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Abstract

Recent innovations in training deep convolutional neu-

ral network (ConvNet) models have motivated the design

of new methods to automatically learn local image descrip-

tors. The latest deep ConvNets proposed for this task consist

of a siamese network that is trained by penalising misclas-

sification of pairs of local image patches. Current results

from machine learning show that replacing this siamese by

a triplet network can improve the classification accuracy in

several problems, but this has yet to be demonstrated for lo-

cal image descriptor learning. Moreover, current siamese

and triplet networks have been trained with stochastic gra-

dient descent that computes the gradient from individual

pairs or triplets of local image patches, which can make

them prone to overfitting. In this paper, we first propose the

use of triplet networks for the problem of local image de-

scriptor learning. Furthermore, we also propose the use of

a global loss that minimises the overall classification error

in the training set, which can improve the generalisation

capability of the model. Using the UBC benchmark dataset

for comparing local image descriptors, we show that the

triplet network produces a more accurate embedding than

the siamese network in terms of the UBC dataset errors.

Moreover, we also demonstrate that a combination of the

triplet and global losses produces the best embedding in

the field, using this triplet network. Finally, we also show

that the use of the central-surround siamese network trained

with the global loss produces the best result of the field on

the UBC dataset.

1. Introduction

The design of effective local image descriptors has been
instrumental for the application of computer vision methods
in several problems involving the matching of local image
patches, such as wide baseline stereo [21], structure from
motion [22], image classification [19, 29], just to name a
few. Over the last decades, numerous hand-crafted [8, 19,
25] and automatically learned [3, 4, 10, 12, 20, 28, 32, 36]
local image descriptors have been proposed and used in
the applications above. Despite their conceptual differ-

ences, these two types of local descriptors are formed based
on similar goals: descriptors extracted from local image
patches of the same 3-D location of a scene must be unique
(compared with descriptors from different 3-D locations)
and robust to brightness and geometric deformations. Given
the difficulty in guaranteeing such goals for hand-crafted lo-
cal descriptors [8, 19, 25], the field has gradually focused
more on the automatic learning of such local descriptors,
where an objective function that achieves the goals above
is used in an optimisation procedure. In particular, the most
common objective function minimises the distance between
the descriptors from the same 3-D location (i.e., same class)
extracted under varying imaging conditions and different
viewpoints and, at the same time, maximises that distance
between patches from different 3-D locations (or different
classes) [3, 4, 10, 12, 20, 27, 28, 32, 36].

The more recently proposed approaches [10, 12, 20, 36]
based on deep ConvNets [18] optimise slightly new objec-
tive functions that have the same goal as mentioned above.
Specifically, Zagoruyko and Komodakis [36] and Han et

al. [12] minimise a pairwise similarity loss of local image
patches using a siamese network [2] (see Fig. 1-(b)), where
the patches can belong to the same or different classes (a
class is for example a specific 3-D location). Dosovitskiy
et al. [10] minimise a multi-class classification loss (Fig. 1-
(c)), where the model outputs the classification of a single
input patch into one of the many descriptor classes (esti-
mated in an unsupervised manner). Moreover, Masci et

al. [20] propose a siamese network trained with a pair-
wise loss that minimises the distance (in the embedded
space) between patches of the same class and maximises
the distance between patches of different classes (Fig. 1-
(b)). Even though these methods show substantial gains
compared to the previous state of the art in public bench-
mark datasets [3, 4, 5, 24, 28, 31, 32], we believe that the
loss functions and network structures being explored for
this task can be improved. For instance, the triplet net-
work [33, 14, 26, 35] (see Fig. 1-(d)) has been shown to
improve the siamese network on several classification prob-
lems, and the training of the siamese and triplet networks
can involve loss functions based on global classification re-
sults, which has the potential to generalise better.

In this paper, we propose the use of the triplet net-
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Figure 1. Comparison between different types of loss functions, network architectures and input/output types used by training methods

of local image descriptor models. The metric learning loss to learn a linear transform G is represented in (a) [3, 4, 28, 32] (please see

text for the definition of Sw and Sb) and produces a feature embedding; in (b) we show the siamese network [12, 20, 36] that can be

trained with different loss functions and input types, where δ(.) denotes the Dirac delta function, y is the data label, Net(x) represents

the ConvNet response for input x (similarly for Net(xi,xj)), and the output can be an embedding (i.e., Net(x)) or a pairwise similarity

estimation (i.e., Net(xi,xj)); the classification network in (c) can be used when classes of local image descriptors can be defined [10] and

used in a multiclass classification problem; and in (d) the recently proposed triplet network [33, 14, 26, 35] is displayed with different loss

functions and input types, where x+ represents a point belonging to the same class as x and x− a point from a different class of x (this

triplet net produces in general an embedding). Note that our proposed global loss (embedding) in (b) and (d) takes the whole training set as

input and minimises the variance of the distance of points belonging to the same and different classes and at the same time, minimise the

mean distance of points belonging to the same class and maximise the mean distance of points belonging to different classes. The global

loss (pairwise similarity) in (b) is similarly defined (please see text for more details).

work [33, 14, 26, 35] (Fig. 1-(d)) and a new global loss
function to train local image descriptor learning models that
can be applied to the siamese and triplet networks (Fig. 1-
(b),(d)). The global loss to produce a feature embedding
minimises the variance of the distance between descriptors
(in the embedded space) belonging to the same and dif-
ferent classes, minimises the mean distance between de-
scriptors belonging to the same class and maximises the
mean distance between descriptors belonging to different
classes (Fig. 1-(b),(d)). For the case of pairwise similarity
in siamese networks, this global loss minimises the vari-
ances of the pairwise similarity between descriptors be-
longing to the same and different classes, maximises the
mean similarity between descriptors belonging to the same
class and minimises the mean similarity between descrip-
tors belonging to different classes (Fig. 1-(b)). We first ex-
tend the siamese network [12, 20, 36] to a triplet network,
trained with a triplet loss [33, 14, 26, 35] and regularised
by the proposed global loss (embedding). Then we take the
siamese network [12, 20, 36] and train it exclusively with
the global loss (pairwise similarity). Finally, we take the
central-surround siamese network [36], which is the cur-

rent state-of-the-art model for the problem of local image
descriptor learning, and train it with the global loss (pair-
wise similarity). We show on the public benchmark UBC
dataset [1, 3, 30] that: 1) the triplet network shows better
classification results than the siamese network [2, 20, 36];
2) the combination of the triplet and the global loss func-
tions improves the results produced by the triplet loss from
item (1) above, resulting in the best embedding result in
the field for the UBC dataset; and 3) the global loss func-
tion used to train the central-surround siamese network [36]
produces the best classification result on the UBC dataset.

2. Related Work

In this section, we first discuss metric learning meth-
ods, which form the basis for several local image descriptor
learning approaches. Then, we discuss relevant local image
descriptor learning methods recently proposed in the field,
and highlight our contributions.
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2.1. Metric Learning

In general, metric learning (see Fig. 1-(a)) assumes the
existence of a set of points represented by {xi}

N
i=1, with

xi ∈ R
n and a respective set of labels {yi}

N
i=1, with

yi ∈ {1, ..., C}, and the goal is to find a Mahalanobis dis-
tance with parameter W. For example, the square distance
between xi and xj is [16, 34]:

dW = (xi − xj)
⊤
W(xi − xj), (1)

where the factorisation of the matrix W =
GG

⊤ (with G ∈ R
n×m) allows us to for-

mulate the following optimisation problem:
G

∗ = argmaxG tr
(

(G⊤
SwG)−1(G⊤

SbG)
)

, with

Sk =
∑

ij Yk(xi − xj)(xi − xj)
⊤, Yw = Y,

Yb = 1 − Y, and Yij = 1 if yi = yj and Yij = 0,
otherwise. This optimisation is solved using the gener-
alised Eigenvalue problem, which generates a linear feature
transform that effectively produces a feature embedding.
The method above has been extended in many ways, such
that: 1) it can handle multimodal distributions in [31]; 2)
it optimises K nearest neighbour classification, which is
formulated as a softmax loss minimisation and estimates
a linear transform with eigenvalue decomposition [11]; 3)
it optimises a large margin re-formulation of the problem
in (1) using semidefinite programming [34]; 4) it can
use a prior for W, which regularises the training and
gets around the cubic complexity issues of the previous
methods [9]; and 5) it can be extended to large problems
using equivalence constraints [17]. However, the main
issue is the fact that (1) leads to a linear transformation that
is unlikely to handle some of the difficult (and usually more
interesting) learning problems.

Extending (1) to a non-linear transformation can be done
by re-formulating Sk such that it involves inner products,
which can then be kernelised [31], and the optimisation is
again solved with generalised Eigenvalue problem [31]. Al-
ternatively, this non-linear transform can be learned with
a ConvNet using a siamese network [2] that minimises a
pairwise loss [6] (Fig. 1-(b)) by reducing the distance of
patches (in the embedded space) belonging to the same
class and increasing the distance of patches from different
classes, similarly to the objective function derived from (1).
Note that this siamese network can produce either an em-
bedding or a pairwise similarity estimation, depending on
the architecture and loss function. This siamese network
has been extended to a triplet network that uses a triplet
loss [33, 14, 26, 35] (Fig. 1-(d)), which has been shown
not only to produce the best classification results in several
problems (e.g., STL10 [7], LineMOD [13], Labelled Faces
in the Wild), but also to produce effective feature embed-
dings.

2.2. Local Image Descriptor

In the past, many local image descriptor learning
methodologies have been proposed, with most based on the

linear or non-linear distance metric learning, and explored
in different ways [3, 4, 28, 32]. However, these methods
have been shown to produce significantly worse classifica-
tion results on the UBC dataset [1, 3, 30] than the recently
proposed siamese deep ConvNets [12, 20, 36] (note that the
UBC dataset is a benchmark dataset that has been used to
compare local image descriptors). Even though the triplet
network [33, 14, 26, 35] has been demonstrated to improve
the results produced by the siamese networks, it has yet to
be applied to the problem of local image descriptor learn-
ing. Finally, another relevant method is the discriminative
unsupervised learning of local descriptors [10], which uses
a single deep ConvNet to classify input local patches into
many classes, which are generated in an unsupervised man-
ner (Fig. 1-(c)). However, the latter method has not been
applied to the UBC dataset mentioned above. It is also im-
portant to notice that none of the deep ConvNets methods
above use the whole training set in a global loss function
during the learning process, which can improve the gener-
alisation ability of the model.

3. Methodology

As mentioned above in Sec. 2.1, we assume the ex-
istence of a training set of image patches and their re-
spective classes, i.e., {(xi, yi)}

N
i=1, with xi ∈ R

n and
yi ∈ {1, ..., C} (note that we use n as the patch size to
simplify the notation, but the extension to a matrix rep-
resentation for x is trivial). The first goal of our work is
to use a triplet network and respective triplet loss (defined
below in detail) [33, 14, 26, 35] to produce a feature em-
bedding f(x, θf ) defined by f : Rn × R

k → R
m, where

θf ∈ R
k denotes the network parameters (weights, biases

and etc.). The second goal is to design a new global loss
function to train the triplet [33, 14, 26, 35] and siamese
networks [12, 20, 36], where we are particularly interested
in the 2-channel 2-stream network, represented by a multi-
resolution central-surround siamese network. Essentially,
the siamese network can form a feature embedding, like the
one above, or a pairwise similarity estimator, represented
with g(xi,xj , θg), which is defined by g : Rn×R

n×R
k →

R. In this section, we first explain the siamese and triplet
networks, then we describe the proposed global loss func-
tion, and we also present the models being proposed in this
paper.

3.1. Siamese and Triplet Networks

The siamese network [2, 12, 20, 36] is trained with a
two-tower deep ConvNet (Fig. 1-(b)), where the weights on
both towers are initialised at the same values and during
stochastic gradient descent, they receive the same gradients
(i.e., the weights on both towers are tied). We consider the
following definition of a deep ConvNet:

f(x, θf ) = fout ◦ rL ◦ hL ◦ fL ◦ ... ◦ r1 ◦ h1 ◦ f1(x), (2)

where the parameter θf is formed by the network weight
matrices, bias vectors, and normalisation parameters for
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each layer l ∈ {1, ..., L}, fl(.) represents the pre-activation
function (i.e., the linear transforms in the convolutional lay-
ers), hl(.) represents a normalisation function, and rl(.) is
a non-linear activation function (e.g., ReLU [23]). Also
note that fl = [fl,1, ..., fl,nl

] is an array of nl pre-activation
functions, representing the number of features in layer l. A
siamese network is then represented by two identical deep
ConvNets trained using pairs of labelled inputs, where one
possible loss function (called pairwise loss) minimises the
distance between embedded features of the same class and
maximises the distance between embedded features of dif-
ferent classes, as follows [6, 20]:

Js
1 (xi,xj ,θf ) = δ(yi − yj)‖f

(1)(xi, θf )− f (2)(xj , θf )‖2−

(1− δ(yi − yj))‖f
(1)(xi, θf )− f (2)(xj , θf )‖2,

(3)

where δ(.) is the Dirac delta function and f (1)(x, θf ) is con-

strained to equal to f (2)(x, θf ). Alternatively, the siamese
network can be trained as a pairwise similarity estimator,
with a pairwise similarity loss that can be defined as:

Js
2 (xi,xj , θg) =δ(yi − yj)(1/(κ+ g(xi,xj , θg)))

+ (1− δ(yi − yj))g(xi,xj , θg),
(4)

where the ConvNet g(xi,xj , θg) returns the similarity be-
tween the descriptors xi and xj , with κ representing a small
positive constant. Note that the loss functions used by re-
cently proposed methods [36, 12] are conceptually similar
to (4), but not exactly the same, where the idea is to pro-
duce a ConvNet g(xi,xj , θg) that returns large similarity
values when the inputs belong to the same class and small
values, otherwise. It is important to emphasise that the local
descriptor learning model that currently produces the small-
est error on the UBC dataset (Central-surround two-stream
network) consists of a siamese network, trained with a loss
similar to (4), where the input patch is sampled twice at half
the resolution of the input image: one sample containing
the whole patch is input to the surround stream and another
sample containing a sub-patch at the centre of the original
patch is input to the central stream [36]. The output of these
two streams are combined to obtain a similarity score.

The triplet network [33, 14, 26, 35] (Fig. 1-(d)) is an ex-
tension of the siamese network that is trained with triplets at
the input (which produces an embedding) using the triplet
loss function, as follows:

J t
1(x,x

+,x−, θf ) =

max

(

0, 1−
‖f (1)(x, θf )− f (3)(x−, θf )‖2

‖f (1)(x, θf )− f (2)(x+, θf )‖2 +m

)

,

(5)

where m is the margin, x+ and x belong to the same class,
x
− and x are from different classes, and f (1)(.), f (2)(.)

and f (3)(.) are constrained to be the same network. Note
that the losses in (3) and (5) are apparently similar, but they

Figure 2. The objective of the proposed global loss is to reduce

the proportion of false positive and false negative classification,

which in the graph is represented by the area of the blue shaded

region, assuming that the green curve indicates the distribution of

distances in (a) or similarities in (b) between matching pairs (with

mean µ+ and variance σ2+) and the red curve denotes the distri-

bution of non-matching pair distances in (a) and similarities in (b)

(with mean µ− and variance σ2−). Our proposed global loss for

feature embedding (a) reduces the area mentioned above by min-

imising σ2+, σ2− and µ+ and maximising µ−. For the pairwise

similarity in (b), the global loss minimises σ2+, σ2− and µ− and

maximises µ+.

have a noticeable difference, which is the fact that a triplet
of similar and dissimilar inputs gives context for the opti-
misation process, as opposed to the pairwise loss that the
siamese network minimises (same class) or maximises (dif-
ferent classes) as much as possible for each pair indepen-
dently [14].

3.2. Global Loss function

The siamese and triplet networks presented in Sec. 3.1
typically contain a large number of parameters, which
means that a large number of pairs or triplets must be
sampled from the training data such that a robust model
can be learned. However, sampling all possible pairs or
triplets from the training dataset can quickly become in-
tractable, where the majority of those samples may produce
small costs in (3)-(5), resulting in slow convergence [26].
An alternative is to have a smart sampling strategy, where
one must be careful to avoid focusing too much on the
hard training cases because of the possibility of overfit-
ting [26, 35, 33]. In this paper, we propose a simple, yet
effective, loss function that can overcome these drawbacks.

The main idea behind our proposed loss function is the
avoidance of the over- or under-sampling problems men-
tioned above with the assumption that the distances (or sim-
ilarities) between descriptors of the same class (i.e., match-
ing pairs) or different classes (i.e., non-matching pairs) are
samples from two distinct distributions. This allows us
to formulate a loss function (for the embedding case) that
globally tries to: 1) minimise the variance of the two distri-
butions and the mean value of the distances between match-
ing pairs, and 2) maximise the mean value of the distances
between non-matching pairs. Fig. 2-(a) depicts the reason-
ing behind the design of the proposed global loss function,
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which is defined for the feature embedding case by:

Jg
1 ({xi}

N
i=1,{x

+
i }

N
i=1, {x

−
i }

N
i=1, θf ) =

(σ2+ + σ2−) + λmax
(

0, µ+ − µ− + t
)

,
(6)

where µ+ =
∑N

i=1 d
+
i /N, µ− =

∑N

i=1 d
−
i /N , σ2+ =

∑N

i=1(d
+
i − µ+)2/N, σ2− =

∑N

i=1(d
−
i − µ−)2/N ,

with µ+ and σ2+ denoting the mean and variance of the
matching pair distance distribution, µ− and σ2− represent-
ing the mean and variance of the non-matching pair dis-

tance distribution, d+i =
‖f(1)(xi,θf )−f(2)(x+

i
,θf )‖

2
2

4 , d−i =
‖f(1)(xi,θf )−f(3)(x−

i
,θf )‖

2
2

4 , λ is a term that balances the im-
portance of each term, t is the margin between the mean of
the matching and non-matching distance distributions and
N is the size of the training set. Note in (6), that we as-
sume a triplet network (i.e., f (1)(.), f (2)(.) and f (3)(.) are
the same network), where the squared Euclidean distances
of the matching and non-matching pairs of the ith triplet are
constrained to be 0 ≤ d+i , d

−
i ≤ 1 because of the division

by 4, and the normalisation layer enforces that the norm of
the embedding is 1.

Given that we use SGD for the optimisation process, we
need to derive the gradient of the global loss function, as
follows:

∂Jg
1

∂f(xi)
= −

1

2N

[

2
(

(d+i − µ+)f(x+
i ) + (d−i − µ−)f(x−

i )
)

+ λ(f(x+
i )− f(x−

i ))1((µ
− − µ+) < t)

]

,

∂Jg
1

∂f(x+
i )

= −
1

2N

[

2
(

(d+i − µ+)f(xi)
)

+ f(xi)1((µ
− − µ+) < t)

]

,

∂Jg
1

∂f(x−
i )

= −
1

2N

[

2
(

(d−i − µ−)f(xi)
)

− f(xi)1((µ
− − µ+) < t)

]

(7)

where the dependence on θf and the channel index f (.) are
dropped to simplify the notation, and 1(a) is an indicator
function with value 1 when a is true. It is important to note
that the gradient ∂J t

1/∂f(xi) of the triplet loss in (5) de-
pends only on the ith triplet of the training set, whereas
the gradient ∂Jg

1 /∂f(xi) of the global loss in (7) depends
on µ+ and µ−, which in turn depends on the statistics of
the samples in the whole training set. This dependence on
global training set statistics has the potential to suppress the
spurious gradients computed from outliers and thus improv-
ing the generalisation of the trained model.

This global loss can be slightly modified to train a
siamese network that estimates pairwise similarities, where
the objective consists of: 1) minimising the variance of
the two distributions and the mean value of the similarities
between non-matching pairs, and 2) maximising the mean

value of the similarities between matching pairs. Fig. 2-(b)
shows the idea behind the design of the proposed pairwise
similarity global loss function, which is defined by:

Jg
2 = ({xi}

N
i=1,{x

+
i }

N
i=1, {x

−
i }

N
i=1, θf ) =

(σ2+ + σ2−) + λmax
(

0,m− (µ+ − µ−)
)

,
(8)

where g(x, x̃, θg) produces a similarity score between

x and x̃, µ+ =
∑N

i=1 g(xi,x
+
i , θg)/N, µ− =

∑N

i=1 g(xi,x
−
i , θg)/N , σ2+ =

∑N

i=1(g(xi,x
+
i ) −

µ+)2/N, σ2− =
∑N

i=1(g(xi,x
−
i ) − µ−)2/N , with µ+

and σ2+ denoting the mean and variance of the matching
pair similarity distribution, µ− and σ2− representing the
mean and variance of the non-matching pair similarity dis-
tribution, λ is a term that balances the importance of each
term, m is the margin between the mean of the matching
and non-matching similarity distributions and N is again
the size of the training set (note that we are abusing the no-
tation with the re-definition of µ+, µ−, σ2+, and σ2−). The
gradient of this global loss function is derived as

∂Jg
2

∂g(xi,x
+
i , θg)

=
2

N

[

(g(xi,x
+
i , θg)− µ+)

−
1

2
1((µ+ − µ−) < m)

]

∂Jg
2

∂g(xi,x
−
i , θg)

=
2

N

[

(g(xi,x
−
i , θg)− µ−)

+
1

2
1((µ+ − µ−) < m)

]

.

(9)

3.3. Proposed Models

We propose four models for the the problem of local im-
age descriptor learning. The first model consists of a triplet
network trained with the triplet loss in (5), which produces
an embedding - this is labelled as TNet, TLoss. The second

model is a triplet network that also produces an embedding
and uses the following loss function that combines the orig-
inal triplet loss (5) and the proposed global loss (6) for the
learning process:

J tg
1 ({xi}

N
i=1, {x

+
i }

N
i=1, {x

−
i }

N
i=1) =

γ
∑

j

J t
1(xj ,x

+
j ,x

−
j ) + Jg

1 ({xi}
N
i=1, {x

+
i }

N
i=1, {x

−
i }

N
i=1),

(10)

– this model is labelled as TNet, TGLoss. The third model

is a siamese network that produces a similarity estimation of
an input pair of local patches, but the model is trained with
the siamese global loss defined in (8) – this model is labelled
as SNet, GLoss. Finally, the fourth model is the central-
surround siamese network model described in Sec. 3.1 that
also produces the pairwise similarity estimator of an input
pair of local patches and is trained with the global loss (8) –
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this model is labelled as CS SNet, GLoss. Note that for the
first two models that produce the embedding, the compari-
son between local descriptors is done based on the ℓ2 norm
of the distance in the embedded feature space.

In terms of the ConvNet structure, we use an ar-
chitecture similar to the one described by Zagoruyko
and Komodakis [36]. Specifically, the triplet network
has the following structure: B(96,7,3)-P(2,2)-B(192,5,1)-
P(2,2)-B(256,3,1)-B(256,1,1)-B(256,1,1). The siamese net-
work has the following architecture: B(96,7,3)-P(2,2)-
B(192,5,1)-P(2,2)-B(256,3,1)-B(256,1,1)-C(1,1,1). Fur-
thermore, the central-surround siamese network has the
following structure: B(95,5,1)-P(2,2)-B(96,3,1)-P(2,2)-
B(192,3,1)-B(192,3,1) and the final block that combines
the outputs of the two input streams has components
B(768,2,1)-C(1,1,1). In the description above, P(p, q) is a
max pooling layer of size p× p and stride q, and B(n, k, s)
is a block with the components C(n, k, s)-bnorm(n), where
C(n, k, s) is a convolutional layer with n filters of kernel
size k and stride s, bnorm(n) is the batch normalisation unit
[15] with 2n parameters. Each B and C is followed by a
rectified linear unit [23] except the final layer. Finally, the
output feature from the exmedding networks are normalised
to have unit norm, as mentioned in Sec. 3.2.

4. Toy Problem

To illustrate the robustness of the proposed global loss
function to outliers, we generated a toy dataset in two di-
mensions with two classes (80 samples from two Gaussian
distributions) represented by two distinct cloud of points, as
indicated by the red and green points in Fig. 3-(a). We intro-
duce outliers by switching the labels of randomly selected
points (i.e., we switch the labels of 5% of the training set,
or 4 samples). We generate a set of triplets from this train-
ing set and train a ConvNet that maps the input points to an
output embedding space with 128 dimensions with the fol-
lowing structure: B(256,2,1)-B(512,1,1)-C(128,1,1), where
the output is normalised to have unit norm and these blocks
are defined in Sec. 3.3. Three separate trainings are run: the
first training uses the triplet loss function in (5), the second
uses a combination of the triplet and global losses in (10),
and the third uses only the global loss in (6). To ensure a fair
comparison, we run the experiments with identical settings,
where the only difference is the loss function. We evaluate
the models learned from each loss function by computing
the embedding of a grid of points from the input space, and
labelling them based on the label of the nearest neighbour
from the training set, found in the embedding space.

Figure 3-(b) shows the input space labelled according to
the nearest neighbour classifier run in the embedding space
generated by the triplet loss. Similarly, Fig. 3-(c) shows the
same result for the combined triplet and global losses and
Fig. 3-(d) displays the results for the global loss. In general,
it is clear that outliers affect more the classifier in (b), which
seems to be over-fitting the training data. Such labelling
mistakes are reduced when we use the combination of the

triplet and global losses as show in Fig. 3-(c). The label map
in Fig. 3-(d) generated by the embedding that uses global
loss is coherent even at the locations, where outliers can
be found in the training set, indicating that the global loss
function is robust to outliers.

Datasets Proposed Models Zagoruyko et.al.[36]
Simonyan
et.al. [28]

Train Test
TNet,
TGLoss

TNet,
TLoss

siam-
2stream-
l2

siam-l2
discr.
proj.

Liberty Notredame 3.91 4.47 4.54 6.01 7.22

Liberty Yosemite 10.65 11.82 13.24 19.91 11.18

Notredame Liberty 9.91 10.77 8.79 13.24 12.42

Notredame Yosemite 9.47 10.96 13.02 12.64 10.08

Yosemite Liberty 13.45 13.9 12.84 17.25 14.58

Yosemite Notredame 5.43 5.85 5.58 8.38 6.82

mean 8.8 9.63 9.67 13.45 10.38

Table 2. Embedding results: False Positive Rate at 95% recall

(FPR95) on UBC benchmark dataset, where bold numbers indicate

the best results on the dataset. Note that for our models, we use

the test set specified in [1] to compute these values.

5. Experiments

In this section, we first describe the dataset used for as-
sessing our proposed models, then we explain the model
setup, followed by a presentation of the results.

5.1. UBC Benchmark Dataset

The experiments are based on the performance evalua-
tion of local image patches using the standard UBC bench-
mark dataset [1, 3, 30], which contains three sets: Yosemite,
Notre Dame, and Liberty. Using these sets, we run six
combinations of training and testing sets, where we use
one set for training and another for testing. Each one of
this sets has more than 450, 000 local image patches (with
normalised orientation and scale) of size 64 × 64 sampled
using a Difference of Gaussians (DoG) detector. In each
of these sets there are more than 100, 000 patch classes
that are determined based on their 3-D locations obtained
from multi-view stereo depth maps. These patch classes are
used to produce 500, 000 pairs of matching (i.e., from the
same class) and non-matching (i.e., different classes) im-
age patches. Each model is assessed using the false pos-
itive at 95% recall (FPR95) on each of the six combina-
tions of training and testing sets, the mean over all com-
binations, and the receiver operating characteristic (ROC)
curve also for each of the six combinations. The test set
contains 100, 000 pairs with equal number of matching and
non-matching pairs and is chosen as specified in [1].

5.2. Training Setup and Implementation Details

The model training is based on stochastic gradient de-
scent (SGD) that involves: 1) the use of a learning rate
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a) Training set b) Triplet loss (5) c) Combined triplet and global losses (10) d) Global loss (6)
Figure 3. Illustration to compare the robustness of different loss functions to outliers: (a) training data with outliers, (b-d) classification of

points in the input space based on the nearest neighbour classifier run in the embedding space learned with the triplet loss (b), the combined

triplet and global losses (c), and the global loss (d).

Datasets Proposed Models Zagoruyko et al. [36] Xufeng et al. [12]

Train Test
CS SNet,

GLoss

SNet,

GLoss

2ch-

2stream
2-ch Siam

siam-

2stream

4096d-

F(512)

512d-

F(512)

Liberty Notredame 0.77 1.84 1.9 3.03 4.33 3.05 3.87 4.75
Liberty Yosemite 3.09 6.61 5.00 7 14.89 9.02 10.88 13.58
Notredame Liberty 3.69 6.39 4.85 6.05 8.77 6.45 6.9 8.84
Notredame Yosemite 2.67 5.57 4.10 6.04 13.23 10.44 8.39 11
Yosemite Liberty 4.91 8.43 7.2 8.59 13.48 11.51 10.77 13.02
Yosemite Notredame 1.14 2.83 2.11 3.05 5.75 5.29 5.67 7.7

mean 2.71 5.28 4.19 5.63 10.07 7.63 7.75 9.82

Table 1. Pairwise similarity results: False Positive Rate at 95% recall (FPR95) on UBC benchmark dataset, where bold numbers indicate

the best results on the dataset. Note that for our models, we use the test set specified in [1] to compute these values.

of 0.01 that gradually (automatically computed based on
the number of epochs set for training) decreases after each
epoch until it reaches 0.0001; 2) a momentum set at 0.9, 3)
weight decay of 0.0005, and 4) data augmentation by rotat-
ing the pair of patches by 90, 180, and 270 degrees, and
flipping the images horizontally and vertically (i.e., aug-
mented 5 times: 3 rotations and 2 flippings) [36]. The train-
ing set for the triplet and siamese networks consists of a set
of 250, 000 triplets, which are sampled randomly from the
aforementioned set of 500, 000 pairs of matching and non-
matching image patches, where it is important to make sure
that the triplet contains one pair of matching image patches
and one patch that belongs to a different class of this pair.
The mini-batch of the SGD optimisation consists of 250
triplets (randomly picked from this 250K set of triplets),
which is used to compute the global loss in (6) and (8).
Our Matlab implementation takes ≈ 56 hours for training
a model and processes 16K images/sec during testing on a
GTX 980 GPU.

The triplet networks TNet-TLoss and TNet-TGLoss

use the three towers of ConvNets (see Fig. 1) to learn an
embedding of size 256 (we choose this number of dimen-
sions based on the feature dimensionality of the models
in [36], which also have 256 dimensions before the fully
connected layer). During testing, only one tower is used (all
three towers are in fact the same after training) to compute
the embedded features, which are compared based on the ℓ2
norm of the distance between these embedded features. The
network weights for the TNet-TLoss network are initialised

randomly and trained for 100 epochs, whereas the weights
for the TNet-TGLoss network are trained for 50 epochs af-
ter being initialised using the weights from TNet-TLoss net-
work trained for 50 epochs (the initialisation from the TNet-
TLoss model trained with early stopping provided a good
initialisation for TNet-TGLoss). This number of epochs for
training is decided based on the convergence obtained in
the training set with respect to the loss function. More-
over, the margin parameter m = 0.01 in (5) and γ = 1,
t = 0.4 and λ = 0.8 in (10) are estimated via cross valida-
tion. For the siamese networks SNet-GLoss and CS-SNet-

GLoss, the weights are randomly initialised and trained for
80 epochs (again, based on the convergence of the training
set). Finally, m = 1 and λ = 1 in (8) are also estimated via
cross validation.

5.3. Results on UBC Benchmark Dataset

Tables 1 and 2 summarises the performance of the pro-
posed models and compares them with the current state-of-
the-art methods for the UBC dataset [1, 3, 30] using the
FPR95 on each of the six combinations of training and test-
ing sets, and the mean over all combinations. Note that we
separate the results in terms of the comparison of descrip-
tors obtained by pairwise similarity methods (Tab. 1) and
embedding (Tab. 2). We also show the ROC curves for each
of the six combinations of training and testing sets in Fig. 4
for our proposed models, in addition to the current state-of-
the-art models [28, 36].

From the results in Tab. 2 and Fig. 4, we observe that
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Figure 4. ROC curves on the UBC benchmark dataset for our proposed models, and the current state-of-the-art descriptors [28, 36]. Note

that for our models, we use the test set specified in [1] to compute these curves, and the numbers in the legends represent the FPR95 values.

the proposed triplet network trained with a combination of
the triplet and global losses (i.e., the TNet-TGLoss) shows
the best result in the field in terms of feature embedding.
The pairwise similarity results in Tab. 1 and Fig. 4 indi-
cate that our centre-surround siamese network trained with
global loss (i.e., the CS SNet, GLoss) produces a result that
is almost half of the previous state-of-the-art result, i.e., the
2ch-2stream [36].

Similar to [36], we notice that the siamese networks
trained with the pairwise similarity loss achieve better clas-
sification performance compared to the feature embeddings
produced by the triplet loss, but the dependence of the
siamese networks on pairwise inputs is a potential issue
during inference in terms of complexity. For instance, the
ℓ2 distance norm computation between feature embeddings
can be significantly simplified to a cosine distance dot prod-
uct, since the descriptor norms are equal to 1, while the
siamese networks have to measure the similarity using the
final fully connected (FC) layer of the network (assuming
the features before that FC layer have been pre-computed).
Even though pairwise similarity methods tend to perform
better than feature embedding approaches, according to our
results and also the results from [36], it is interesting to no-
tice that our feature embedding model TNet-TGLoss per-
forms better than Siam network [36] and the 512d-F(512)
network [12], with both representing examples of pairwise
similarity methods.

6. Conclusions

We have presented new methods for patch matching
based on learning using triplet and siamese networks trained
with a combination of triplet loss and global loss applied
to mini-batches - this is the first time such global loss and
triplet network have been applied in patch matching. This
new loss overcomes a number of the issues that have previ-
ously arisen when using triplet loss, most notably slow or
even unreliable convergence.

We argue that the superior results provided by our mod-
els are due to the better regularisation provided by the global
loss, as shown in Sec. 4. We have shown our models to be
very effective on the UBC benchmark dataset, delivering
state-of-the-art results.

A natural extension of our models is the use of the
global loss with the triplet network, but our preliminary
results (not shown in this paper) indicate that this model
does not produce better results than the ones in Table 2. We
plan to extend this method to other applications, such as
pre-training in visual class recognition problems.
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