajimirsadeghi and Mori [16] pro-

posed a gradient boosting training method. Amer et al. [1]

adopted a HiRF model to perform recognition and detection

simultaneously.

On another track, deep learning has proven successful

in many computer vision applications, such as image clas-
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sification, object recognition, and action recognition. On

the image side, seminal work by Krizhevsky et al. [24]

demonstrated the effectiveness of deep networks for ob-

ject recognition; recent state of the art methods include

GoogLeNet [34]. On the video side, Simonyan and Zisser-

man [33] proposed a two-stream convnet pipeline to apply

deep learning to video analysis. Karpathy et al. [20] adopted

various fusion techniques in convolutional neural networks

to consider temporal information in video sequences. These

methods have demonstrated the power of deep networks for

classification tasks.

However, these models are trained to produce a flat

classification output, categorizing an image/video accord-

ing to the existence of a set of object/action labels. For

highly compositional tasks such as group activity recogni-

tion, models reasoning over structures can bring benefits, al-

lowing the classification of higher-level concepts built from

recognition over lower-level entities.

The main contribution of this paper centers on devel-

oping a model that bridges from low-level classifications

to higher-level compositions. We contribute an end-to-end

trainable deep network that (1) classifies low-level image

inputs according to their content, (2) refines these classifi-

cations by passing messages between outputs, (3) performs

structure learning via gating functions that determine which

outputs to connect, and (4) results in effective classification

of high-level concepts.

2. Previous Work

This paper contributes a general-purpose deep learning

inference machine and demonstrates its effectiveness for

group activity recognition. In this section we review rele-

vant work on modeling structures in deep learning and spe-

cific models deployed for group activity recognition.

Deep Learning with Structures: Recently, there have

been several interesting approaches to address the prob-

lem of combining graphical models and deep neural net-

works, primarily in the context of semantic image segmen-

tation. Chen et al. [6] proposed DeepLab, that feeds coarse

responses at the final layer of a deep neural network to

the CRF model proposed by Krähenbühl and Koltun [23].

Zheng et al. [38] proposed a CRF-RNN that trains the same

model in an end-to-end fashion by transforming the approx-

imate inference method [23] into a Recurrent Neural Net-

work (RNN). Schwing and Urtasun [31] proposed an iter-

ative procedure for end-to-end training of the CRF model.

We expand on this line of work by relaxing the assump-

tions that the underlying graphical model i) is fully con-

nected and/or ii) has Gaussian kernels in the pairwise po-

tential functions. Similarly, Chen et al. [7] extended to gen-

eral MRFs using approximate inference. We use different

inference techniques and enable structure learning.

Another line of work aims at modeling class relations in

a graphical model that could be trained with a deep neural

network. Deng et al. [12] proposed Hierarchy and Exclu-

sion (HEX) graphs for modeling inclusion and exclusion re-

lations between object classes and showed how these graphs

could be used for computing HEX-based marginalized dis-

tributions of labels on top of a deep neural network. Ding et

al. [14] extended HEX graphs to probabilistic HEX graphs

modeled by Ising models and showed how standard Loopy

Belief Propagation (LBP) can be used in the inference. Both

works rely on a special-purpose graphical model that repre-

sents particular relations between binary variables with a

pre-designed structure.

In the context of other structured problems, Bottou et

al. [5] proposed Graph Transformer Networks to jointly op-

timize subtasks. In this work, it was assumed that exact in-

ference can be performed during a forward-backward pass.

Ross et al. [29] phrased structured prediction as a series of

message passing steps. Tompson et al. [35] proposed a feed-

forward neural network that mimics a single iteration of the

message passing algorithm for a markov random field for

the task of human body pose recognition. Zhang et al. [37]

incorporate structured prediction as a loss layer in a neu-

ral network. Deng et al. [13] conduct message passing to

do inference over a fixed structure for group activity recog-

nition. In contrast to these approaches, we infer structure

via a gated network, allowing the model to determine the

appropriate connections to use for inference.

Group Activity Recognition: Group activity recogni-

tion is typically modeled as a structured prediction prob-

lem that considers both individual actions and interactions

with other people in a scene. Many previous work have

used various forms of graphical models to address this prob-

lem: hierarchical graphical models [2, 26, 28, 30, 9], AND-

OR graphs [3, 15] and dynamic Bayesian networks [39] are

among the popular models. Lan et al. [28] and Amer et

al. [2] have shown the effectiveness of adaptive structures

to the group activity recognition problem. Modeled by la-

tent structure [28] or grouping nodes [2], an adaptive struc-

ture can adjust its structure to the most discriminative in-

teractions in a scene. Khamis et al. [22, 21] utilize track-

level and person-level features to determine group activ-

ity. Shu et al. [32] reason about groups, roles, and events

on top of noisy tracklets with a spatio-temporal AND-OR

graph model. Kwak et al. [25] reason over temporal logic

primitives in a quadratic programming formulation. These

models are trained in a sophisticated framework using shal-

low features and cannot easily be adopted in a deep learning

framework. In this work, we propose a general framework

for integrating graphical models into a deep neural network

that is capable of adapting their structure in an instance-

based approach.
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Figure 2. The pipeline of inference in an RNN. We first use the unary scores to initialize the messages. In every iteration, new messages

are computed using related message units, unary scores (x), and output predictions from the previous timestep (c(t−1)). Note that for each

timestep, a prediction layer outputs predictions (only illustrated in last layer), and in training receives loss as in a standard RNN.

3. Structure Inference Machine

Group activity recognition requires reasoning about

structures. Interpreting an image of a scene of people in-

volves determining what each individual person is doing

and reasoning about their relations. These tasks are both

challenging due to ambiguity in image features and uncer-

tainty in determining relations between people. The abil-

ity to infer structures over the people in a scene is helpful

for suppressing noise in the form of inaccurate human de-

tections, mistaken low-level action recognition results, and

spurious people not involved in a particular group activity.

Beyond group activity recognition, many other visual

recognition tasks benefit from similar lines of reasoning.

Detecting and classifying individual component elements

can be improved by considering structured relations among

them.

The question we address in this paper is how to model

such structured relations. We take an approach building

upon neural networks. Deep learning-based methods have

benefits in highly effective low-level action recognition, and

we want to utilize this effectiveness within an end-to-end

trainable model for higher-level reasoning.

Two components are used to cast this problem as a neural

network formulation.

1. Recurrent neural networks for message passing.

Consider an individual person within an image of a

scene. Ambiguity in inferring the action of the indi-

vidual person is a fundamental problem. As per stan-

dard arguments around context [36, 18, 10, 28], using

the actions of other people in the scene can help to

disambiguate the action of this individual. We accom-

plish this by a recurrent neural network that aggregates

cues about the actions of other people in a scene by re-

peatedly passing messages that refine estimates of an

individual person’s action.

2. Gating functions to learn structures. Deciding who

is interacting with whom in a group activity is an im-

portant part of inference. Sub-groups of people can be

engaged in different activities [8]; individuals can be

outliers compared to the group activity [28]. Reason-

ing over structures that determine connections between

people in a scene can bring many benefits: which peo-

ple are relevant to detecting the presence of an over-

arching group activity, which people provide context

for which others. Within a neural network structure,

we accomplish this by introducing trainable gating

functions that can turn on and off connections between

individual people in the scene.

Fig. 2 summarizes our structure inference machine. The

following sections present its details. First, we present the

use of recurrent neural networks as a tool for inference in a

group activity model in Sec. 4. The use of gating functions

to learn structure is presented in Sec. 5. By un-tying weights

in these networks, we can relax assumptions regarding the

message passing, leading to a general structure inference

machine presented in Sec. 5.1.

4. Group Activity Recognition with an RNN

We build our model on top of a set of person detections

in an image. The model includes the actions for these in-

dividual people as well as the group activity for the whole

image. Given a set of M detected persons in a scene, a

classifier (using a CNN) is used to provide visual classifi-

cation {xi}
M
i=1 of each person’s action based on an image

window cropped at the person detection. Each xi is a prob-

ability distribution over individual action for person i. In

addition, a classifier that operates on the entire image can

be used to directly estimate the group activity in the scene.

We denote by xs the group activity classification obtained

from this whole-image classifier; xs is a distribution over

possible scene-level group activities.
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Figure 3. A group activity scenario represented as a graphical

model. Estimates of individual person actions and a group ac-

tivity are refined via message passing. The squares are messages.

These message units carry information from the source node and

are propagated to the target node.

A graphical model is built over these individual actions

and the group activity, as shown in Fig. 3. We use this

graphical model to motivate our framework, and address

structure learning in a graphical model with varied poten-

tial functions on top of a deep neural network.

4.1. Recurrent Networks for Refining Ac­
tion/Activity Classification

On top of the individual classifications, we build a neural

network structure which considers relations among entities

to refine these classifications. This network structure is a

recurrent neural network (RNN). The RNN passes informa-

tion amongst nodes representing individual person classi-

fications and the scene classification in order to facilitate

contextual refinement of classification decisions.

Given the graph structure (i.e. probabilistic graphical

model in Fig. 3), the RNN structure is built to model the

connections between nodes. Distributions over values for

each node i can be determined by a combination of classifi-

cation results xi of local observations, along with informa-

tion passed along the graph. We denote by m information

coming from related nodes along the graph.

In group activity recognition, this can model contextual

relations between the actions of people in the scene. In ev-

ery iteration of refinement, the values of the contextual in-

formation m will be updated, while the inputs correspond-

ing to visual observations of individual actions or scene la-

bel remain fixed.

We represent this iterative updating process as a recur-

rent neural network model. In general, we take as input

the local observations for all nodes x = xs ∪ {xi : i =
1, . . . ,M}. We output a set of refined classification scores1

c(t) at each timestep t. These refined estimates are based on

iteratively computed messages m(t) that pass information

1These classification scores may in general be over different quantities

from, or a subset of, the inputs.

between the nodes:

m(t) = f(Wmmm(t−1) +Wxmx+Wcmc(t−1) + bm) (1)

c(t) = f(Wmcm
(t) +Wxcx+ bc) (2)

In this and all subsequent equations, variables W(·) and

b(·) refer to the neural network parameters which are to be

learned. Here f is an element-wise activation function for

introducing non-linearity. At each time step, x, the scores

from all image-based classifiers, is a static input into the

recurrent neural network model. The “hidden contextual

information” m(t) is updated by considering the previous

contextual information m(t−1), the local observation x, and

previous classification scores c(t−1). Each step of the RNN

involves a single pass of aggregating information from con-

textual nodes within a graph to refine the scores of each

node. Over a series of iterations, RNNs are used to allow

finer refinements of these scores c(t).
The formulation above is a general-purpose inference

machine for refining estimates and producing classification

outputs. In the following section, we describe connections

with graphical models and use this to motivate the specific

choices of weight matrices and weight sharing we use for

our group activity recognition model.

4.2. Belief Propagation in an RNN

Recall again the graphical model depicted in Fig. 3. This

is a typical structure used in group activity recognition, with

all people connected to each other and to the scene node

corresponding to group activity [28, 27]. For a probabilistic

graphical model of this type, a standard inference algorithm

is belief propagation – rounds of passing messages between

nodes would be conducted to obtain marginal distributions

given observations.

We use the intuition from this probabilistic graphical

model viewpoint to construct the specific form of weight

matrices used in our structured inference machine.

In particular, in the graphical model formulation, we as-

sume that all people are affecting each other and the scene.

The message passing procedure starts by initializing all

messages by unary energies from this graphical model. The

unary energies are the inverse probability of an input im-

age taking labels across action states, and are generated by

a classifier (e.g. CNN). The initial messages are therefore

independent probabilities without considering connections

or smoothness between nodes.

To model the connections between entities in a group

activity, three types of weights are used: (1) the weights

to map the relations from individual actions to scene-level

group activity, (2) from scene-level group activity to indi-

vidual actions, and (3) amongst individual actions of differ-

ent people. This is analogous to typical potential functions

which describe pairwise energies between actions and ac-

tions or actions and scenes (similar to the shared factors in
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[13]). The pairwise connections provide a data-dependent

smoothing term analyzing influence between entities and

are crucial in understanding a highly structured problem.

4.2.1 Messages in an RNN

In the message passing recurrent neural network, each mes-

sage unit is a vector composed of a set of neurons. The mes-

sage passing is conducted between the message units. The

configuration of connections in the RNN is determined by

the graph structure/connections between nodes. Thus, each

message unit’s input is its neighbouring connected mes-

sages, the static unary inputs, and outputs from the previous

time step. As the message units basically correspond to the

distribution of the node [29], this process, roughly speaking,

can be considered as classifying one entity by other related

entities and the local observation of itself. We adopted a

recurrent neural network structure which shares the weights

of message computation in all time steps.

Consider a message m
(t)
i→j . This message coming out

of person i on the edge connected to person j corresponds

to the distribution of i, and is classified by average pooled

scores of neighbouring persons (
∑

k m
(t−1)
k→i )/(|Ni| − 1),

static unary input xi, and output c
(t−1)
i from last time step.

Denote the set of person nodes as V P , the neighbouring

person nodes of i as Ni, Ni ⊆ V P , the scene node as s and

the current time step as t. The mathematical form of m
(t)
i→j

is:

f



Wmm1

[

xi, c
(t−1)
i ,

∑

k m
(t−1)
k→i

|Ni| − 1
,m

(t−1)
s→i

]T


 ,

i ∈ V P , k ∈ Ni\j (3)

where Wmm1 is the concatenation of a set of weights:

Wmm1 = [Wxm,Wcm,W
(aa)
mm ,W

(sa)
mm ]. Since message

mi→j corresponds to the distribution of node i, intuitively

the weights W
(aa)
mm and W

(sa)
mm can be considered as clas-

sifying person i’s action based on other people’s action or

the scene label respectively. And the unary input xi and

previous iteration’s score c
(t−1)
i are remapped via a linear

transformation using Wxm and Wcm. The function f(·) de-

notes the non-linear activation function, in our case simply

a softmax function to normalize the message.

Likewise, if i is a person node and s is the scene node,

then the message m
(t)
i→s is:

f

(

Wmm2

[

xi, c
(t−1)
i ,

∑

k m
(t−1)
k→i

|Ni|

])

, k ∈ Ni (4)

where Wmm2 equals [Wxm,Wcm,W
(aa)
mm ]. Finally, if s is

the scene node, and j is a person node, the message m
(t)
s→j

is set as:

f

(

Wmm3

[

xs, c
(t−1)
s ,

∑

k m
(t−1)
k→s

|Ns| − 1

])

, k ∈ Ns\pj (5)

where Wmm3 = [Wxm,Wcm,W
(as)
mm ].

4.2.2 Output Prediction Layer

The message units representing information all over the

graph are formulated into the recurrent unit. However, to

eventually classify a node in a graphical model, all mes-

sages around each node should be collected and used to per-

form prediction. In our model, we use a prediction layer to

collect all messages around each node and infer a scene la-

bel for the group activity and action classification for each

person. Through this layer, the losses on each time step are

imposed on the message unit. More precisely, the prediction

function for the scene level node is:

c(t)s = f

(

Whc1

[

xs,

∑

k m
(t)
k→s

|Ns|

])

, pk ∈ Ns (6)

where all notation is consistent with the previous message

definitions. The activation function we used here is a soft-

max normalization.

Similarly, for performing action classification on a

person-level node:

c
(t)
i = f

(

Whc2

[

xi,

∑

k m
(t)
k→i

|Ni|
,m

(t)
s→i

])

, k ∈ Ni (7)

As shown above, the hidden contextual information is it-

eratively refined in a recurrent neural network through mes-

sage passing. Similar to a standard belief propagation al-

gorithm, the final prediction of each node is performed by

collecting all related messages and is done in the prediction

layer. The softmax loss imposed on the prediction results

with standard mini-batch backpropagation training is used

to train the model in an end-to-end framework.

5. Structure Learning for Group Activity In-

ference

For group activity, the structure of connections between

people can greatly influence performance. In general a fully

connected graph, in which all people in a scene are con-

nected to all others, and all people are related to the group

activity, could model any type of relation. However, in-

cluding spurious edges relating irrelevant people introduces

significant noise. Instead focusing on relevant connections

can lead to better models.

Beyond this, in a highly structured group activity, the

connections between people or interactions between person

and scene may vary according to different situation. Also,

the interactions between people could be hard to explicitly

capture. For example, in a crossing-the-street scene, both

people crossing the street and people waiting for the lights

to change are contributing to the group activity, while the

people walking behind them may become irrelevant or even

bring ambiguity. Hence, connectivity of the model should
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Algorithm 1 Structure Inference Machine

Inputs: frame, detected person bounding boxes

Pass image through CNN to get xs

Pass person bounding boxes through CNN to get {xi}
M
i=1

Initialize m
(0)
s→i by xs; m

(0)
i→s,m

(0)
i→j by {xi}

M
i=1

for each iteration t do

for edge (i, j) do

Compute messages m
(t)
i→j and m

(t)
j→i by Eq. 3-5

end for

for edge (i, j) do

Compute gate value g
(t)
<i,j> or g

(t)
<s,i> by Eq. 8-12

Impose gates on m
(t)
i→j and m

(t)
j→i by Eq. 13

end for

for each node i do

Compute node prediction c
(t)
i by Eq. 6, 7

end for

end for

Outputs: Predicted scene label from timestep T , c
(T )
s

be able to adaptively change and adjust according to the

particular input situation.

In the context of a recurrent neural network, gates are

widely used as a tool for selecting information on the acti-

vation level. Both long short-term memory (LSTM) / gated

recurrent units (GRUs) are proven to be successful on many

tasks involving iteratively learning and gating information

element-wise. In our model, we introduce the concept of

“instance level” gates. An instance level gate is used to

modify an edge of a graphical model which models the in-

teractions between instances, such as a person to a person,

or a person to a scene. Instead of using a vector gate to

select information element-wise, we instead learn a scalar

value gate function to enforce sparsity on the structure of a

graphical model.

Based on the previously introduced message passing

RNN model, each node will receive information passed

through an edge. Intuitively, the message passed could be

noisy and may harm the understanding of actions of the

instance. We propose to adopt an architecture similar to

a LSTM gate, by taking multiple sources of information

to selectively choose connectivity of nodes. To determine

whether an edge is useful we compare the messages passed

along this edge with other related messages. For example,

to measure the gain by including the message mA→B , the

message content of mA→B is compared to other messages

from other edges, the previous iteration’s classification re-

sults, and the unary distribution on node B. The gain of

including the edge AB is the average value of gains for

mA→B and mB→A. For two person nodes i and j, the

mathematical definition of the gating functions for message

mi→j is:

g
(t)
i→j = σ

(

Whg1

[

xj , c
(t−1)
j ,m

(t)
i→j ,

∑

k mk→j(t)

|Nj − 1|

])

,

k ∈ Nj\i (8)

where Whg1 = [Wxg,Wcg,W
(aa)
mm ,W

(aa)
mm ]. Here we reuse

the weights W
(aa)
mm which classifies a person’s action by

other people’s action labels. The activation function σ
squeezes the gate value into [0, 1]. In our model, we used a

sigmoid activation function.

Similarly, for the scene node s connecting to a person

node i, the gate value for message ms→i is calculated as:

g
(t)
s→i = σ

(

Whg2

[

xi, c
(t−1)
i ,m

(t)
s→i,

∑

k mk→i(t)

|Ni|

])

, k ∈ Ni

(9)

where Whg2 is [Wxg,Wcg,W
(sa)
mm ,W

(aa)
mm ]. And the gating

function for mi→s is:

g
(t)
i→s = σ

(

Whg3

[

xs, c
(t−1)
s ,m

(t)
i→s,

∑

k mk→s(t)

|Ns| − 1

])

, k ∈ Ns

(10)

where Whg3 equals [Wxg,Wcg,W
(as)
mm ,W

(as)
mm ]. Then the

gate values for an edge between a person and the scene

e<i,s>, and between two persons e<i,j>, at timestep t, are

calculated as:

g
(t)
<i,s> = (g

(t)
i→s + g

(t)
s→i)/2 (11)

g
(t)
<i,j> = (g

(t)
i→j + g

(t)
j→i)/2 (12)

After imposing the gates on relevant messages, the mes-

sage units in the previous section are recalculated as:

m′
(t)
A→B = (g

(t)
<A,B> ⊙m

(t)
A→B) (13)

Note that the above equation is a general form for gated

messages. The symbol ⊙ represents the product operation

between a scalar and a vector. Nodes A and B could either

be a person i or a scene node s.

Further more, to enforce the sparsity of connections be-

tween nodes and learn the most discriminative structures for

each graph, we use the L1 regularization on the gate values.

Given a particular training data sample (i.e. labeled frame)

d, a graphical model is built on top of it as shown in above

sections. Let Ed denote the set of edges in the graph. The

total loss on gates for the data sample d is:

Ld = λ

|Ed|
∑

e=1

(|gde (·)|) (14)

where λ is the coefficient for this L1 regularization term

to balance between the sparsity of the graph and prediction

loss. gde (·) is the gate value on edge e of the graph for data

sample d, where the gate could either be a scene-person or
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a person-person edge, or, in general the edge between two

nodes. As the whole model is trained by the standard mini-

batch method, the loss on each batch B is
∑

d∈B(L
d).

This structure selection is performed for each time step

of message passing. An overall summary of the structure

inference machine is presented in Alg. 1.

5.1. Model Extension: Untying Weights as A Deep
Inference Machine

As shown previously, in the recurrent neural network

framework, a graphical model described by various poten-

tial functions can be represented as weight-shared message

predictors. However, by untying the weights of message

computation for each step, the model could be further ex-

tended to a deep inference machine with structure gates

to selectively pass information. A model with high non-

linearity could be learned through this inference process.

In summary, this approach provides a general frame-

work for both performing message passing of a RNN built

from a graphical model and learning structures of a graph-

ical model. If the weights in the message passing steps are

tied over iterations, this has direct analogy to inference in

a graphical model. If the assumption of tying of weights is

relaxed, instead this process corresponds to a general deep

inference machine with structure learning.

6. Experiments

We demonstrate our learning framework on group activ-

ity recognition. We provide results on three challenging

datasets: (1) Collective Activity Dataset [10]; (2) Collec-

tive Activity Extended Dataset [11]; and (3) Nursing Home

Dataset [13].

The first two datasets are standard benchmarks widely

used for group activity recognition. The Collective Activity

Dataset contains 44 videos from 5 group activities (Cross-

ing, Waiting, Queueing, Walking and Talking) and 6 indi-

vidual actions (NA, Crossing, Waiting, Queueing, Walking

and Talking). Collective Activity Extended omits the walk-

ing activity, due to ambiguities in its definition, and includes

Jogging and Dancing categories. We follow the common

protocol in [28] for the Collective Activity Dataset. The

scene label for a frame is defined by choosing the activity

in which the most people participate.

The Nursing Home Event Dataset contains human ac-

tivities captured from fixed cameras in various rooms of

a nursing home. It contains 80 videos showing 6 actions

(walking, standing, bending, squating, sitting, falling) and

two scenes (fall, non-fall). This dataset consists of many

chanllenging frames with highly cluttered scenes and large

intra-class variation within actions. We adopted the same

protocol used in Deng et al. [13] for evaluation.

Implementation details: Our models are implemented

using the Caffe library [19]. To acquire the action scores for

Iterations 1 2 3

CRF + CNN 74.18%

Struct. SVM + CNN 73.87%

Tied Weights 73.86% 74.02% 74.02%

Untied Weights 73.86% 74.33% 74.33%

Gated Tied Weights 80.12% 80.90% 81.22%

Gated Untied Weights 80.12% 81.06% 81.22%
Table 1. Results on Collective Activity Dataset. Ablation study

including variants of our model.

Method Accuracy

Learning Latent Constituent [4] 75.1%

Latent SVM with Optimized Graph [28] 79.7%

Deep Struct. Model [13] 80.6%

Unified Tracking And Recognition[9] 80.6%

Cardinality Kernel [17] 83.4%

Our Model 81.2%
Table 2. Comparison with state-of-the-art methods on Collective

Activity Dataset.

each person image patch or the whole frame scene score, we

fine-tuned the AlexNet architecture [24] pre-trained using

the ImageNet data. We assume that an image has been pre-

processed by a person detector to get person image patches.

The message passing recurrent neural network is trained

by adding a softmax loss on top of the output from each

timestep. We also found it easier to train the gates by first

fixing the weights of learned predictors and then learning

structures on it. The number of neurons for the RNN per

layer is
∑

AB∈εG
(|SA|+|SB |), where εG is the set of edges

of graphical model G, and |SA| and |SB | are the numbers

of states of nodes A and B respectively.

6.1. Collective Activity Dataset

We compare results of four different methods introduced

in our paper with standard baselines. Table 1 provides

an ablation study examining the effects of different vari-

ants/components of our model. There is a clear benefit by

adopting structure gates to adaptively capture connections

between nodes. Note that all the CRFs in our experiments

are tuned on the validation set. Our model improved the ac-

curacy of nodes over the whole graph: person-level action

classification is improved by ≈ 6% after three steps of gated

message passing.

Our model is compared to state of the art methods in

Table 2. The results are superior to other deep learning and

structure learning models. The method of [17] achieves bet-

ter results, though uses a counting kernel (cardinality ker-

nel) which directly mimics the majority-action scene label

definition of Collective Activity Dataset.

6.2. Collective Activity Extended Dataset

We also experiment with the Collective Activity Ex-

tended Dataset. As noted in Choi et al. [11], the walking
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Figure 4. This figure shows visualizations of our experimental results. Note that these images are all misclassified by the fully connected

graphical model. We show the scene gates learned in our model after 3 iterations of message passing and structure learning. For visualiza-

tion, since the gate values are not strictly 0 or 1, we consider < 0.2 as irrelevant/noisy connection versus > 0.7 as useful connections. The

red box has the same action class as the scene level node. Labels: “Cr”: Crossing, “Wk”: Walking.

Iterations 1 2 3

CRF + CNN 86.75%

Struct. SVM + CNN 87.34%

Tied Weights 84.45% 87.97% 87.97%

Untied Weights 84.45% 88.16% 88.16%

Gated Tied Weights 89.51% 90.14% 90.14%

Gated Untied Weights 89.51% 90.14% 90.23%
Table 3. Results on Collective Activity Extended Dataset.

action is ill-defined, hence we remove it, and include the

new actions Jogging and Dancing. The two previous works

choose to adopt leave-one-out for testing. However, this is

very computationally intensive for a deep learning frame-

work, and further makes hyper-parameter tuning a chal-

lenge. We choose to adopt a new train-test split with 2241

frames as training and 1106 as testing.

Results are shown in Table 3. Note that on each person,

action classification is improved by ≈ 10% via the structure

inference process.

6.3. Nursing Home Dataset

On the Nursing Home Dataset, our person-level action

classification accuracy also improved, by ≈ 4% after the

second iteration. The accuracy is superior to baselines in-

cluding Deng et al. [13]. Note that in the Nursing Home

Dataset, there is a smaller margin of improvement by adopt-

Iterations 1 2 3

CRF + CNN 83.64%

Struct. SVM + CNN 82.08%

Deep Struct. Model [13] 84.7%

Tied Weights 83.68% 84.91% 84.91%

Untied Weights 83.68% 84.94% 84.94%

Gated Tied Weights 84.46% 85.32% 85.32%

Gated Untied Weights 84.46% 85.50% 85.50%
Table 4. Results on Nursing Home Dataset.

ing gating functions to learn structures. Because in each

scene the irrelevant actions, such as sitting, can be identified

as non-useful by simply a fully connected graphical model

more easily than in the previous two datasets.

7. Conclusion

We presented a method for performing structure learning

within a deep learning setting. An inference algorithm for

refining estimates of individual nodes and determining con-

nections between nodes is implemented using a recurrent

neural network with gating functions. This approach was

used to build a model for group activity recognition – con-

nections between individual people in a scene and their rela-

tion to the overarching scene-level activity label are learned.

This leads to improvements in accuracy over rounds of in-

ference and structure learning via gating functions.
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