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Abstract

Building a complete 3D model of a scene, given only a

single depth image, is underconstrained. To gain a full vol-

umetric model, one needs either multiple views, or a single

view together with a library of unambiguous 3D models that

will fit the shape of each individual object in the scene.

We hypothesize that objects of dissimilar semantic

classes often share similar 3D shape components, enabling

a limited dataset to model the shape of a wide range of ob-

jects, and hence estimate their hidden geometry. Exploring

this hypothesis, we propose an algorithm that can complete

the unobserved geometry of tabletop-sized objects, based on

a supervised model trained on already available volumetric

elements. Our model maps from a local observation in a

single depth image to an estimate of the surface shape in

the surrounding neighborhood. We validate our approach

both qualitatively and quantitatively on a range of indoor

object collections and challenging real scenes.

1. Introduction

We broadly categorize space in our world as being ‘occu-

pied’ and opaque, or ‘empty’ and transparent. Depth cam-

eras such as the Microsoft Kinect are able to give an es-

timate of which regions of a scene are composed of free,

empty space. However, each pixel in a depth image only

makes an estimate of occupancy in front of the first solid

surface encountered along that camera ray. Occlusion pre-

vents any information from being measured about the occu-

pancy of space beyond that first surface.

There are many applications, however, which critically

require a complete representation of the world geometry.

When a robot hand or autonomous vehicle interacts with

an unknown object in an unknown environment, a full 3D

understanding is required to navigate and prevent collisions.

In photo-editing, the full geometry would enable realistic

shadows from a new light source to be automatically added

to an image or stereo pair after capture.

A large amount of computer vision research has been de-

voted to reconstructing a full 3D world model from RGB or

Figure 1. Our volumetric completion. (a) Intensity image, for il-

lustration only. (b) (Input) 3D projection of the depth image, cap-

tured from the red arrow’s perspective, where occlusions induce

large empty spaces. (c) Ground truth occupancy captured using

KinectFusion with multiple views. (d) (Output) Our Voxlets algo-

rithm predicts a plausible completion of the occluded geometry.

depth images of a scene captured from multiple viewpoints,

thus coping with the effects of occlusion (e.g. [45, 28, 26]).

Instead, we focus on the task of classifying each voxel in a

local 3D scene as being either ‘occupied’ or ‘empty,’ given

just a single depth image from one viewpoint. An example

result of our algorithm is displayed in Figure 1.

In effect, we strive to predict the voxelized output of

KinectFusion [28], but without moving around. We achieve

this by learning a mapping from features on a depth im-

age to a structured prediction of geometry in the region of a

query point. We take inspiration from recent work that seg-

ments objects from images using silhouettes learned from

different object classes [34]. They showed that shape can

transcend class categories, enabling shape predictions to be

made without requiring semantic understanding. As we

care about shape, independent of semantic understanding,

we are free to use training objects that are different from
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the objects present at test time.

The key contributions that underpin our novel depth im-

age to voxel geometry framework are:

i) Voxlets: a representation of local multi-voxel geometry.

We use a structured Random Forest to learn a mapping from

a point in a 3D reprojection of a depth image to a structured

prediction of the geometry in the region around that point

without requiring any semantic information.

ii) Dataset: we introduce both a real world dataset and a

new measure for evaluating volumetric completion algo-

rithms. The dataset contains 90 scans of different object

configurations.

iii) Fitted predictions: we perform experiments evaluating

the efficacy of different methods of selecting structured ele-

ments to use in the scene. We demonstrate that our proposed

method outperforms naive alternatives.

2. Related work

Here we review related methods for completing un-

known regions of visual data. While similar, we do not

cover the problem of 2D image completion. Work in 2D

completion usually relies on the availability of extremely

large numbers of similar images [24], or on the assumption

that the necessary structure for completion is present in the

input data [5]. Image completion typically aims for a visu-

ally plausible output, as opposed to how well it predicts the

unobserved ground truth. As we are concern with full 3D

occupancy estimation we do not cover works related to 2D

scene shape estimation e.g. [15, 13]. Additionally, our ap-

proach utilizes standard consumer hardware, so we do not

review work that requires specialized equipment [59].

3D primitives ‘Geons’ were proposed by [2] as a set of

primitives, such as cylinders and cuboids, used by humans

in their recognition of object shapes. While in theory, geons

could be used by computers as building blocks to describe

natural objects, in practice, this was found to be challeng-

ing [10] due to their “idealized nature”, requirement for part

segmentation, labeling errors, and the coarseness of features

used to extract geons in the first place. However, fitting

bounding boxes has recently become a popular method to

explain the arrangement of objects in a scene. Recent work

has successfully incorporated high-level information such

as gravity, intersection, and stability [46, 30, 29]. Other

work has also made use of trained detectors [25, 55] and se-

mantics [39] to help propose bounding box locations. Gupta

et al. [20] estimate voxel occupancy from a 2D image,

which is regularized using cuboid bounding box hypothe-

ses. The obvious problem with bounding box style methods

is that they can only give coarse shape information, which

is ill suited for geometry completion.

Our work also makes use of 3D primitives. However,

unlike geons which are fixed, we learn a flexible distribution

of shape from training data, and are thus able to make higher

quality predictions compared to bounding boxes.

Specific shape models If prior knowledge is available, in

the form of exact 3D models of all the objects present in

the scene, then an instance-level model can be fitted to the

observed depths. When aligned correctly, this can produce

a perfect prediction of the unobserved geometry [27, 12, 3].

However, this alignment can be challenging in the presence

of heavy occlusion. If an exact model of the object of inter-

est is not present in the database, it is possible to fit objects

of the same class [54, 21]. Global reasoning can be applied

to find the best layout of objects, but this is still limited to

the objects and primitives available in the proposal set [17].

Deformation based methods such as [4, 44] directly deform

a target mesh to the observed data but can fail when an in-

correct model is retrieved from the database. It is possible

to apply these deformation based approaches on a part level

as opposed to the whole object level [47, 57]. Generative

models of 3D shape can be more expressive, but also re-

quire segmented individual objects for training [43, 60].

All of these methods rely on the availability of some

form of segmented training data, and on accurate detection

to localize each object or part of interest in the scene dur-

ing testing. We set out to get as much shape information

as possible without semantics, remaining free of having to

accurately localize a predefined set of classes at test time.

Surface completion Silberman et al. [51] tackle the com-

pletion of an incomplete multi-view reconstruction as a 2D

surface completion problem. By detecting planes, they can

complete their contours in a 2D projection using a novel

CRF method. However, they assume piecewise-planar

scenes, and require multiple views as input. Davis et al.

[9] complete surfaces by operating directly on the signed

distance field, the zero level-set of which defines the sur-

face location. They diffuse the signed distance field across

holes in the mesh to fill in the gaps. [23] use a data-driven

approach, finding matches in the mesh to fill the missing re-

gion. Symmetry can be leveraged to complete some types

of objects, e.g. [38, 58, 35]. However, this can be brittle, and

if symmetry is not detected, no predictions can be made.

In contrast to our approach, all of these methods are only

suitable when the amount of missing data is small relative

to the observed data.

Voxel space reasoning Finally, the two algorithms most

similar to ours both make predictions of full scene geom-

etry from a single depth image. Kim et al. [33] use a ‘voxel

CRF’ model with an aim of improving 3D semantic seg-

mentation, which they evaluate on 2D floor plans and image

reprojections. For training, they use semantically labeled

floor plans and images. They model the probability of a

voxel being occupied as a Gaussian centered on the first ob-

served voxel along a camera ray. Higher-order terms in the

CRF are used to enforce planar structures and to encourage
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Figure 2. 2D overview of our algorithm. (a) We model the world as a grid of voxels representing the signed distance to the nearest surface.

Here, we show an overhead view of a scene featuring two objects. (b) When observed by a depth camera, only the first voxel along each

ray is seen. This leaves a region of unknown occupancy extending beyond the depth surface. At test time, we define a cuboid region of

voxels, R, around each query point, s, aligned with the normal at s. (c) Our structured Random Forest makes a prediction for the signed

distance of each of the voxels in R given a feature x(s) computed from the observed geometry. (d) This prediction is placed into the scene,

and used to update the values of the voxels. (e) The aggregation of multiple such predictions forms our final occupancy estimate.

‘objects’ to remain contiguous.

Similarly, Zheng et al. [61] go from a single depth image

to a voxel representation of a scene. They complete missing

voxels by extruding visible points in the detected Manhat-

tan World directions of the scene, related to the completion

method of [35]. While we compare against a version of

this baseline, such voxel completion by extrusion is funda-

mentally limited to the Manhattan World propagation of the

observed volume.

Unlike [33], our algorithm does not require any semantic

or appearance information. Also, in contrast to the rule-

based approach of [61], we make structured predictions

in 3D space, and reason about shape variation by learning

from 3D training data.

Depth datasets While large datasets such as NYU-Depth

V2 [50] and the recently introduced SUN RGB-D dataset

[53] exist for single depth images, few real world datasets

are available containing complete 3D reconstructions [14].

At an object level, turntable datasets exist that capture

the full 360◦ shape of individual objects. For example,

the Washington RGBD Object dataset [37, 36] contains

hundreds of individual objects, but without detailed cam-

era poses, making reconstruction difficult. The Bigbird

dataset [52] is comprised of household objects along with

ground truth camera poses and registered meshes. At a

scene level, the few datasets featuring full reconstructions

only have a limited number of examples e.g. [49]. Finally,

existing synthetic datasets tend to consist of single objects

in isolation [60].

In this work, we introduce a new dataset for benchmark-

ing purposes, consisting of 90 different configurations of

real objects, captured in tabletop scenarios, with complete

360◦ 3D reconstructions.

3. Voxlets algorithm overview

We model the geometry around an object as a regu-

lar grid of voxels V = {vi}. Following works such as

[8, 28, 43], each vi ∈ [−dmax, dmax] denotes the value of

the Truncated Signed Distance Function (TSDF) at that lo-

cation in the volume, where the zero level-set of V repre-

sents a surface. Each voxel, vi, stores the distance to the

nearest surface, truncated to a maximum value of ±dmax.

Here, vi is negative if it is inside solid opaque matter, and

positive if it is in free space. Our algorithm maps a 3D point

s, from just the observed depth image D, to a prediction of

the TSDF in a voxel neighborhood about that point. The ag-

gregation of such predictions for multiple points in the input

gives our final TSDF estimate for the scene. A 2D overview

of our approach is depicted in Figure 2.

Support regions The support region R ⊂ V is a set of vox-

els in the neighborhood of s, for which our model can make

a prediction of the TSDF. Each R is a fixed-size cuboid of

voxels, whose x-axis is aligned with the measured normal

direction at s (Figure 2(b)). The size of R is defined so that

it is large enough to capture local occupancy information at

an object level, but not so large that it would span the entire

scene. In a 2D world, the location of s and the direction of

its normal can unambiguously define the location and ori-

entation of R. In 3D however, there is an unconstrained

degree of freedom, namely rotation of the cuboid about the

axis of the normal. We resolve this by aligning the cuboid

such that its z direction is coincident with the world z-axis,

i.e. the ‘up’ direction of the scene. The top and bottom lim-

its of each cuboid region R are therefore parallel with the

world’s ground plane.

Voxlets At test time, we extract a feature description for R
from the observed geometry. Using a trained discriminative

model, we can then make a prediction of the occluded ge-

ometry inside of R. We call this prediction of geometry a

voxlet. The voxlet, which comes out of the forest in canoni-

cal alignment, is then transformed from its local coordinate

system into world space to fill the voxels in R (Figure 2(d)).

The accumulation of multiple such predictions at different

locations forms our final estimate of the full TSDF.

35433



4. Learning a mapping from features to voxlets

We pose unobserved geometry estimation, given par-

tial observed information, as a supervised learning prob-

lem. More specifically, our goal is to learn a function

f : X → Y , that maps a feature vector x ∈ X , com-

puted from partially observed geometry at a point, to the

output space y ∈ Y representing the corresponding 3D ge-

ometry in a local region R. Unlike standard classification,

where the goal is to predict a category label for each x, our

output space is a multi-dimensional vector y ∈ R
w⇥d⇥h

that encodes the TSDF values in R. The dimensionality of

y is prohibitively large, making it difficult to use standard

multivariate regression approaches, e.g. [6]. Inspired by the

recent work of Dollár and Zitnick [11], we use a structured

Random Forest to learn the function f .

4.1. Training

Our training set, {(x1,y1), ..., (xn,yn)}, comprises re-

gions sampled from full 360◦ 3D reconstructions of objects,

captured across several different scenes. To train the struc-

tured forest, we pass a bagged subset of the training set to

each tree, starting at the root node. Each node is then tasked

with splitting the data so that the x’s sent to its children are

as similar as possible in shape, i.e. have similar y’s. Instead

of minimizing the structured loss directly, [11] approxi-

mates this loss at each node using a classification loss. To

split the data at a node, we sample a different random subset

of the dimensions of each yi, reduce their dimensionality to

M dimensions, and then cluster into two temporary classes.

Then a standard classification loss can be used on this new

discretization to evaluate the quality of different candidate

splits for each xi. In practice, we efficiently perform this

dimensionality reduction and clustering at each node using

randomized PCA [22]. Each training example at that node

is then assigned to one of the two possible clusters based on

the sign of the values of its first principal component. This

process is repeated until we cannot split the data any further.

Finally, as in [11], each leaf node stores the medoid of all

the examples that have arrived there. We refer to this as a

voxlet. We store the medoid for efficiency reasons, but it is

also possible to store multiple modes, e.g. [18].

4.2. Features

To extract a feature descriptor for a given point s in the

scene, we first re-project the entire observed depth image D
into 3D space using the known camera intrinsics. We cre-

ate a TSDF voxel grid VD from these re-projected points

using the method described in [28]. Our feature vector x is

extracted directly from VD in the 3D neighborhood around

s. The values from VD at these locations form the dimen-

sions of x. These values can come from outside the region

R, helping to give spatial context to the prediction. We do

not use appearance information, instead favoring shape cues

provided by D. These features are fast to compute and cap-

ture the surface shape in the neighborhood of s.

In contrast to other 3D volume features e.g. [48, 7], we

sample offsets from a sphere centered at s. This sphere, of

radius rmax, is aligned to the normal and world up direction

at s (Figure 2(b)). For computational efficiency, we sample

a subset of 260 offsets within the sphere as possible candi-

date features.

5. Predicting occupancy at test time

Each tree in our forest makes a prediction about how the

volume surrounding a point in the input depth image is oc-

cupied. Our trees perform inference very efficiently, but

in practice, it is unnecessary to make a prediction densely

for every location in the input, because closely neighbor-

ing locations tend to yield similar predictions. We ignore

locations where the normal points away from the camera,

and also reject locations that point upward (as defined by

the scene’s ‘up’ direction). We then sample a set of loca-

tions throughout the input image, spanning the spectrum of

depths, to ensure uniform scene coverage. We only predict

occupancy for regions about these locations. For each loca-

tion in the set, we simply traverse each tree to its leaf node,

and return the prediction stored there (Figure 2(c)). In Fig-

ure 3, we illustrate a few voxlets and their world positions

in a real scene.

5.1. Choosing the best prediction

Each leaf node in each tree in our forest stores a voxlet,

i.e. the medoid of the examples that landed at that node.

For a given location in the input depth image, each tree will

vote for a different voxlet. We propose three strategies to

combine these region predictions from the different trees:

Forest Mean: We simply take the mean of the voxlets as the

forest prediction. We note that the truncation of the signed

distance function helps to make this style of accumulation

robust. A single incorrect estimation at a voxel can only be

wrong by a maximum amount of 2dmax, where dmax is the

level at which the distance function is truncated.

Forest Medoid: The previous approach can produce arti-

facts as a result of the averaging. Selecting the medoid

voxlet of all of the trees (i.e. the medoid of the medoids)

results in more robustness to outliers.

Observed Fit: Neither of the previous two approaches

forces predicted voxlets to be consistent with the observed

geometry from the input depth image D. To achieve this

consistency, we choose a single proposal, from all the trees,

that is most consistent with the observed geometry accord-

ing to an error measure E. To evaluate E we first compute

the 3D reprojection of the points in the input depth image,

and find the subset of these points P that fall into the current
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support region R. We then compute the error as

E =
1

|P|

X

p2P

y(p)2, (1)

where y(p) is the TSDF value of that tree’s prediction at

location p. This measure rewards proposals which have a

level-set of zero at the same location as the observed geom-

etry. We evaluate these three strategies in Section 7.2.

For the final prediction of the output TSDF grid V , re-

gardless of strategy, we average the predictions of the over-

lapping voxlets (Figure 2(e)). We use a weighted aver-

age, which assigns more weight to voxlet predictions which

more closely match the observed geometry. Specifically,

we weight each prediction by exp(−αE). When α = 0 the

averaging is equivalent to a naive averaging with no weight-

ing. As α → ∞, the most consistent voxlets get a higher

weighting at the expense of less highly ranked voxlets. For

all our experiments we use α = 100. If a voxel in the output

grid V has no predictions made for it, we mark it as empty

(i.e. dmax). Finally, marching cubes [40] is used to convert

the final predicted TSDF to a mesh for visualization.

5.2. Implementation details

Given the large dimensionality of output space Y i.e. the

size of the support region R, we perform an initial dimen-

sionality reduction using PCA to 400 dimensions. We em-

pirically found this to have little impact on the quality of

our results, yet it provides a large speed up at training time

and reduces storage requirements. We use an ensemble of

40 trees with simple axis aligned feature tests at each node,

and keep splitting while there is a minimum of 5 examples

at a node, up to a maximum depth of 30. When clustering

the data at each node, we set the subset of random dimen-

sions, M , for the randomized PCA to 20. At test time, we

only make predictions for a subset of N = 300 locations

in the input depth image, sampling each point with a prob-

ability proportional to its depth. The effect of varying N

is analyzed in the supplementary material. We truncate the

TSDF at dmax = 0.02m. When extracting features, we set

the radius of the sphere rmax to 0.075m and 0.35m for the

tabletop and NYU-Depth V2 datasets respectively.

In our experiments, to increase coverage, we predict

one of two different size voxlets (requiring two different

forests). The first voxlet is centered at s and is longer in the

y-direction, being of shape (x× 2x× x). This is the direc-

tion that is approximately parallel to the normal at s (Figure

2(b)). This allows the voxlet to make a larger prediction

backwards into the scene, compared to sideways which typ-

ically already has observed data. The second voxlet has

shape (x × 2x × 2.5x) and its base is fixed to the ground

plane. It is more suitable for making predictions for semi

occluded geometry. For a given sample location in a depth

image at test time, we randomly choose one of the two

x

z
y

Figure 3. Predicted voxlets. Each tree predicts the occupancy at

each sample location, in the form of a voxlet. Here we depict just

three voxlets that have been meshed using marching cubes, but

hundreds of predictions are made in practice.

forests to make a prediction. For our tabletop scenes we set

x = 0.25m, while for room-size predictions of NYUv2 we

use x = 0.5m. In the supplementary material we explore

the effect of varying this parameter.

Predicting the occupancy for a single depth image takes

less than 40 seconds using our unoptimized Python imple-

mentation on a 3.60GHz processor with 4 hyperthreaded

cores. Currently, the majority of the time is spent placing

predicted voxlets into the output grid which could be triv-

ially sped up with a more efficient GPU implementation.

6. Datasets

Unfortunately, existing RGBD datasets of real scenes

were typically collected to evaluate semantic segmentation,

object detection, or camera pose estimation. To our knowl-

edge, no standard datasets exist that capture the full unoc-

cluded geometry of a large number of scenes, without sec-

tions of missing data caused by occlusion. To overcome

this, we introduce a new tabletop-object dataset, that we will

make available to aid benchmarking of volumetric comple-

tion. Examples from this dataset are shown in Figure 5.

Our tabletop dataset contains the full geometry of 90

tabletop scenes, reconstructed using the KinectFusion [28]

implementation of [32]. This is seven times larger than the

volumetric dataset used in [61]. Each scene consists of be-

tween 2 to 6 household objects, from a set of 50, placed

on a tabletop. We manually annotated the extents of the

test volume for each scene. Predictions outside this domain

are not used during evaluation. The dataset is split into 60

training and 30 testing scenes, captured in three different

locations. The strict split ensures that no objects appear in

both the training and test sets – see the supplementary ma-

terial for further examples. We include the raw color and

depth frames, together with the reconstructed mesh for each

scene. It is worth noting that this ground truth dataset is only

accurate up to the reconstruction error of [32].

The widely used NYU-Depth V2 [50] dataset does not

contain complete 3D reconstructions for each scene. How-

ever, [19] introduced a synthetic version with manually

placed 3D geometry which we use for benchmarking.
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Figure 4. Evaluation region. For a fair comparison across all al-

gorithms, we score on voxels that are, jointly, within the extents

of the room, inside the camera frustum, and behind the surfaces

visible in the input depth image.

7. Experiments

We evaluate our Voxlets approach using the two datasets

described in the previous section. The ultimate aim of our

algorithm is to accurately classify occupied vs. empty space

around objects. Therefore, we report the per-voxel precision

and recall over all the test data, using the sign of the accu-

mulated TSDF as the final binary prediction of occupancy.

We also report the Intersection over Union (IoU) of the pre-

dicted occupancy compared to the ground truth, which is a

good measure of overall success. The evaluation region is

defined as the set of voxels within the extent of the scene

which are both within the camera frustum and behind the

observed surface (Figure 4). The extents are tagged manu-

ally for Section 7.2, and automatically for Section 7.3. Note

that we do not evaluate on the observed empty space. In

both datasets the ‘up’ direction is extracted from the ground

truth ground plane of the volume. In practice, this plane and

its orientation could be detected automatically [50].

7.1. Baselines

We compare to Zheng et al. [61] as it is one of the few

occupancy prediction papers that does not depend on se-

mantics. We evaluated against their best-case idealized al-

gorithm for reconstructing voxel occupancy, as described in

Section 2 of their paper. First, the image is separated into

regions using a ground-truth segmentation of the scene, and

the Manhattan axes of each segment are computed using

[16]. For each segment, their axis-aligned voxel search is

then performed for each unobserved voxel, marking voxels

as filled if more than two Manhattan directions hit a voxel

directly observed by the camera. Unlike our method, their

approach requires a segmentation of the scene. We use the

ground truth object segmentation (only for these two base-

lines) to illustrate the toughest non-semantic rivals possi-

ble. We also compare to a bounding box baseline, which

fits minimum volume bounding boxes to the points of each

segment using Manhattan directions computed using [16].

7.2. Tabletop results

Here we perform experiments on the tabletop dataset in-

troduced in Section 6. In Table 1 we can see that our Voxlets

Method IoU Precision Recall

Bounding Box with GT 0.445 0.840 0.491

Zheng et al. [61] with GT 0.528 0.773 0.630

Voxlets Observed Fit 0.585 0.793 0.658

Voxlets Forest Medoid 0.326 0.822 0.358

Voxlets Forest Mean 0.312 0.845 0.337

Vgt Ground truth voxels 0.962 0.991 0.971

Vpca GT voxels post PCA 0.908 0.977 0.927

Vnn Perfect forest 0.724 0.940 0.758

Vagg Perfect aggregation 0.701 0.897 0.766

Table 1. Quantitative results on our tabletop dataset. We also show

that our final ‘Observed Fit’ selection strategy produces superior

results compared to naive averaging and other methods e.g. [61],

even when they have access to ground truth (GT) segmentation.

algorithm outperforms both the idealized Zheng et al. [61]

method and the bounding box baseline. Qualitative results

are presented in Figures 5 and 1. Despite severe occlusions

and fragmentation of objects in the input depth map, we are

still able to produce plausible completions. Note that we do

not merge the observed geometry onto our predictions. Ad-

ditional refinement to respect the observed geometry would

likely improve results, but efficient inference is still an open

area of research [41].

We compare the different strategies for selecting voxlets

from our structured forest as described in Section 5.1 (see

rows 3–5 of Table 1). We see that our ‘Observed Fit’ ap-

proach is best overall, with both better recall and IoU than

other approaches. As a result of multiple conflicting over-

lapping predictions, ‘Forest Medoid’ and ‘Forest Mean’

tend to underpredict, resulting in higher precision but poorer

recall and IoU. We favor ‘Observed Fit’ as it chooses the

prediction that agrees most with the observed geometry at

each sample point, producing better completions.

For introspection, we investigated the performance of

Voxlets by replacing various stages with an oracle that has

access to the ground truth occupancy (see Table 1):

Vgt: Instead of using the structured prediction, the ground

truth voxels in the local region R are extracted and then

placed directly into the output grid. This represents what a

perfectly-trained version of Voxlets could produce. Errors

in Vgt occur for two reasons. Firstly, the proposed support

regions can fail to cover some areas of the scene, hurting

the recall. Secondly, quantisation effects are introduced in

the extraction and re-insertion of voxel volumes.

Vpca: The ground truth voxels in R are compressed, then

decompressed, using a pre-learned PCA model. This eval-

uates how well PCA covers the space of voxlet shapes and

shows that it does not reduce performance significantly.

Vnn: We find the nearest neighbor training example that is

the most similar to the ground truth voxels in R at each lo-

cation. These are the best possible predictions, given the

training set. These scores suggest that the dataset is chal-

lenging and still contains unexploited variety.
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Input view of scene Observed Geometry Forest Medoid Zheng et al. [60] Voxlets Ground truth
Figure 5. Tabletop results. Results for our tabletop dataset, where the rendered views are shown viewing in from the left of the KinectFigure 5. Tabletop results. Results for our tabletop dataset, where the rendered views are shown viewing in from the left of the Kinect

input. For clarity, we insert a ground plane during rendering and do not superimpose the observed input geometry on top of our predictions.

Voxlets succeeds in capturing the coarse geometry of the objects whereas Forest Medoid under predicts and Zheng et al. [61] tends to

produce floating predictions. The last row shows a failure case where Voxlets introduces incorrect geometry on the top of the box closest

to the camera as there is no observed depth due to the occlusion because of the camera baseline in the Kinect sensor.

Vagg: We use our structured Random Forest with an oracle

at the voxlet aggregation step. Each voxlet is greedily added

to the accumulator only if its inclusion increases the score

for the given scene. Results suggest that more sophisticated

aggregation of voxlets could further exploit the predictions.

7.3. Synthetic NYU-Depth V2 results

In Table 2 we present results for the synthetic NYU-

Depth V2 [50] dataset using the approximate but geomet-

rically complete ground truth of [19]. We have adapted

these 3D-meshed scenes to make them suitable for volu-

metric completion by voxelizing each one using [1], and

rendering a depth image from the same viewpoint as the

original Kinect camera location. We randomly assign 500

scenes from the official training set for training and 200

scenes from the test set for testing. For the method of

Zheng et al. [61] we compute a local coordinate frame us-

ing the ground truth segmentation for each separate object.

Despite this advantage, Voxlets produces superior comple-

tions. Images of these results can be seen in the supplemen-

tary material.

Method IoU Precision Recall

Zheng et al. [61] with GT 0.346 0.601 0.467

Bounding boxes with GT 0.349 0.693 0.447

Voxlets 0.508 0.665 0.697

Table 2. Quantitative results for the synthetic NYU-Depth V2

dataset of [19]. All methods use single depth maps generated from

the synthetic geometry as input, but the baselines use the ground

truth (GT) object level segmentation to aid prediction.

7.4. Qualitative NYU-Depth V2 results

While Voxlets has been designed for tabletop scenes,

we show here qualitative results on the challenging NYU-

Depth V2 [50] dataset. We use our model trained on the

synthetic dataset of [19] from the previous section. Results

must be inspected by eye, because quantitatively evaluat-

ing synthetic ground truth vs. predictions made from real

Kinect depth input images is not possible: the alignment

between the real depth and the manually created ground

truth is inaccurate. For completeness, we also compare to

the methods of [39, 17] which utilize additional cues in the

form of appearance and semantic classifiers. These meth-
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Input view of scene Observed Geometry Lin et al. [39] Geiger and Wang [17] Zheng et al. [61] GT Voxlets

Figure 6. NYU-Depth V2 results. Here we qualitatively compare different occupancy predictions methods using real Kinect depth images

from the NYU-Depth V2 [50] dataset. Unlike [39] and [17], our Voxlets algorithm does not require any appearance information. All results

are rendered from the same viewpoint, and for [39] and [17] we do not show the predicted walls and floor.

ods were not designed specifically for occupancy estima-

tion. For Zheng et al. [61], we use the ground truth object

segmentation masks provided by [50].

Limitations As a supervised learning algorithm, Voxlets is

limited by the data available at training time. Our voxlets

are a fixed size, and success correlates with the test-scene

having similar sized objects. Holes in the observed depth

images at object boundaries can also cause problems e.g.

the spiky top in the last row of Figure 5, and sharp edges

can sometimes be rounded due to aggregation.

8. Conclusions and future work

We have demonstrated that Voxlets can successfully re-

cover 3D geometry using only a single input depth im-

age. Our supervised algorithm efficiently combines both

selection and pose estimation of local shapes, using sim-

ple feature test evaluations to predict local geometry occu-

pancy. We have shown that objects from distinct semantic

classes share enough 3D shape components to allow plau-

sible, though not perfect, reconstructions. Though intended

for tabletop objects, our results on indoor scenes are on par

with more constrained algorithms.

For some applications, the quality of our predictions may

already be enough, e.g. to aid robot grasping [56, 62] or

navigation. It is not guaranteed that our results are physi-

cally stable, and how to best incorporate physics-based rea-

soning [61, 46] is still an open problem, but enforcing this

prior may improve accuracy. One interesting potential ap-

plication of our method is to use the predicted completion

as a prior for SLAM. As new data arrives, a next-best-view

algorithm [42, 31] could leverage our predictions to guide

the camera to a position which captures the geometry most

likely to be informative for verifying our proposals.
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