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Abstract

We present a physically interpretable, continuous three-

dimensional (3D) model for handling occlusions with appli-

cations to road scene understanding. We probabilistically

assign each point in space to an object with a theoretical

modeling of the reflection and transmission probabilities for

the corresponding camera ray. Our modeling is unified in

handling occlusions across a variety of scenarios, such as

associating structure from motion (SFM) point tracks with

potentially occluding objects or modeling object detection

scores in applications such as 3D localization. For point

track association, our model uniformly handles static and

dynamic objects, which is an advantage over motion seg-

mentation approaches traditionally used in multibody SFM.

Detailed experiments on the KITTI raw dataset show the

superiority of the proposed method over both state-of-the-art

motion segmentation and a baseline that heuristically uses

detection bounding boxes for resolving occlusions. We also

demonstrate how our continuous occlusion model may be

applied to the task of 3D localization in road scenes.

1. Introduction

As a two-dimensional (2D) projection of the three-

dimensional (3D) world, image formation is associated with

a loss of information. This is especially significant when

objects in 3D space occlude each other with respect to the

camera viewpoint. In recent years, we have seen remarkable

progress in various aspects of scene understanding, such as

structure from motion (SFM) and object detection. However,

occlusions still present a challenge, with the difficulty of

physically modeling them being a major bottleneck.

Our main contribution is a novel theoretical model for oc-

clusion handling that is continuous and fully 3D. Our model

is motivated by insights from computer graphics, whereby

we represent objects as translucent 3D ellipsoids. In Sec-

tion 3, we develop novel continuous models for representing

transmission and reflection probabilities for each ray emanat-

ing from the camera. This allows assigning probabilities for

Figure 1: We propose an occlusion model in 3D that is physically-

inspired and continuous. Given object detection and SFM point

tracks, our unified model probabilistically assigns point tracks to

objects and reasons about object detection scores and bounding

boxes. It uniformly handles static and dynamic objects, thus, out-

performs motion segmentation for association problems. We also

demonstrate occlusion-aware 3D localization in road scenes.

each point in space belonging to an object, which can explic-

itly explain image observations and reason about occlusions.

This is in contrast to prior works that consider occlusions in

2D, or through discrete occluder patterns or models that are

not physically interpretable [18, 19, 30, 33, 34, 35].

A key advantage afforded by our occlusion model is uni-

fication. While previous approaches to handling occlusions

are application-dependent, ours is physically-inspired, thus,

flexible enough to be used in a variety of scenarios. In this

paper, we show that our theory can be used for uniformly

modeling the association of SFM point tracks with static or

dynamic objects (Section 4.1), as well as modeling object

detection scores in applications like 3D localization (Section

4.2). We demonstrate the application of our formulations for

road scenes from the KITTI raw dataset [7].

In particular, assigning 2D point tracks to independent,
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but potentially occluding, objects is a fundamental challenge

in computer vision problems such as multibody SFM [17].

Recent works use motion segmentation [1, 21] as a precursor

to localizing objects, which often suffices for moving objects

[25] and has also been considered for multibody SFM [12].

However, motion-based segmentation is not always appli-

cable in road scenes, due to static parked cars, or dynamic

cars that move with similar velocities. Occlusions make the

problem more severe since point tracks get clustered together

for static objects and may frequently appear to change as-

sociation among dynamic objects in 2D. Indeed, we show

in Section 5 that our point track association outperforms

state-of-the-art motion segmentation methods, as well as a

baseline that uses detection bounding boxes but does not

consider occlusions.

Another potential application of our proposed model is

towards 3D localization in road scenes. Prior works such as

[24] combine information from point tracks and detection

bounding boxes, but do not consider occlusions for either. In

contrast, our unified occlusion model allows a probabilistic

soft assignment of point tracks to objects, as well as an

occlusion-aware interpretation of object detection outputs.

Our model is continuous, so it remains amenable to the use

of continuous optimization tools.

To summarize, our main contributions are:

• A novel theoretical model for handling occlusions that is

continuous and formulated in 3D.

• Unified occlusion handling for point tracks in SFM and

bounding boxes and detection scores in object detection.

• Application of our model to association of point tracks

with both static and moving objects, improving over mo-

tion segmentation and occlusion-unaware baselines.

• Application of our unified formulation to 3D localization

of traffic participants in road scenes.

2. Related Work

Occlusion handling in detection Several works in object

detection consider occlusion by training a detector on visible

parts of the object [6]. Occlusion reasoning based on 2D

image silhouettes is used to improve detection performance

in [10]. On the other hand, our occlusion reasoning is based

on 3D entities. In recent years, object detectors have also

considered occlusion reasoning using 3D cues, often learned

from a dataset of CAD models [18, 19, 30]. By necessity,

such frameworks are often a discrete representation of oc-

clusion behavior, for example, in the form of a collection

of occlusion masks derived from object configurations dis-

cretized over viewpoint. In contrast to these works, our

occlusion modeling is also fully 3D, but allows for a con-

tinuous representation. Further, to derive 3D information,

we do not use CAD models, rather we derive a probabilistic

formulation based on physical insights.

Occlusion handling in tracking Occlusions have also

been handled in tracking-by-detection frameworks by con-

sidering occluder patterns in the image [13, 29]. A notable

exception is the work of Milan et al. [15] that explicitly

models occlusions in the continuous domain to determine a

visibility ratio for each object in multi-target tracking. How-

ever, the occlusion model in [15] is essentially the overlap

of image projections of a Gaussian representation of the

object. Our occlusion modeling, on the other hand, is fully

3D, based on physical modeling of object-ray intersections

and much more general in determining the probability of a

point in space as belonging to an object. While our model

can also be used to determine a visibility ratio similar to

[15], it has far more general applications and can be quan-

titatively evaluated, as shown by our experiments on point

track associations.

Motion segmentation and multibody SFM An applica-

tion for our occlusion modeling is to determine point track

associations in scenes with multiple objects. For moving

objects, this is within the purview of motion segmentation,

which has been approached through algebraic factorization

methods [4, 27, 26], statistical methods [11, 9, 20] and clus-

tering methods [31, 8]. Some recent efforts include robust

algebraic segmentation with hybrid perspective constraints

[21] and spectral clustering with point track spatial affinities

[1]. Unlike our work, such methods cannot handle static ob-

jects, or dynamic objects with little relative motion. Closer

to our application, motion segmentation is also used within

multibody SFM frameworks [12, 16, 17]. In contrast to

these works, our formulation does not distinguish between

moving and static objects and also explicitly reasons about

occlusions due to 3D object geometries for associating point

tracks to individual objects.

3D localization One of the vital goals of 3D scene un-

derstanding is to localize 3D objects in complex scenes.

Monocular frameworks like ours have also reasoned about

occlusions, for instance, partial object detectors are consid-

ered in [28]. A detailed part-based representation of objects

based on annotated CAD models is used for monocular scene

understanding in [33, 34, 35], which also allows reasoning

about mutual occlusions between objects. In contrast to these

works, our monocular framework uses a physical modeling

of occlusion in continuous space and derives unified repre-

sentations for SFM points and object detection bounding

boxes. This makes our model more general, extensible and

amenable for continuous optimization.

3. Continuous Occlusion Model

A common parametric modeling for objects, especially

traffic participants in road scene understanding, is as opaque
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Figure 2: We represent objects as translucent ellipsoids, which

leads to the formulation of transmission and reflection probabilities.

This figure shows the reflection probability for the first object (in

violet), which has high values around the camera-facing side of

the object. Also, note that the transmission probability is inversely

proportional to occupancy.

cuboids.1 However, such models introduce discontinuities in

the problem formulation and do not adequately account for

uncertainties in pose and dimensions. With this motivation,

we introduce our representation of 3D objects and our model-

ing of object-object relationships, which lead to a continuous

occlusion model that correctly accounts for uncertainties in

position and dimensions. We refer the reader to Figure 2 for

an illustration of the proposed concepts.

Occupancy model for traffic participants Intuitively,

we consider traffic participants to be regions of 3D space

with a high probability of occupancy. We model the uncer-

tainty in occupancy as a translucency function, with regions

more likely to be occupied by an object considered more

opaque and regions more likely to be free space considered

more transparent. Based on this intuition, we model objects

as translucent 3D ellipsoids whose opacity is maximum at

the center and falls off towards the edges. In particular, we

model the occupancy at 3D location x corresponding to an

object Oi centered at pi as

f i
occ(x) = L(x;pi,Σi), (1)

where L(·) is the logistic function given by

L(x;p,Σ) =
1

1 + e−k(1−d(x,p))
, (2)

with d(x,p) = (x−p)⊤Σ−1(x−p) being the Mahalanobis

distance. We set k = 10 ln(49) as the value that allows the

logistic function L to drop to 0.98 at a distance d = 0.9 from

the object center. The spread of the ellipsoid, determined by

Σi, depends on the dimensions of the object. Please refer to

the supplementary material for the computation of Σi from

object dimensions.

Image formation Given the above occupancy representa-

tion of the scene, a point on an object is observed in the

camera when precisely two conditions are satisfied. First,

1Notable exceptions exist, such as [34, 35], but we note that such models

are expensive, application-specific and still discontinuous.

the backprojected ray from the observed image pixel is trans-

mitted through free space until it reaches the object. Second,

the ray encounters an opaque enough object surface and is

reflected. More formally, the probability of observation of a

point xj on object Oi is given by

P
ij
observation = P

ij
reflectionP

j
transmission. (3)

The reflection probability ensures the presence of an object to

constitute the observation, while the transmission probability

allows us to model occlusions. The forms of these two

functions are described next.

Reflection probability Consider a 3D point xj observed

in the image at pixel uj . Let K be the intrinsic calibration

matrix for the camera and r̂j =
K−1uj

‖K−1uj‖
be the unit vector

along the backprojected ray from the camera center passing

through uj . Then, the probability of reflection at depth

λ along the ray r̂j , by an object Oi, is determined by the

gradient of the object’s occupancy function f i
occ as

P
ij
reflection(λ) =

1

Z
(max{0,∇f i

occ(xj)
⊤r̂j})

2. (4)

The gradient ∇f i
occ(xj) encourages the reflection probabil-

ity to be high near object boundaries, the max ensures that

negative probability due to the gradient in the direction oppo-

site to the ray is clipped off and squaring allows the function

to be smooth near zero. Here, Z denotes the normalization

factor. We note that in the extreme case of an object being

fully opaque (that is, ∇f i
occ(xj) ∈ {0, 1}), the above model

reverts to a (squared) Lambertian reflection. Figure 2 shows

an example of the reflection probability.

Transmission probability Since we are modeling occu-

pancy as transparency, we derive inspiration from optics

for the modeling of translucent objects. A model for trans-

mission of light across a distance α, through a medium of

density ρ and opacity β is given by the Beer-Lambert law as

I(α) = I0e
−βρα. (5)

In our formulation of scene occupancy, both opacity and

density at a scene point xj are encapsulated within the total

occupancy function summed over all objects, focc(xj) =
∑

i f
i
occ(xj). Further, the domain of our occupancy func-

tion focc(xj) is [0, 1] instead of [0,∞) for opacity β. Thus,

we replace e−βρ by the transparency function 1− focc(xj)
and consequently, the transmission probability over a small

distance dλ is given by

P
j
transmission(λ+ dλ) = P

j
transmission(λ)(1− focc(xj))

dλ. (6)

Thus, for an image point uj to correspond to a 3D point xj

at depth λ along the backprojected ray r̂j , the ray must be
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transmitted through space with the probability

P
j
transmission(λ) =

λ
∏

c

(1− focc(λr̂j))
dλ. (7)

Here,
∏λ

c represents a product integral from c to λ, where

c is the position of camera screen, considered here to be

equivalent to the focal length of the camera .2

In practice, the integral for transmission probability (7) is

difficult to compute even numerically. So we choose a pa-

rameterization in the form of a product of sigmoid functions,

which is a reasonable approximation to the behaviour of the

transmission probability, as follows:

P
j
transmission(λ) =

∏

i

(1− Lu(u;µi,Γi)Lλ(λ; νi)), (8)

where Lu(.) is sigmoid in the image domain, with µi and

Γi representing the elliptical projection of object Oi in the

image and Lλ(.) is sigmoid in the depth domain, with νi
being the mean depth of object Oi. That is,

Lu(u;µi,Γi) =
1

1 + e−ku(1−(u−µi)⊤Γ
−1

i
(u−µi))

, (9)

Lλ(λ; νi) =
1

1 + e−kd(λ−νi)
. (10)

In Figure 3, we compare the exact and approximate for-

mulations of transmission probability given by (7) and (8),

respectively. Note that the choice of mean depth of the

object causes some deviation from the exact transmission

probability. However, the shift of transmission probability

anywhere through the object is still a reasonable approxima-

tion as occluded points can only lie outside the object. On

the other hand, it yields significant computational savings

since ray intersections with an ellipsoid are expensive to

evaluate densely.

Thus, we have modeled the transmission probability to

effectively capture the effect of occlusion due to all traffic

participants in a scene that lie along a particular ray. We

reiterate that our reflection and transmission probabilities are

continuous functions, which allows us to keep the problem

formulation in the continuous domain.

4. Unified Occlusion Models

In this section, we highlight the versatility of our occlu-

sion modeling by demonstrating its unified application to

two different problems: associating point tracks with objects

and 3D object localization using objects and point tracks.

Table 1 summarizes inputs and outputs for these problems.

2A product integral is a simple integral in the log domain
λ∏

c

(1− focc(λr̂j))
dλ = e

∫
λ
c

ln (1−focc(λr̂j))dλ.

0 10 20 30 40
0

0.5

1

λ

P
tr

a
n
s
m

is
s
io

n

 

 

approx−1

approx−2

approx−3

exact−1

exact−2

exact−3

Figure 3: Comparisons between the approximate and exact for-

mulations of P
j
transmission(λ). The drop in the approximate version

is delayed because we assume drop at the object center rather than

the camera-facing face of the object.

Symbol Description

In
p

u
t

uj(t) 2D feature track j at time t

di(t) 2D detection bounding box of object Oi at time t
In

it
ia

li
za

ti
o

n

w
it

h
[ 2

3
]

pc(t) Position of camera at time t

ω
c(t) Orientation of camera at time t

pi
0(t) Initial position of object Oi at time t

ω
i
0(t) Initial orientation of object Oi at time t

Bi
0 Initial 3D dimensions of object Oi

O
u

tp
u

t P
ij
assoc Probability of assigning feature track j to object Oi

pi(t) Position of object Oi at time t

ω
i(t) Orientation of object Oi at time t

Bi 3D dimensions of object Oi

Table 1: Notation of inputs and outputs for object-point

association and 3D object localization. Note that object

dimensions are independent of time.

4.1. Object­Point Association

Given 2D image points {uj} that are tracked between

consecutive frames and a set of objects {Oi} appearing in

the frames, we aim to associate uj with Oi. Based on our

continuous occlusion model in Section 3, the association

probability aij(λ) between point track uj and object Oi at

depth λ can be defined as

aij(λ) = P
ij
reflection(λ)P

j
transmission(λ), (11)

where P
ij
reflection(λ) and P

j
transmission(λ) are from (4) and (8)

respectively. Note that the fraction aij(λ), although called

association probability, does not capture the entire informa-

tion that we have available for computing the association of

point tracks to objects.

Rather, to compute the association probability between

point track uj and object Oi, we should also use the repro-

jection error. When the association of point track uj and

object Oi is correct and the point of reflection is at depth λ,

the corresponding reprojection error E
ij
reproj(λ) must be zero,

otherwise the error becomes a measure of distance from the
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true solution. The error E
ij
reproj(λ) can be used for associating

point tracks and objects by converting it to the probability

domain as

P
ij
reproj(λ) =

1

Z ′
exp(−E

ij
reproj(λ)), (12)

where Z ′ is the normalization coefficient.

Using both of the evidence terms in (11) and (12), we can

define the new association probability P
ij
assoc, as follows:

P ij
assoc =

1

Z ′′

∫

∞

0

aij(λ) exp(−E
ij
reproj(λ))dλ, (13)

where Z ′′ is the new normalization coefficient.

Once we have computed the association probability P
ij
assoc

for every pair of point tracks and objects, we can assign

each point track to the object with the highest association

probability. The point tracks having very small association

probabilities are assigned to the background.

In contrast to the principled approach above, a heuristic

baseline may simply assign a point track to the detection

bounding box enclosing it (and the background if outside all

bounding boxes). For regions where bounding boxes overlap,

it may assign point tracks to the object that has the smallest

mean depth among the competing bounding boxes. As we

demonstrate in our experiments, such heuristics are sub-

optimal compared to using (13) from our occlusion model.

4.2. 3D Object Localization

In this section, we exploit our continuous occlusion model

for another application, namely, 3D object localization in

road scenes, which further demonstrates its versatility. Given

a set of 2D tracked feature points {uj(t)} and 2D detection

bounding boxes {di(t)} at frame t, the goal is to localize 3D

traffic participants. In particular, for each traffic participant,

we wish to estimate its position pi(t) and orientation ω
i(t)

on the ground plane and its 3D dimensions Bi(t). Please

refer to Table 1 for a summary of inputs and outputs.

We construct a graphical model for representing relation-

ships among objects, as well as between objects and point

tracks. Figure 4 illustrates an example of the graph and ener-

gies. The negative log likelihood is decomposed as follows:

− logP ({pi(t),ωi(t),Bi(t)}|{uj(t)}, {d
i(t)}) =

− Z̃ +

ei
∑

t=si

λtrackE
ijt
track+

ei
∑

t=si

N
∑

i=1

(

λdetectE
it
detect + λdynE

it
dyn + λsizeE

it
size

)

,

where E ijt
track and E it

detect reason about image observations such

as point tracks and bounding boxes, while E it
dyn and E it

size

impose smoothness constraints and size priors respectively.

6 2
1

5 3
4

6

2 5

3

4

1

1

{uj(t)}1

1 1

11

d6(t)

1d2(t)

1
1
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1
d1(t)

E it
detect

1

E ijt
track

1

Figure 4: (Top) A sample road scene with occlusions, where

the unknowns of each object are modeled as random variables.

(Bottom) The graphical model corresponding to the above frame. In

particular, the numbered nodes denote the unknown state variables

of each object (position, orientation, and dimensions), the shaded

nodes are observed variables (detection bounding boxes and point

tracks), and the colored squares represent various energies that

capture object-object interactions.

Here, λtrack, λdetect, λdyn, λsize are energy weights, N is the

number of objects in the sequence, si and ti are respec-

tively the starting and ending frames of object Oi, and Z̃

is the normalization coefficient. Next, we present our uni-

fied continuous occlusion modeling for both point track and

bounding box energies. Due to space constraints, we present

the details of other energies in the supplementary material.

Continuous point track energy with occlusion Let Ωi(t)
be the pose of object Oi at time t in world coordinates, which

is computed using the camera pose at time t and the relative

pose of object Oi with respect to the camera at time t. We

denote πΩi(t) (.) and π−1
Ωi(t−1) (.) as the forward and inverse

projection functions that project a 3D point to the 2D image

and vice versa. Then, the reprojection error for 2D point

uj(t) with hypothesized depth λ, is given by

E
ij
reproj(λ) =

∥

∥

∥
uj(t)− πΩi(t)

(

π−1
Ωi(t−1) (uj(t− 1), λ)

)∥

∥

∥

2

.

(14)

Note that the inverse projection π−1
Ωi(t) (.) depends on both

the 2D point uj(t) and the unknown depth λ. Also note that

the inverse projection relies on the object pose at time t− 1
while the forward projection relies on the object pose at time

t, which can be different.

For an object Oi, let {Ω(t)}i be the poses of all occlud-

ing objects at time t (inclusive of object Oi) and {B}i be
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their corresponding 3D dimensions. Then, we model the

continuous point track energy with explicit occlusion reason-

ing as the expected reprojection error over the association

probability

E ijt
track({Ω(t)}i, {Ω(t− 1)}i, {B}i)

=

N
∑

i=1

M
∑

j=1

∫

∞

0

aij(λ)Eij
reproj(λ)dλ, (15)

where N and M are, respectively, the number of objects

and points and aij(λ) is the association probability of point

uj(t) with object Oi at depth λ, given by (11).

Continuous bounding box energy with occlusion Ob-

ject detection is usually followed by non-maximal suppres-

sion that results in discarding similar bounding boxes. When

we are jointly optimizing detections with other cues, it is

usually not desirable to use a single bounding box. To retain

the entire detection output while maintaining the continuous

form of our energies, we approximate the distribution of

detection scores with a multi-modal sum of Gaussian-like lo-

gistic functions. In particular, let 2D bounding box di(t) be

parameterized as a 4D vector [xmin, ymin, xmax, ymax]
⊤. We

fit a parametric function to the detection scores, of the form

S(di(t)) =
∑

k

Ak exp
(

−ǫ
i
k(t)

⊤Λ−1
k ǫ

i
k(t)

)

, (16)

where Ak is an amplitude and ǫ
i
k(t) = di(t)− µk, with µk

the mean and Λk the covariance. We use a non-linear solver

to minimize the above, with initialization from non-maximal

suppressed outputs. The optimization is constrained by the

symmetry and positive definiteness of Λk, xmax ≥ xmin and

ymax ≥ ymin.

Detection scores with occlusion reasoning With our

model of P
j
transmission(λ) described in Section 3, we com-

pute the probability of a point u in the image to be occluded,

assuming the point is on object Oi with mean depth νi, as

Θi(u, νi) = 1− Ptransmission(νi,u). (17)

If a portion of the proposed detection bounding box is known

to be occluded, one would like to decrease the confidence

in the detection score about the localization of that end of

the object. Assuming that occlusions are more likely on

the boundaries of the detection bounding box, we wish to

decrease the confidence on the mean detection boundaries

around the occluded boundaries. To re-model detection

scores scaled by continuous occlusion, we sample Θi(u, νi)
at the hypothesized detection boundaries from the Gaussian

mixture model (GMM) S(.) in (16) and augment the de-

tection boundary covariance matrix by Pi = ρiρ
⊤

i , where

ρi = Θi(u, νi). The new covariance matrix for the detection

Point tracks Ours BBox BM RAS

Dynamic & occluded 13.2 21.3 30.9 30.1

Occluded 15.7 19.8 39.5 37.8

Dynamic 6.6 11.4 15.3 17.7

All 8.6 12.6 21.9 21.5

Table 2: Mean association errors on different sets of input point

tracks over all sequences. Errors are in terms of average fractions

of foreground points incorrectly associated to objects per sequence.

scores is given by Λ′

k = Pi + Λk for all k. The detection

score GMM S′(.) with explicit occlusion reasoning is given

by replacing the covariance matrix, as follows:

S′(di(t)) =
∑

k

Ak exp
(

−ǫ
i
k(t)

⊤Λ
′
−1
k ǫ

i
k(t)

)

. (18)

The energy of detection scores is simply taken to be the

inverse of the above detection score, that is,

E it
detect({Ω

i(t)}i, {B
i}i) =

1

S′(di(t))
. (19)

Inference on graphical model We apply the Metropolis-

Hastings method [14] to perform inference on the graphical

model. Since we optimize over continuous variables, we

use the Gaussian distribution as the proposal function. We

choose this over alternatives such as block-coordinate de-

scent since they are slower in our experiments.

5. Experiments

In this section, we benchmark our continuous occlusion

model for point-to-object association against the baseline

method using detection bounding boxes and state-of-the-art

methods for motion segmentation [1, 21]. We then show

how the proposed model may be applied for 3D object lo-

calization in road scenes. For our experiments, we use 35

sequences of the KITTI raw dataset [7], which are recorded

under a variety of driving conditions and include 10,088

frames and 634 object tracks in total.

5.1. Association Experiments

Setup We first perform the association experiment that

compares the accuracy of point-to-object association using

our proposed model against a heuristic baseline and state-of-

the-art motion segmentation methods. The detection bound-

ing box baseline method (BBox) is as described at the end

of Section 4.1. For motion segmentation, we use robust

algebraic segmentation with hybrid perspective constraints

(RAS) [21] and spectral clustering with point track spatial

affinities (BM) [1].
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Figure 5: Association errors on different sets of input point tracks. Numbers on the x-axis represent sequence numbers in the KITTI raw

dataset. Errors are in terms of average fractions of foreground points incorrectly associated to objects per sequence.
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Figure 6: Qualitative results of the association experiment. The “Associations” columns show the point track assignments to appropriate

objects. Each color represents a different object to which point tracks can be associated to. The “Errors” columns show the probabilistic

errors in association: low error points are in blue while high error points are in red. Note that our method changes smoothly at the object

boundaries with intermediate probabilities, while the baseline method has merely 0 and 1 errors.

For each sequence, the methods of [5] and [2] are used

for computing detection bounding boxes and object track-

lets, respectively. We then apply [32] to extract point tracks.

Note that our method can handle occlusions in both static

and dynamic scenes, but motion segmentation focuses on

dynamic scenes. For a complete evaluation, we organize

the point tracks into four sets: all point tracks, occluded

point tracks, dynamic point tracks and dynamic as well as

occluded point tracks. The parameters (position, orienta-

tion, and dimensions) of all objects (cars) estimated by the

method of [23] are provided to our method (for computing

association probability) and the baseline BBox method (for

depth ordering). The number of objects is known a priori in

our model (from object tracking [2]) and is also provided to

other methods such as BBox and RAS.
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Method t dim

Point cloud fitting 6.87 4.02

Initialization by [23] 5.61 3.23

E ijt
trackNoOcc + E it

detectNoOcc + E it
size + E it

dyn 3.95 1.72

E ijt
trackNoOcc + E it

detect + E it
size + E it

dyn 4.81 2.16

E ijt
track + E it

detectNoOcc + E it
size + E it

dyn 4.05 1.59

E ijt
track + E it

detect + E it
size + E it

dyn 3.24 2.16

Table 3: Localization experiment results with different combina-

tions of energies. We report translation error (t) and dimension

error (dim) in meters per car. Yaw angles for static objects are not

optimized by our model. These experiments use the set of occluded

tracks to demonstrate the effect of our modeling.

Results Figure 5 shows the association errors – the per-

centages of point tracks incorrectly assigned to objects – for

all methods on the four sets of input point tracks, for each se-

quence. The mean results over all sequences are summarized

in Table 2. From Figure 5, our method is usually the most

accurate among all methods, leading to the best mean error

on all sets of input point tracks in Table 2, which is followed

by the bounding box baseline method. This clearly shows the

advantage of our continuous occlusion model over the sim-

ple baseline method for resolving occlusions. RAS and BM

often have the highest errors in Figure 5, thus, the highest

mean errors on all sets of input point tracks in Table 2.

More importantly, both RAS and BM rely on motions

of objects for clustering point tracks, therefore they cannot

work well with static point tracks (for example, point tracks

that belong to parked cars). This fact can be observed in

Table 2, where there are large differences in the mean errors

of both methods on data containing static point tracks (rows

2 and 4) and data consisting of dynamic point tracks only

(rows 1 and 3). In contrast, our method and the baseline

method are relatively independent of object motions, result-

ing in smaller performance gaps. Further, our method also

outperforms motion segmentation on dynamic objects (row

3), which shows the effect of detection bounding boxes and

by a more significant margin when occlusions are present

(row 1), which shows the effect of our occlusion modeling.

Qualitative comparisons of point track associations from

various methods are shown in Figure 6. We note the low

errors using our occlusion model and the smooth transition

of assignment across object boundaries.

5.2. Localization Experiments

We report errors in translation and dimension estimates,

measured in meters per car, in Table 3. The average depth of

cars in the dataset is approximately 20 meters. We compare

four combinations of energies against the initialization using

[23] and a simple baseline which fits a 3D cuboid on the

3D point cloud reconstructed using SFM within detection

bounding boxes in consecutive frames (for unobservable di-

mensions, such as when only the back of a car is visible,

we rely on 3D size priors). The energy E ijt
trackNoOcc represents

the point track energy without accounting for occlusions,

that is, we model E ijt
track in the absence of aij(λ). Similarly,

E it
detectNoOcc is the bounding box energy without the modifica-

tion of Λk that accounts for occlusion. We use λtrack = 1,

λdetect = 1, λdyn = 10, λsize = 7. Please refer to the supple-

mentary material for a detailed list of parameter settings.

From Table 3, the baseline method has the highest er-

rors, which is likely due to lack of point tracks and incor-

rect point-to-object associations (using detection bounding

boxes). Moreover, minimizing different combinations of

energies yields lower errors than the initialization with [23],

which shows the advantage of our energy minimization. Fi-

nally, we observe that the use of the continuous occlusion

model improves the localization accuracy in terms of the

translation error, which is the most significant metric affected

by all cues. Occlusion modeling for detection increases di-

mension error since we explicitly allow greater uncertainty

in occluded edges of the bounding box. Note that none of our

energies optimize yaw angles for static objects, which can

be handled in practice through either the detector orientation

or external information such as lane geometry.

6. Conclusions and Future Work

We have presented a theoretically novel continuous model

for occlusion reasoning in 3D. A key advantage is its physical

inspiration that lends flexibility towards occlusion reasoning

for varied elements of scene understanding, such as point

tracks, object detection bounding boxes and detection scores.

We demonstrate unified modeling for different applications

such as object-point track associations and 3D localization.

Our occlusion model can uniformly handle static and dy-

namic objects, which is an advantage over motion segmen-

tation methods for object-point association. A challenge is

that inference for 3D localization is currently slow, requir-

ing a few minutes per window of frames, which prevents

exhaustive cross-validation for tuning of weights. Our future

work will explore speeding up the inference, for example,

by approximating the graph with a tree using the Chow-Liu

method [3], which will allow belief propagation for fast in-

ference. Another direction for future work is to replace a

single ellipsoid by a set of spheres for modelling a translu-

cent object [22], which will better capture object boundary

and appearance while remaining a continuous model.
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