
Inverting Visual Representations with Convolutional Networks

Alexey Dosovitskiy Thomas Brox

University of Freiburg

Freiburg im Breisgau, Germany

{dosovits,brox}@cs.uni-freiburg.de

Abstract

Feature representations, both hand-designed and

learned ones, are often hard to analyze and interpret, even

when they are extracted from visual data. We propose a

new approach to study image representations by inverting

them with an up-convolutional neural network. We apply

the method to shallow representations (HOG, SIFT, LBP),

as well as to deep networks. For shallow representations

our approach provides significantly better reconstructions

than existing methods, revealing that there is surprisingly

rich information contained in these features. Inverting a

deep network trained on ImageNet provides several insights

into the properties of the feature representation learned

by the network. Most strikingly, the colors and the rough

contours of an image can be reconstructed from activations

in higher network layers and even from the predicted class

probabilities.

1. Introduction

A feature representation useful for pattern recognition

tasks is expected to concentrate on properties of the input

image which are important for the task and ignore the ir-

relevant properties of the input image. For example, hand-

designed descriptors such as HOG [3] or SIFT [17], explic-

itly discard the absolute brightness by only considering gra-

dients, precise spatial information by binning the gradients

and precise values of the gradients by normalizing the his-

tograms. Convolutional neural networks (CNNs) trained in

a supervised manner [14, 13] are expected to discard infor-

mation irrelevant for the task they are solving [28, 19, 22].

In this paper we propose a new approach to analyze

which information is preserved by a feature representa-

tion and which information is discarded. We train neural

networks to invert feature representations in the following

sense. Given a feature vector, the network is trained to

predict the expected pre-image, that is, the (weighted) av-

erage of all natural images which could have produced the

HOG SIFT AlexNet-CONV3 AlexNet-FC8

Figure 1: We train convolutional networks to reconstruct

images from different feature representations. Top row:

Input features. Bottom row: Reconstructed image. Re-

constructions from HOG and SIFT are very realistic. Re-

constructions from AlexNet preserve color and rough object

positions even when reconstructing from higher layers.

given feature vector. The content of this expected pre-image

shows image properties which can be confidently inferred

from the feature vector. The amount of blur corresponds to

the level of invariance of the feature representation. We ob-

tain further insights into the structure of the feature space, as

we apply the networks to perturbed feature vectors, to inter-

polations between two feature vectors, or to random feature

vectors.

We apply our inversion method to AlexNet [13], a con-

volutional network trained for classification on ImageNet,

as well as to three widely used computer vision features:

histogram of oriented gradients (HOG) [3, 7], scale invari-

ant feature transform (SIFT) [17], and local binary pat-

terns (LBP) [21]. The SIFT representation comes as a non-

uniform, sparse set of oriented keypoints with their corre-

sponding descriptors at various scales. This is an additional

challenge for the inversion task. LBP features are not dif-

ferentiable with respect to the input image. Thus, existing

methods based on gradients of representations [19] could

not be applied to them.

14829

1.1. Related work

Our approach is related to a large body of work on in-

verting neural networks. These include works making use

of backpropagation or sampling [15, 16, 18, 27, 9, 25] and,

most similar to our approach, other neural networks [2].

However, only recent advances in neural network architec-

tures allow us to invert a modern large convolutional net-

work with another network.

Our approach is not to be confused with the Decon-

vNet [28], which propagates high level activations back-

ward through a network to identify parts of the image re-

sponsible for the activation. In addition to the high-level

feature activations, this reconstruction process uses extra

information about maxima locations in intermediate max-

pooling layers. This information has been shown to be cru-

cial for the approach to work [22]. A visualization method

similar to DeconvNet is by Springenberg et al. [22], yet it

also makes use of intermediate layer activations.

Mahendran and Vedaldi [19] invert a differentiable im-

age representation Φ using gradient descent. Given a fea-

ture vector Φ0, they seek for an image x∗ which minimizes

a loss function – the squared Euclidean distance between

Φ0 and Φ(x) plus a regularizer enforcing a natural image

prior. This method is fundamentally different from our ap-

proach in that it optimizes the difference between the fea-

ture vectors, not the image reconstruction error. Addition-

ally, it includes a hand-designed natural image prior, while

in our case the network implicitly learns such a prior. Tech-

nically, it involves optimization at test time, which requires

computing the gradient of the feature representation and

makes it relatively slow (the authors report 6s per image on

a GPU). In contrast, the presented approach is only costly

when training the inversion network. Reconstruction from

a given feature vector just requires a single forward pass

through the network, which takes roughly 5ms per image on

a GPU. The method of [19] requires gradients of the feature

representation, therefore it could not be directly applied to

non-differentiable representations such as LBP, or record-

ings from a real brain [20].

There has been research on inverting various tradi-

tional computer vision representations: HOG and dense

SIFT [24], keypoint-based SIFT [26], Local Binary De-

scriptors [4], Bag-of-Visual-Words [11]. All these meth-

ods are either tailored for inverting a specific feature repre-

sentation or restricted to shallow representations, while our

method can be applied to any feature representation.

2. Method

Denote by (x, φ) random variables representing a natu-

ral image and its feature vector, and denote their joint prob-

ability distribution by p(x,φ) = p(x)p(φ|x). Here p(x) is

the distribution of natural images and p(φ|x) is the distribu-

tion of feature vectors given an image. As a special case, φ

may be a deterministic function of x. Ideally we would like

to find p(x|φ), but direct application of Bayes’ theorem is

not feasible. Therefore in this paper we resort to a point es-

timate f(φ) which minimizes the following mean squared

error objective:

Ex,φ ||x− f(φ)||2 (1)

The minimizer of this loss is the conditional expectation:

f̂(φ
0
) = Ex [x |φ = φ

0
], (2)

that is, the expected pre-image.

Given a training set of images and their features

{xi, φi}, we learn the weights w of an an up-convolutional

network f(φ,w) to minimize a Monte-Carlo estimate of

the loss (1):

ŵ = argmin
w

∑

i

||xi − f(φi,w)||2
2
. (3)

This means that simply training the network to predict im-

ages from their feature vectors results in estimating the ex-

pected pre-image.

2.1. Feature representations to invert

Shallow features. We invert three traditional computer

vision feature representations: histogram of oriented gradi-

ents (HOG), scale invariant feature transform (SIFT), and

local binary patterns (LBP). We chose these features for a

reason. There has been work on inverting HOG, so we can

compare to existing approaches. LBP is interesting because

it is not differentiable, and hence gradient-based methods

cannot invert it. SIFT is a keypoint-based representation,

so the network has to stitch different keypoints into a single

smooth image.

For all three methods we use implementations from the

VLFeat library [23] with the default settings. More pre-

cisely, we use the HOG version from Felzenszwalb et al. [7]

with cell size 8, the version of SIFT which is very similar

to the original implementation of Lowe [17] and the LBP

version similar to Ojala et al. [21] with cell size 16. Be-

fore extracting the features we convert images to grayscale.

More details can be found in the supplementary material.

AlexNet. We also invert the representation of the

AlexNet network [13] trained on ImageNet, available at

the Caffe [10] website. 1 It consists of 5 convolutional lay-

ers and 3 fully connected layers, with rectified linear units

(ReLUs) after each layer, and local contrast normalization

or max-pooling after some of them. Exact architecture is

shown in the supplementary material. In what follows,

1More precisely, we used CaffeNet, which is almost identical to the

original AlexNet.

4830

when we say ‘output of the layer’, we mean the output of the

last processing step of this layer. For example, the output of

the first convolutional layer CONV1 would be the result af-

ter ReLU, pooling and normalization, and the output of the

first fully connected layer FC6 is after ReLU. FC8 denotes

the last layer, before the softmax.

2.2. Network architectures and training

An up-convolutional layer, also often referred to as ‘de-

convolutional’, is a combination of upsampling and convo-

lution [6]. We upsample a feature map by a factor 2 by re-

placing each value by a 2× 2 block with the original value

in the top left corner and all other entries equal to zero. Ar-

chitecture of one of our up-convolutional networks is shown

in Table 1. Architectures of other networks are shown in the

supplementary material.

HOG and LBP. For an image of size W × H , HOG

and LBP features of an image form 3-dimensional arrays of

sizes ⌈W/8⌉ × ⌈H/8⌉ × 31 and ⌈W/16⌉ × ⌈H/16⌉ × 58,

respectively. We use similar CNN architectures for invert-

ing both feature representations. The networks include a

contracting part, which processes the input features through

a series of convolutional layers with occasional stride of 2,

resulting in a feature map 64 times smaller than the input

image. Then the expanding part of the network again up-

samples the feature map to the full image resolution by a se-

ries of up-convolutional layers. The contracting part allows

the network to aggregate information over large regions of

the input image. We found this is necessary to successfully

estimate the absolute brightness.

Sparse SIFT. Running the SIFT detector and descrip-

tor on an image gives a set of N keypoints, where the i-th
keypoint is described by its coordinates (xi, yi), scale si,
orientation αi, and a feature descriptor fi of dimensionality

D. In order to apply a convolutional network, we arrange

the keypoints on a grid. We split the image into cells of

size d × d (we used d = 4 in our experiments), this yields

⌈W/d⌉ × ⌈H/d⌉ cells. In the rare cases when there are

several keypoints in a cell, we randomly select one. We

then assign a vector to each of the cells: a zero vector to

a cell without a keypoint and a vector (fi, xi mod d, yi
mod d, sinαi, cosαi, log si) to a cell with a keypoint. This

results in a feature map F of size ⌈W/d⌉×⌈H/d⌉×(D+5).
Then we apply a CNN to F, as described above.

AlexNet. To reconstruct from each layer of AlexNet we

trained a separate network. We used two basic architectures:

one for reconstructing from convolutional layers and one for

reconstructing from fully connected layers. The network for

reconstructing from fully connected layers contains three

fully connected layers and 5 up-convolutional layers, as

shown in Table 1. The network for reconstructing from con-

volutional layers consists of three convolutional and several

up-convolutional layers (the exact number depends on the

Layer Input InSize K S OutSize

fc1 AlexNet-FC8 1000 − − 4096
fc2 fc1 4096 − − 4096
fc3 fc2 4096 − − 4096
reshape fc3 4096 − − 4×4×256
upconv1 reshape 4×4×256 5 2 8×8×256
upconv2 upconv1 8×8×256 5 2 16×16×128
upconv3 upconv2 16×16×128 5 2 32×32×64
upconv4 upconv3 32×32×64 5 2 64×64×32
upconv5 upconv4 64×64×32 5 2 128×128×3

Table 1: Network for reconstructing from AlexNet FC8 fea-

tures. K stands for kernel size, S for stride.

layer to reconstruct from). Filters in all (up-)convolutional

layers have 5 × 5 spatial size. After each layer we apply

leaky ReLU nonlinearity with slope 0.2, that is, r(x) = x if

x > 0 and r(x) = 0.2 · x if x < 0.

Training details. We trained networks using a modified

version of Caffe [10]. As training data we used the Ima-

geNet [5] training set. In some cases we predicted down-

sampled images to speed up computations. We used the

Adam [12] optimizer with β1 = 0.9, β2 = 0.999 and mini-

batch size 64. For most networks we found an initial learn-

ing rate λ = 0.001 to work well. We gradually decreased

the learning rate towards the end of training. The duration of

training depended on the network: from 15 epochs (passes

through the dataset) for shallower networks to 60 epochs for

deeper ones.

Quantitative evaluation. As a quantitative measure of

performance we used the average normalized reconstruc-

tion error, that is the mean of ||xi − f(Φ(xi))||2/N , where

xi is an example from the test set, f is the function imple-

mented by the inversion network and N is a normalization

coefficient equal to the average Euclidean distance between

images in the test set. The test set we used for quantita-

tive and qualitative evaluations is a subset of the ImageNet

validation set.

3. Experiments: shallow representations

Figures 1 and 3 show reconstructions of several im-

ages from the ImageNet validation set. Normalized recon-

struction error of different approaches is shown in Table 2.

Clearly, our method significantly outperforms existing ap-

proaches. This is to be expected, since our method explic-

itly aims to minimize the reconstruction error.

Hoggles [24] HOG−1 [19] HOG our SIFT our LBP our

0.61 0.63 0.24 0.28 0.38

Table 2: Normalized error of different methods when recon-

structing from HOG.

4831

Image HOG Hoggles [24] HOG−1 [19] Our

Figure 2: Reconstructing an image from its HOG descriptors with different methods.

Colorization. As mentioned above, we compute the fea-

tures based on grayscale images, but the task of the net-

works is to reconstruct the color images. The features do

not contain any color information, so to predict colors the

network has to analyze the content of the image and make

use of a natural image prior it learned during training. It

does successfully learn to do so, as can be seen in Figures 1

and 3. Quite often the colors are predicted correctly, espe-

cially for sky, sea, grass, trees. In other cases, the network

cannot predict the color (for example, people in the top row

of Figure 3) and leaves some areas gray. Occasionally the

network predicts the wrong color, such as in the bottom row

of Figure 3.

HOG. Figure 2 shows an example image, its HOG rep-

resentation, the results of inversion with existing meth-

ods [24, 19] and with our approach. Most interestingly, the

network is able to reconstruct the overall brightness of the

image very well, for example the dark regions are recon-

structed dark. This is quite surprising, since the HOG de-

scriptors are normalized and should not contain information

about absolute brightness.

Normalization is always performed with a smoothing

’epsilon’, so one might imagine that some information

about the brightness is present even in the normalized fea-

tures. We checked that the network does not make use of

this information: multiplying the input image by 10 or 0.1
hardly changes the reconstruction. Therefore, we hypothe-

size that the network reconstructs the overall brightness by

1) analyzing the distribution of the HOG features (if in a

cell there is similar amount of gradient in all directions, it is

probably noise; if there is one dominating gradient, it must

actually be in the image), 2) accumulating gradients over

space: if there is much black-to-white gradient in one di-

rection, then probably the brightness in that direction goes

from dark to bright and 3) using semantic information.

SIFT. Figure 4 shows an image, the detected SIFT key-

points and the resulting reconstruction. There are roughly

Image HOG our SIFT our LBP our

Figure 3: Inversion of shallow image representations. Note

how in the first row the color of grass and trees is predicted

correctly in all cases, although it is not contained in the fea-

tures.

Figure 4: Reconstructing an image from SIFT descriptors

with different methods. (a) an image, (b) SIFT keypoints,

(c) reconstruction of [26], (d) our reconstruction.

4832

Image CONV1 CONV2 CONV3 CONV4 CONV5 FC6 FC7 FC8

Figure 5: Reconstructions from different layers of AlexNet.

Image CONV1 CONV2 CONV3 CONV4 CONV5 FC6 FC7 FC8

Our

[19]

AE

Figure 6: Reconstructions from layers of AlexNet with our method (top), [19] (middle), and autoencoders (bottom).

3000 keypoints detected in this image. Although made from

a sparse set of keypoints, the reconstruction looks very nat-

ural, just a little blurry. To achieve such a clear reconstruc-

tion the network has to properly rotate and scale the descrip-

tors and then stitch them together. Obviously it successfully

learns to do this.

For reference we also show a result of another existing

method [26] for reconstructing images from sparse SIFT de-

scriptors. The results are not directly comparable: while we

use the SIFT detector providing circular keypoints, Weinza-

epfel et al. [26] use the Harris affine keypoint detector which

yields elliptic keypoints, and the number and the locations

of the keypoints may be different from our case. However,

the rough number of keypoints is the same, so a qualitative

comparison is still valid.

4. Experiments: AlexNet

We applied our inversion method to different layers of

AlexNet and performed several additional experiments to

better understand the feature representations. More results

are shown in the supplementary material.

4.1. Reconstructions from different layers

Figure 5 shows reconstructions from various layers of

AlexNet. When using features from convolutional layers,

the reconstructed images look very similar to the input, but

lose fine details as we progress to higher layers. There is

an obvious drop in reconstruction quality when going from

CONV5 to FC6. However, the reconstructions from higher

convolutional layers and even fully connected layers pre-

serve color and the approximate object location very well.

Reconstructions from FC7 and FC8 still look similar to the

input images, but blurry. This means that high level features

4833

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8
0

0.2

0.4

0.6

0.8

1

Layer to reconstruct from

N
o
rm

a
liz

e
d
 r

e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

Our

Mahendran et al.

Autoencoder

Our−bin

Our−drop50

Autoencoder−bin

Our−bin−drop50

Our−bin−drop50least

Figure 7: Average normalized reconstruction error depend-

ing on the network layer.

are much less invariant to color and pose than one might ex-

pect: in principle fully connected layers need not preserve

any information about colors and locations of objects in the

input image. This is somewhat in contrast with the results

of [19], as shown in Figure 6. While their reconstructions

are sharper, the color and position are completely lost in

reconstructions from higher layers.

For quantitative evaluation before computing the error

we up-sample reconstructions to input image size with bi-

linear interpolation. Error curves shown in Figure 7 support

the conclusions made above. When reconstructing from

FC6, the error is roughly twice as large as from CONV5.

Even when reconstructing from FC8, the error is fairly low

because the network manages to get the color and the rough

placement of large objects in images right. For lower lay-

ers, the reconstruction error of [19] is still much higher than

of our method, even though visually the images look some-

what sharper. The reason is that in their reconstructions the

color and the precise placement of small details do not per-

fectly match the input image, which results in a large overall

error.

4.2. Autoencoder training

Our inversion network can be interpreted as the decoder

of the representation encoded by AlexNet. The difference to

an autoencoder is that the encoder part stays fixed and only

the decoder is optimized. For comparison we also trained

autoencoders with the same architecture as our reconstruc-

tion nets, i.e., we also allowed the training to fine-tune the

parameters of the AlexNet part. This provides an upper

bound on the quality of reconstructions we might expect

from the inversion networks (with fixed AlexNet).

As shown in Figure 7, autoencoder training yields

much lower reconstruction errors when reconstructing from

higher layers. Also the qualitative results in Figure 6 show

Image all top5 notop5

pomegranate (0.93)

Granny Smith apple (0.99)

croquet ball (0.96)

Figure 8: The effect of color on classification and recon-

struction from layer FC8. Left to right: input image, recon-

struction from FC8, reconstruction from 5 largest activations

in FC8, reconstruction from all FC8 activations except the 5
largest ones. Below each row the network prediction and its

confidence are shown.

much better reconstructions with autoencoders. Even from

CONV5 features, the input image can be reconstructed al-

most perfectly. When reconstructing from fully connected

layers, the autoencoder results get blurred, too, due to the

compressed representation, but by far not as much as with

the fixed AlexNet weights. The gap between the autoen-

coder training and the training with fixed AlexNet gives an

estimate of the amount of image information lost due to the

training objective of the AlexNet, which is not based on re-

construction quality.

An interesting observation with autoencoders is that the

reconstruction error is quite high even when reconstructing

from CONV1 features, and the best reconstructions were ac-

tually obtained from CONV4. Our explanation is that the

convolution with stride 4 and consequent max-pooling in

CONV1 loses much information about the image. To de-

crease the reconstruction error, it is beneficial for the net-

work to slightly blur the image instead of guessing the de-

tails. When reconstructing from deeper layers, deeper net-

works can learn a better prior resulting in slightly sharper

images and slightly lower reconstruction error. For even

deeper layers, the representation gets too compressed and

the error increases again. We observed (not shown in the

paper) that without stride 4 in the first layer, the reconstruc-

tion error of autoencoders got much lower.

4.3. Case study: Colored apple

We performed a simple experiment illustrating how the

color information influences classification and how it is pre-

served in the high level features. We took an image of a

red apple (Figure 8 top left) from Flickr and modified its

4834

Image CONV3 CONV4 CONV5 FC6 FC7 FC8 CONV3 CONV4 CONV5 FC6 FC7 FC8

No
per-

turb

Bin

Drop

50

Fixed AlexNet Autoencoder

Figure 9: Reconstructions from different layers of AlexNet with disturbed features.

hue to make it green or blue. Then we extracted AlexNet

FC8 features of the resulting images. Remind that FC8 is

the last layer of the network, so the FC8 features, after ap-

plication of softmax, give the network’s prediction of class

probabilities. The largest activation, hence, corresponds to

the network’s prediction of the image class. To check how

class-dependent the results of inversion are, we passed three

versions of each feature vector through the inversion net-

work: 1) just the vector itself, 2) all activations except the

5 largest ones set to zero, 3) the 5 largest activations set to

zero.

This leads to several conclusions. First, color clearly can

be very important for classification, so the feature represen-

tation of the network has to be sensitive to it, at least in

some cases. Second, the color of the image can be precisely

reconstructed even from FC8 or, equivalently, from the pre-

dicted class probabilities. Third, the reconstruction quality

does not depend much on the top predictions of the network

but rather on the small probabilities of all other classes. This

is consistent with the ’dark knowledge’ idea of [8]: small

probabilities of non-predicted classes carry more informa-

tion than the prediction itself. More examples of this are

shown in the supplementary material.

4.4. Robustness of the feature representation

We have shown that high level feature maps preserve rich

information about the image. How is this information rep-

resented in the feature vector? It is difficult to answer this

question precisely, but we can gain some insight by perturb-

ing the feature representations in certain ways and observ-

ing images reconstructed from these perturbed features. If

perturbing the features in a certain way does not change the

reconstruction much, then the perturbed property is not im-

portant. For example, if setting a non-zero feature to zero

does not change the reconstruction, then this feature does

not carry information useful for the reconstruction.

We applied binarization and dropout. To binarize the fea-

ture vector, we kept the signs of all entries and set their ab-

solute values to a fixed number, selected such that the Eu-

clidean norm of the vector remained unchanged (we tried

several other strategies, and this one led to the best result).

For all layers except FC8, feature vector entries are non-

negative, hence, binarization just sets all non-zero entries to

a fixed positive value. To perform dropout, we randomly set

50% of the feature vector entries to zero and then normal-

ize the vector to keep its Euclidean norm unchanged (again,

we found this normalization to work best). Qualitative re-

sults of these perturbations of features in different layers

of AlexNet are shown in Figure 9. Quantitative results are

shown in Figure 7. Surprisingly, dropout leads to larger de-

crease in reconstruction accuracy than binarization, even in

the layers where it had been applied during training. In lay-

ers FC7 and especially FC6, binarization hardly changes the

reconstruction quality at all. Although it is known that bina-

rized ConvNet features perform well in classification [1], it

comes as a surprise that for reconstructing the input image

the exact values of the features are not important. In FC6

virtually all information about the image is contained in the

binary code given by the pattern of non-zero activations.

Figures 7 and 9 show that this binary code only emerges

when training with the classification objective and dropout,

while autoencoders are very sensitive to perturbations in the

features.

To test the robustness of this binary code, we applied

binarization and dropout together. We tried dropping out

50% random activations or 50% least non-zero activations

and then binarizing. Dropping out the 50% least activations

reduces the error much less than dropping out 50% random

activations and is even better than not applying any dropout

for most layers. However, layers FC6 and FC7 are the most

interesting ones: here dropping out 50% random activations

decreases the performance substantially, while dropping out

50% least activations only results in a small decrease. Pos-

sibly the exact values of the features in FC6 and FC7 do not

affect the reconstruction much, but they estimate the impor-

tance of different features.

4.5. Interpolation and random feature vectors

Another way to analyze the feature representation is by

traversing the feature manifold and by observing the corre-

4835

CONV5

FC6

FC7

FC8

Figure 10: Interpolation between the features of two

images.

sponding images generated by the reconstruction networks.

We have seen the reconstructions from feature vectors of

actual images, but what if a feature vector was not gener-

ated from a natural image? In Figure 10 we show recon-

structions obtained with our networks when interpolating

between feature vectors of two images. It is interesting

to see that interpolating CONV5 features leads to a simple

overlay of images, but the behavior of interpolations when

reconstructing from FC6 is very different: images smoothly

morph into each other. More examples, together with the

results for autoencoders, are shown in the supplementary

material.

Another analysis method is by sampling feature vectors

randomly. Our networks were trained to reconstruct images

given their feature representations, but the distribution of

the feature vectors is unknown. Hence, there is no simple

principled way to sample from our model. However, by

assuming independence of the features (a very strong and

wrong assumption!), we can approximate the distribution

of each dimension of the feature vector separately. To this

end we simply computed a histogram of each feature over

a set of 4096 images and sampled from those. We ensured

that the sparsity of the random samples is the same as that

of the actual feature vectors. This procedure led to low con-

trast images, perhaps because by independently sampling

each dimension we did not introduce interactions between

the features. Multiplying the feature vectors by a constant

factor α = 2 increases the contrast without affecting other

properties of the generated images.

Random samples obtained this way from four top layers

of AlexNet are shown in Figure 11. No pre-selection was

performed. While samples from CONV5 look much like ab-

stract art, the samples from fully convolutional layers are

much more realistic. This shows that the networks learn

a natural image prior that allows them to produce some-

what realistically looking images from random feature vec-

tors. We found that a much simpler sampling procedure of

CONV5

FC6

FC7

FC8

Figure 11: Images generated from random feature vectors

of top layers of AlexNet.

fitting a single shifted truncated Gaussian to all feature di-

mensions produces qualitatively very similar images. These

are shown in the supplementary material together with im-

ages generated from autoencoders, which look much less

like natural images.

5. Conclusions

We have proposed to invert image representations with

up-convolutional networks and have shown that this yields

more or less accurate reconstructions of the original images,

depending on the level of invariance of the feature represen-

tation. The networks implicitly learn natural image priors

which allow the retrieval of information that is obviously

lost in the feature representation, such as color or bright-

ness in HOG or SIFT. The method is very fast at test time

and does not require the gradient of the feature representa-

tion to be inverted. Therefore, it can be applied to virtually

any image representation.

Application of our method to the representations learned

by the AlexNet convolutional network leads do several con-

clusions: 1) Features from all layers of the network, includ-

ing the final FC8 layer, preserve the precise colors and the

rough position of objects in the image; 2) In higher layers,

almost all information about the input image is contained in

the pattern of non-zero activations, not their precise values;

3) In the layer FC8, most information about the input image

is contained in small probabilities of those classes that are

not in top-5 network predictions.

Acknowledgements

We acknowledge funding by the ERC Starting Grant

VideoLearn (279401). We are grateful to Aravindh Mahen-

dran for sharing with us the reconstructions achieved with

the method of Mahendran and Vedaldi [19]. We thank Jost

Tobias Springenberg for comments.

4836

References

[1] P. Agrawal, R. Girshick, and J. Malik. Analyzing the perfor-

mance of multilayer neural networks for object recognition.

In ECCV, 2014. 7

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Ox-

ford Uni. Press, New York, USA, 1995. 2

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, pages 886–893, 2005. 1

[4] E. d’Angelo, L. Jacques, A. Alahi, and P. Vandergheynst.

From bits to images: Inversion of local binary descriptors.

IEEE Trans. Pattern Anal. Mach. Intell., 36(5):874–887,

2014. 2

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 3

[6] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning

to generate chairs with convolutional neural networks. In

CVPR, 2015. 3

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. TPAMI, 32(9):1627–1645, 2010. 1, 2

[8] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-

edge in a neural network. arXiv:1503.02531, 2015. 7

[9] C. Jensen, R. Reed, R. Marks, M. El-Sharkawi, J.-B. Jung,

R. Miyamoto, G. Anderson, and C. Eggen. Inversion of feed-

forward neural networks: Algorithms and applications. In

Proc. IEEE, pages 1536–1549, 1999. 2

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv:1408.5093,

2014. 2, 3

[11] H. Kato and T. Harada. Image reconstruction from bag-of-

visual-words. In CVPR, June 2014. 2

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In ICLR, 2015. 3

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

NIPS, pages 1106–1114, 2012. 1, 2

[14] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural Compu-

tation, 1(4):541–551, 1989. 1

[15] S. Lee and R. M. Kil. Inverse mapping of continuous func-

tions using local and global information. IEEE Transactions

on Neural Networks, 5(3):409–423, 1994. 2

[16] A. Linden and J. Kindermann. Inversion of multilayer nets.

In Proc. Int. Conf. on Neural Networks, 1989. 2

[17] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision,

60(2):91–110, 2004. 1, 2

[18] B. Lu, H. Kita, and Y. Nishikawa. Inverting feedforward neu-

ral networks using linear and nonlinear programming. IEEE

Transactions on Neural Networks, 10(6):1271–1290, 1999.

2

[19] A. Mahendran and A. Vedaldi. Understanding deep image

representations by inverting them. In CVPR, 2015. 1, 2, 3,

4, 5, 6, 8

[20] S. Nishimoto, A. Vu, T. Naselaris, Y. Benjamini, B. Yu,

and J. Gallant. Reconstructing visual experiences from

brain activity evoked by natural movies. Current Biology,

21(19):1641–1646, 2011. 2

[21] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution

gray-scale and rotation invariant texture classification with

local binary patterns. TPAMI, 24(7):971–987, 2002. 1, 2

[22] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-

miller. Striving for simplicity: The all convolutional net. In

ICLR Workshop Track, 2015. 1, 2

[23] A. Vedaldi and B. Fulkerson. Vlfeat: an open and portable

library of computer vision algorithms. In International Con-

ference on Multimedia, pages 1469–1472, 2010. 2

[24] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba.

Hoggles: Visualizing object detection features. ICCV, 2013.

2, 3, 4

[25] A. R. Vrkonyi-Kczy. Observer-based iterative fuzzy and neu-

ral network model inversion for measurement and control

applications. In I. J. Rudas, J. C. Fodor, and J. Kacprzyk,

editors, Towards Intelligent Engineering and Information

Technology, volume 243 of Studies in Computational Intelli-

gence, pages 681–702. Springer, 2009. 2

[26] P. Weinzaepfel, H. Jegou, and P. Prez. Reconstructing an

image from its local descriptors. In CVPR. IEEE Computer

Society, 2011. 2, 4, 5

[27] R. J. Williams. Inverting a connectionist network mapping

by back-propagation of error. In Eighth Annual Conference

of the Cognitive Society, pages 859–865, 1986. 2

[28] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, 2014. 1, 2

4837

