
PatchBatch: a Batch Augmented Loss for Optical Flow

David (Dedi) Gadot Lior Wolf

The Blavatnik School of Computer Science

Tel Aviv University

Abstract

We propose a new pipeline for optical flow computation,

based on Deep Learning techniques. We suggest using a

Siamese CNN to independently, and in parallel, compute

the descriptors of both images. The learned descriptors

are then compared efficiently using the L2 norm and do

not require network processing of patch pairs. The suc-

cess of the method is based on an innovative loss function

that computes higher moments of the loss distributions for

each training batch. Combined with an Approximate Near-

est Neighbor patch matching method and a flow interpola-

tion technique, state of the art performance is obtained on

the most challenging and competitive optical flow bench-

marks.

1. Introduction

Optical flow estimation is a classical problem in com-

puter vision. In recent works, there has been a shift from

using engineered descriptors to using Convolution Neural

Networks (CNNs) [24] that are trained on pairs of patches

that either match or do not match. Yet, the newly proposed

architectures usually suffer from significant computation re-

quirements following the tendency of using Neural Network

layers as a matching function instead of traditional distance

functions such as the Euclidean (L2) distance.

To support rapid computation when comparing pairs of

patches, it is extremely beneficial to work in a feed-forward

pipeline that encodes each patch separately and then uses

conventional vector norms for comparing patches. This

poses a design restriction on our method that is not shared

with recent CNN approaches, which are optimized for ac-

curacy at the cost of significant computation time.

In order to achieve state of the art results despite this

restriction, half a dozen novelties are brought to the field

of deep patch representation. Some of the novelties arise

from borrowing design choices from CNNs used for object

recognition and stereo matching.

A second group of novelties are general and introduced

here for the first time. We have designed new metric learn-

ing losses by augmenting the DrLIM [18] method. Two

orthogonal augmentations are studied: the first replaces the

loss of DrLIM, which is based on the potential of a spring,

with a loss that is based on the potential of a centrifuge.

This leads to a marked improvement on the very compet-

itive KITTI benchmarks and in some of our synthetic ex-

periments. The other type of augmentation is obtained by

adding, to both spring and centrifuge variants of the DrLIM

loss, a term that minimizes the Standard Deviation (SD)

of the two distributions: L2 distances between matching

patches, and L2 distances between non-matching patches.

The two SDs are computed on the samples from each

training batch and a new type of loss for training CNNs

emerges. While in conventional loss functions per-sample

losses are aggregated per batch, in the new type of losses

the samples of the entire batch contribute jointly to the loss.

In another contribution, centered around per-batch com-

putations, we propose a new variant of batch normaliza-

tion [21] which is more fine-grained than previously pro-

posed. The new method improves performance but comes

at a cost: the addition of these layers is not compatible with

a fully convolutional deployment of the network.

1.1. Method overview

The optical flow solution described below is comprised

of a series of well established building blocks, where at the

heart of the pipeline lies a novel way to compute descriptors

and compare patches.

First, a pair of gray-level input images is normalized by

subtracting from each image its mean and dividing by its

SD. We then compute, independently and in parallel, de-

scriptors per each pixel of each image. These descriptors

are learned from examples using a Siamese Deep Neural

Network architecture.

The PatchMatch [2] (PM) method is then used as an Ap-

proximate Nearest Neighbor (ANN) algorithm on top of the

learned descriptors. The conventional L2 metric is used,

thus simplifying the ANN computation, as opposed to pre-

vious works which use Neural Network layers to compute

the matching score.

We then employ a bidirectional consistency check and

14236



eliminate all non-consistent matches. In addition, we re-

move small independent clusters of flow predictions using

a connected component analysis.

The surviving matches provide sparse optical flow. The

flow maps are downsampled, for computational reasons, by

a factor of 2 and 4 for the KITTI datasets and the MPI-Sintel

dataset respectively. The decimated maps are then given as

input to the EpicFlow [32] algorithm, which interpolates the

correspondence fields and creates a dense optical flow map.

2. Previous work

Dense optical flow methods have been the subject of re-

search for the past 35 years, starting with the work of Horn

and Schunk [20]. At the beginning, optical flow research

was limited to small displacements only. A significant ad-

vancement occurred with the work of Brox and Malik [7]

who were the first to provide reasonable performance for

large displacements.

The three major modern datasets in the field are

KITTI2012 [17], which is a real world database consist-

ing of images taken from a moving vehicle; MPI-Sintel [8],

which is a synthetic database consisting of computer-

created movies; and the latest KITTI2015 [27], which is

a new real world database in which both the camera and the

scene are non-stationary.

It is common to distinguish between 2-frame (pure) op-

tical flow methods and methods that require more complex

inputs. While the former relies solely on an input of two se-

quential images, the latter may employ stereo images, more

than two input images, etc. Out of the 2-frame optical flow

algorithms the FlowFields method [1] provides an elaborate

pipeline, somewhat similar to ours, and presents near state-

of-the-art performance on the KITTI2012 database. There

are several significant differences between our work and [1].

The most important is that the latter uses engineered fea-

tures while we use CNNs in order to compute initial corre-

spondences. Another prominent algorithm is PH-Flow [39],

which brings state-of-the-art performance to the KITTI2012

database, at the cost of extensive computation time.

An additional reference work is EpicFlow [32]. In the

original paper the authors used a matching technique called

DeepMatching [31] in order to compute a sparse correspon-

dence field that is then being interpolated in order to create

a dense flow field. The interpolation is based on edge-aware

averaging of the sparse correspondence field. In our work

we employ EpicFlow’s interpolation technique on a sparse

correspondence field which is calculated using our descrip-

tors and PatchMatch [2]. An alternative method for interpo-

lating a dense optical flow, which has also been applied to

DeepMatching-based inputs is DeepFlow [38].

As previously mentioned, our pipeline employs the PM

algorithm [2] in order to compute the initial correspondence

field. PM uses the inherent smoothness and coherency of

natural images in order to propagate accurate “guesses” be-

tween neighboring pixels, in addition to a random-search

stage which helps to avoid local minima. Image-based

ANN alternatives include variants such as TreeCANN [29]

and CSH [23]. However, we chose PM as our ANN algo-

rithm due to its simplicity, efficiency and modularity. These

properties allow us to modify PM for our pipeline. When

using PM, instead of utilizing image-based patches as in-

puts, we use our own features, which were computed using

a CNN architecture as mentioned before.

Recent advancements in Deep Learning did not skip the

fields of Optical Flow and Stereo Matching. In the FlowNet

pipeline [15], a CNN was presented that conducts almost

the entire optical-flow computation inside the neural net-

work. Though not achieving state-of-the-art results on any

of the major datasets, their network runs in real-time and

opens a gate to other (almost) complete end-to-end solu-

tions being computed with a single neural network.

In a recent work on stereo matching [42], a CNN ar-

chitecture compares two candidate stereo patches, followed

by extensive post-processing. Each of the patch pairs goes

through several identical computations. The resulting acti-

vations are then combined and processed through similar-

ity computing layers. However, computational efficiency

would be much higher, if an L2 distance of the separate ac-

tivations would be used instead [43]. This makes our archi-

tecture fully-convolutional, allowing an improved run time.

An additional difference is that while [42] uses small 9× 9
patches, we found that larger patches are beneficial, and our

main architecture uses 51× 51 patches.

Computing patch similarity using deep networks is a

thoroughly investigated subject. In [41] the authors in-

spected several CNN architectures which are able to pro-

duce a patch-similarity score. Their conclusion was that

there is a sizable advantage for computing the final simi-

larity score using a complex function that involves several

dense layers (see also [42]). Yet, having to pass every two

patches through a comparison network leads to a sharp in-

crease in run time. Thus we chose a different path and insist

on using per-patch representations that support L2 distance

comparisons. This is done in order to reduce the method’s

computational complexity in the ANN computation stage.

In order to learn patch representations that can be effec-

tively compared using the L2 norm, we employ several vari-

ants of the DrLIM method [18], which is widely used to

learn similar from non-similar. However, there are only a

few variants of it in the literature.

A major contribution of our work is the incorporation

of per-batch statistics, collected during training. Somewhat

related is the Batch Normalization method [21], which takes

advantage of batch-based statistics in order to normalize the

activations and accelerate the network’s training, and avoid

some of the local minima. This is different from our usage

4237



of batch statistics for augmenting the loss itself.

In addition to using batch statistics in order to incorpo-

rate distribution information to the loss, we also expand the

idea of batch normalization to allow fine-grained control of

the network’s convergence. This is done by performing the

normalization at each activation and not at the level of the

entire layer as is done in [21].

3. Network architecture

We study patches of typical sizes of 51× 51 or 71× 71.

This is similar to the 64× 64 patches used in [41]. In addi-

tion, unlike previous work [41], we do not employ patches

at multiple scales in our network. While color information

might be be useful, e.g., on MPI-Sintel, we discard color

since the KITTI2012 benchmark is grayscale.

We train a fully-convolutional neural network, which

creates descriptors we later use in the matching process.

Inspired by modern object recognition networks [34], we

use small 3 × 3 filters in each convolution layer other than

the last. The network is built out of a repeating pattern of

three layers such that each layer triplet is a combination

of a convolutional layer, a batch-normalization layer, and

a max-pooling layer. In the last layer triplet we omit the

max-pooling layer and use 2 × 2 filters. Leaky ReLU [26],

with a parameter of 0.1 is used as the non-linearity follow-

ing each convolutional layer, including the last one. Overall

we use 5 such structures, see Tab. 1 within a Siamese ar-

chitecture [10]. While some may claim that max-pooling

layers hinder matching accuracy by causing the network to

become translation-invariant, when using our architecture

one can observe no such phenomena.

We employ a variant of the batch normalization layer,

which differs from the conventional batch normalization

method [21]. While the latter employs a single value of

mean, SD, γ, and β parameters for each feature map, our

variant computes these parameters for each single pixel. For

example, for the output of the first convolutional layer, there

are 32× 49× 49× 2 learned parameters (γ and β) and the

same number of computed batch statistics (mean and SD,

for each activation in the volume). Once computed, each

activation is normalized by subtracting the mean, dividing

by the SD and it then undergoes a scale and shift transfor-

mation: yi = γx̂i+β, where x̂i is the normalized activation

and yi is the post-transformation value.

As shown by our experiments, this modification creates

a significant gap in performance, see Sec. 5. However, it

comes at a cost: the need to normalize each pixel separately

does not allow for an efficient fully convolutional compu-

tation of the descriptors. Instead, it requires a much slower

sliding window approach. We therefore also study an alter-

native architecture called FAST in which the batch normal-

ization process is done in a conventional way.

The network is strictly-Siamese, which allows us to later

Layer Filter/Stride Output size

Input – 1× 51× 51
Conv1 3× 3 / 1 32× 49× 49
Batch Normalization – 32× 49× 49
Max Pool 2× 2 / 2 32× 25× 25
Conv2 3× 3 / 1 64× 23× 23
Batch Normalization – 64× 23× 23
Max Pool 2× 2 / 2 64× 12× 12
Conv3 3× 3 / 1 128× 10× 10
Batch Normalization – 128× 10× 10
Max Pool 2× 2 / 2 128× 5× 5
Conv4 3× 3 / 1 256× 3× 3
Batch Normalization – 256× 3× 3
Max Pool 2× 2 / 2 256× 2× 2
Conv5 2× 2 / 1 512× 1× 1
Batch Normalization – 512× 1× 1

Table 1. The network model for representing a grayscale 51 × 51

input patch as a 512D vector. The Batch Normalization used is our

fine-grained variant. Leaky ReLU units [26] (with α = 0.1) are

used as activation functions following the five batch normalization

layers.

compute the descriptors of each image independently. The

matching cost is computed using a simple L2 metric. The

patch representation (descriptor) size is typically of length

512. Experiments reveal that using a larger descriptor leads

to a small increase in accuracy, and using a descriptor size

as small as 32 leads to only a moderate loss of accuracy.

3.1. Loss

Architectures similar to the one described above were

explored by previous work [41, 43]. In each previous work,

such per-patch architectures were found to be significantly

inferior to the architectures that use two patches as inputs.

Much of the improved performance we present in this work

can be attributed to the novel variants of the DrLIM’s loss

employed, which are explored next.

The conventional DrLIM loss, which is motivated by the

spring model is given by

(1− Y )
1

2
D2

w
+ (Y )

1

2
{max(0,m−Dw)}

2 , (1)

where, Y = 0 for matching pairs, Y = 1 otherwise, m is

the margin parameter, and Dw is the L2 distance between

the pair of samples.

We suggest two orthogonal modifications. The first mod-

ification is to insert the square into the hinge and obtain the

following formula:

(1− Y )
1

2
D2

w
+ (Y )

1

2
{max(0,m2 −D2

w
)} . (2)

Whereas the original DrLIM was motivated by the spring

model analogy [18], the new loss can be said to model a

4238



sticky centrifuge. Let M be a mass of a particle located

at rest at a distance r in a frame rotating at an angular ve-

locity ω around the origin. The particle feels the centrifu-

gal force ~F = mω2rr̂ in direction r̂. This force is de-

rived from the potential V (r) = −Mω2r2 as ~F = −∇V .

Assuming that the centrifuge has a sticky boundary at a

radius m, particles at a radius larger than m would just

rotate with the centrifuge. The potential then becomes

Vcen (r) = Mω2 max
(

0,m2 − r2
)

.

Based on the underlying physical models, the terms

SPRING and CENTRIFUGE will be used below to refer

to the conventional DrLIM of Eq. 1 and the variant of Eq. 2.

Fig. 1(a) depicts the shape of the loss functions on the neg-

ative (Y=1) pairs.

The second modification we add to the DrLIM loss is

based on per-batch statistics. The augmented loss then in-

corporates these statistics, unlike any loss in the literature

we are aware of. The effect of this modification can be dra-

matic, as can be observed in Fig. 1(b),(c).

The batch statistics we consider are the SD of the dis-

tances of the two classes – matching and non-matching. The

basic motivation for this strategy is the need to increase the

separation between the two distributions. While the DrLIM

loss pulls the samples to be close to either 0 or m, we found

the two distributions to overlap considerably. Adding the re-

quirement of a small SD directly pulls the two distributions

closer to their respective means and improves separability.

Let σY , Y = 0, 1 be the SD value, in a training batch, of

the pairwise distance Dw for samples that match or do not

match, respectively. The SPRING+SD variant is defined as:

(1−Y )λD2

w
+(Y )λ{max(0,m−Dw)}

2+(1−λ)(σ0+σ1)
(3)

The CENTRIFUGE+SD variant is given by:

(1−Y )λD2

w
+(Y )λ{max(0,m2−D2

w
)}+(1−λ)(σ0+σ1)

(4)

In both variants, a parameter λ is added which controls

the tradeoff between the core DrLIM variants and the aug-

mentation by the standard deviation. In all the experiments

in this paper λ was set to a value of 0.8.

3.2. Training

Each image of a chosen dataset is normalized by sub-

tracting its own mean and dividing by its own SD. The same

normalization is later used during test time. We sample

two populations, matching and non-matching, by collect-

ing 51 × 51 patches and using the given ground-truth flow

computation. For the non-matching population we employ

a random shift from the ground truth in both the X and Y

axes of 1-8 pixels. Requiring even small translations to be-

come non-matching is in contrast, for example, with [42],

which used 4-8 pixels for the non-matching class.

In order to augment the data, flips and 90 degree ro-

tations are applied on-the-fly during train time. We use

AdaDelta [44] as an efficient, adaptive, learning rule and

Lasagne [11], which is a Theano [4] based Deep Neural

Network framework. We trained the final network for 4000

epochs, in each epoch we used 50,000 random samples

from our created database with a batch-size of 256.

4. Matching and Interpolation

Since our architecture is strictly Siamese, we can com-

pute the features of each image independently and in par-

allel. Calculating descriptors using the FAST architecture

takes approximately 2 seconds per image. Using the AC-

CURATE architecture is more time consuming, due to the

fact that the image is being split to patches and each patch

descriptor is then computed independently in a sliding win-

dow manner. This takes approximately 27 seconds per im-

age using an NVIDIA Titan X GPU.

4.1. Matching

When using PM as an ANN algorithm, we use as in-

put our created descriptors and not the gray-scale image

patches, similar to the Generalized PM [3] approach. The

squared L2 distance is used as the matching metric.

We only run PM for two iterations in order to reduce

the computation time and also, more importantly, since it

was found that adding iterations causes additional matching

outliers to appear. The same phenomenon was described

in [1]: the additional iterations of the ANN used there were

said to create “resistant outliers”, whose matching distances

are below those of the true matches.

PM is used twice, in parallel, from the first image to the

second and vice-versa, in order to check for the consistency

of the two flow fields. All matches which do not exactly

point to one another in this bidirectional consistency check

are being eliminated (PM’s output is an integer assignment).

It was found empirically that allowing a large random-

search radius during the PM process helped to improve per-

formance on the KITTI datasets while we saw no such effect

on the MPI-Sintel dataset. This observation is consistent

with the average highest disparity for each image-pair in

the different datasets. Following these observations the ran-

dom search parameter of PM was set to 500 on the KITTI

datasets, and to only 10 on the MPI-Sintel dataset.

Following the bidirectional consistency check, a binary

mask indicating reliable flows is considered, and its con-

nected components are identified. Small connected compo-

nents are then considered unreliable. Specifically, we use a

threshold area of 10,000 for the KITTI datasets and 400 for

MPI-Sintel. For the MPI-Sintel dataset we also eliminate

all the matches around the borders of the image (30 pixels)

since we have found that there are more outliers there than

4239



(a) (b) (c)
Figure 1. Demonstrating the effect of DrLIM variants. (a) A comparison of the loss (y-axis) on negative pairs as a function of the distance

Dw (x-axis) for m = 100 for the original DrLIM (SPRING) and the CENTRIFUGE variant. The CENTRIFUGE is more sensitive to

value shifts near the margin and then loses its sensitivity. (b) The distribution of distances for matching (left side, blue) and non-matching

(right side, red) pairs, for KITTI2012 validation data, when using the CENTRIFUGRE variant. The plot shows distance vs. frequency.

(c) The same two distributions for the CENTRIFUGE+SD loss. Adding the batch SD to the loss causes the means to be somewhat closer.

However, the SD of both distributions is much reduced.

in the rest of the image, probably due to the relatively large

patch size we are using.

4.2. Interpolation

Given a sparse correspondence field, describing the

matches which met the bidirectional consistency crite-

rion and the connected component filtering, we employ

EpicFlow [32] to obtain a dense correspondence field. The

EpicFlow algorithm interpolates each missing prediction

using its neighboring predictions from the sparse correspon-

dence field, i.e. its support. From this support, a number of

affine transformations are calculated using multiple subsets

of correspondences. An edge map is computed using the

SED method [12], and the affine transformations are then

averaged based on the geodesic distance computed from the

image’s edge map.

5. Experiments

In order to demonstrate the effectiveness of the new Dr-

LIM variants beyond the scope of optical flow computa-

tions, we have conducted a series of synthetic experiments

in addition to testing the impact of the new variants on real

datasets.

In the first experiment, nc multivariate Gaussian cen-

ters are uniformly sampled from a 256D hypercube of edge

length 1. Pairs of samples are then drawn from Gaussians i

and j with a fixed diagonal covariance matrix τI . When

sampling matching pairs i = j; for non-matching pairs

i 6= j. 10, 000 training samples and 10, 000 test samples are

used, half of which are matching and half non-matching.

The representation networks had three hidden layers of

size 256 and ReLU activations. Four Siamese networks

were trained, based on the four DrLIM variants: SPRING,

CENTRIFUGE, SPRING+SD, and CENTRIFUGE+SD.

Two sets of experiments are conducted. In the first set,

τ = 3 and nc varies between 4 and 20. In the second

set nc = 10 and τ varies between 2 and 5. Each setting

is repeated 10 times, and the plots in Fig. 2(a),(b) depict

the mean Area Under Curve (AUC) obtained when train-

ing the network on the training data and evaluating on the

test data for the first and the second set respectively. As

can be seen, in almost all experiments, SPRING outper-

forms CENTRIFUGE and SPRING+SD outperforms CEN-

TRIFUGE+SD. It is also clear that the SD versions of each

physical model greatly outperform the vanilla versions.

The entire experiment was then repeated, with a slight

variant. In the second variant, the sampling process is iden-

tical except that the two samples in each pair are both nor-

malized to have a norm of one. The exact same experi-

ments were repeated. In Fig. 2(c), nc varies while τ = 3 is

fixed. In Fig. 2(d), τ varies while nc = 10. In these exper-

iments, the SD version also outperforms the plain SPRING

and CENTRIFUGRE versions by a large margin. However,

among the physical models the leading performance for

the normalized inputs is obtained using the CENTRIFUGE

method. This is true for both the SD and the vanilla variants.

In all experiments performed we have added a baseline

method, which is the norm of the difference between the

pairs of points. This method does moderately better than

chance (AUC of about 0.6) and is, in general, much inferior

to the network representations. However, when the number

of classes dramatically increases, or when the variance is

very high, this simple method has an advantage over the

learned models.

One additional experiment we conducted is to evaluate

our method using the ”accuracy@10” measure proposed in

[31]. ”Accuracy@10” is defined as the proportion of correct

assignments from the first image to the second with respect

to the total number of pixels. A pixel assignment is consid-

4240



ered correct if its Euclidean error is smaller than 10 pixels.

The ”accuracy@10” score achieved by DeepMatching [31]

on the KITTI2012 dataset is 0.856. We computed the same

score using our descriptors on our own validation set (last

20% of images by file order) and achieved a score of 0.960.

5.1. Comparison of loss variants on optical flow
datasets

In our optical flow experiment, we make use of the

three largest and most competitive datasets: KITTI2012

& KITTI2015, both of which contain real image datasets

taken from a moving vehicle in a city environment and MPI-

Sintel, which is an extensive computer graphics dataset.

We ran the four variants up to 1500 epochs while con-

ducting the comparison. The margin parameter m was de-

termined, for each variant, using initial runs of 500 epochs.

The performance was evaluated on a set of images set aside

for this purpose: 20% of the images of the KITTI2012 and

KITTI2015 training sets, which come last in the file order,

and a random sample of 50 images of the FINAL training

subset of MPI-Sintel.

The results are reported in Tab. 2 and 3 for KITTI2012,

KITTI2015, and MPI-Sintel respectively. Each table

compares the four variants: SPRING, CENTRIFUGE,

SPRING+SD, and CENTRIFUGE+SD. The nature of the

error rate used depends on the dataset conventions: in

KITTI2012 and KITTI2015, the percent of pixels that dis-

placed more than 3 pixels (Euclidean error) from the ground

truth is used; in MPI-Sintel, the mean end point error is re-

ported for all and matching-only pixels. In the KITTI2012

and KITTI2015 lines two error rates are reported in each

cell: one obtained after the PM matching process only, and

the second error after applying the interpolation process.

One can observe a consistent drop in the error rate when

shifting from the SPRING model to the CENTRIFUGE

model, especially prior to the interpolation. There is an ad-

ditional consistent drop in error when adding an SD term

to either losses. Based on these partial experiments, we de-

cided to focus on the CENTRIFUGE+SD method and train

using this variant for 4,000 epochs on each of the datasets.

5.2. Benchmark results

We trained our main architecture (51 × 51 patch-size,

CENTRIFUGE+SD loss) on all three datasets. The network

architecture is identical in all three cases. As a training

set for KITTI2012 and KITTI2015, we took the first 80%

of the image pairs and as a validation set, the remaining

20%. For MPI-Sintel we chose 80% of the image pairs for

training and the rest for validation. We chose 2M random

samples out of those 20% images to act as the validation

samples during training. Training was performed for 4000

epochs, and the configuration with the best validation loss

was recorded and deployed.

Loss Epoch 500 Epoch 1000 Epoch 1500

KITTI’12:

SPRG 10.48 / 5.13 10.11 / 5.05 10.04 / 4.96

CENT 9.93 / 5.19 9.57 / 4.91 9.54 / 4.76

SPRG+SD 9.11 / 5.03 8.97 / 4.92 8.64 / 4.88

CENT+SD 8.91 / 4.85 8.99 / 4.95 8.54 / 4.97

KITTI’15:

SPRG 29.7 / 19.97 29.98 / 19.49 28.74 / 19.43

CENT 29.8 / 20.59 28.24 / 19.4 27.92 / 18.62

SPRG+SD 27.41 / 19.30 26.29 / 18.91 27.00 / 18.95

CENT+SD 28.20 / 20.40 27.02 / 19.19 26.34 / 19.05

Table 2. Loss comparison on KITTI2012 and KITTI2015 after a

certain number of epochs. Each row is a different variant of Dr-

LIM, see Section 3.1. Each cell shows the % of pixels with eu-

clidean error > 3 pixels after the ANN process (left) and after bidi-

rectional consistency check and EpicFlow interpolation (right).

Loss Epoch 500 Epoch 1000 Epoch 1500

SPRG 3.17 / 2.40 3.27 / 2.54 3.06 / 2.39

CENT 3.44 / 2.59 3.34 / 2.60 3.41 / 2.63

SPRG+SD 3.42 / 2.63 3.43 / 2.53 3.05 / 2.17

CENT+SD 3.25 / 2.49 3.15 / 2.32 3.15 / 2.36

Table 3. Comparing DrLIM variants on MPI-Sintel. Presented re-

sults are post EpicFlow interpolation. Shown are average EPE

(end-point-error) on all the pixels in the images (left) and EPE on

valid pixels (as defined by the dataset) (right) on the FINAL pass.

As can be seen in Tab. 4, 5, 6, we were able to

achieve state-of-the-art results on the official KITTI2012

and KITTI2015 benchmarks, and rank in the 6th place on

the MPI-Sintel benchmark. The gap in ranking between the

KITTI datasets and MPI-Sintel might arise from the fact

that we are the only top reported system that does not use

color on MPI-Sintel.

Since CENTRIFUGE+SD was not clearly preferable

on MPI-Sintel to other methods by epoch 1500 (Tab. 3),

we submitted results for all 4 DrLIM variants on this

benchmark. The obtained order of results (Tab. 6) is

CENTRIFUGE+SD, SPRING, SPRING+SD, and CEN-

TRIFUGE. A significant gap of 0.4 EPE exists between

CENTRIFUGE+SD and SPRING.

On KITTI2012, we have also submitted the predictions

of the FAST network, in which our fine-grained batch nor-

malization (Sec. 3) is replaced with the conventional batch

normalization. There are only four methods that are ranked

between the ACCURATE and the FAST methods.

5.3. Network variants

We explored several network variants on the KITTI2012

validation benchmark. These variants explore different de-

scriptor sizes and different patch sizes, in addition to our

4241



(a) (b)

(c) (d)

Figure 2. Results of the synthetic experiment. The first

row shows the results of the baseline experiment. The

second row shows the results where each datapoint was

normalized to have a fixed norm. All plots show mean

and SD of AUC (y-axis) obtained for five types of fea-

tures. In all plots, the faint (red) dotted line presents the

original random features sampled, as describe in Sec. 5.

The thin solid line presents the results obtained for the

original DrLIM method (SPRING). The thin dashed

line shows the results for the CENTRIFUGE variant.

The thick solid and dashed lines show the respective

counterparts where SD was added to the loss. (a) and

(c) present results when varying (x-axis) the number of

Gaussians nc from which points where sampled. (b)

and (d) explore the effect of changing the variance pa-

rameter τ . As can be seen, SD improves performance in

almost all experiments. For the baseline data SPRING

outperforms CENTRIFUGE. The situation is reversed

when the norm of the sampled datapoints is fixed.

Method Out-Noc Running time

PatchBatch-ACCRTE-PS71 5.29% 60.5s

PatchBatch-ACCURATE 5.44% 50.5s

PH-Flow [39] 5.76% 800s

FlowFields [1] 5.77% 23s

CPM-Flow (anon.) 5.80% 2s

NLTGV-SC [30] 5.93% 16s

PatchBatch-FAST 5.94% 25.5s

DDS-DF [37] 6.03% 1m

TGV2ADCSIFT [5] 6.20% 12s

DiscreteFlow [28] 6.23% 3m

Table 4. Top 10 KITTI2012 2-frame (Pure) Optic Flow Algorithms

as published on the submission date. Out-Noc is the percentage of

pixels with euclidean error > 3 pixels out of the non-occluded

pixels

variant of batch normalization.

The results of these experiments are displayed in Tab. 7.

The table shows the percentage of pixels with displace-

ment error larger than 3 pixels after the ANN matching

process and after the interpolation process. The full (“AC-

CURATE”) method is compared with the FAST network.

We also compared to an ACCURATE network in which the

input patch size is 71 × 71 pixels. Two other variants in

which the final descriptor size varies are shown. The de-

scriptor size was altered by replacing Conv5’s filter-size to

1 × 1 to obtain a 1024D descriptor, or by adding an ad-

ditional convolutional (and batch-normalization) layer with

32 feature maps to obtain a 32D descriptor. The 1024D de-

scriptor makes PM run much slower. The converse is true

Method Fl-all Running time

PatchBatch-ACCURATE 21.69% 50.5s

DiscreteFlow [28] 22.38% 3min

CPM-Flow (anon.) 24.24% 2s

EpicFlow [32] 27.10% 15s

FilteringFlow (anon.) 28.50% 116s

DeepFlow [38] 29.18% 17s

HS [35] 42.18% 2.6m

DB-TV-L1 [40] 47.97% 16s

HAOF [6] 50.29% 16.2s

PolyExpand [14] 53.32% 1s

Table 5. Top 10 KITTI2015 2-frame Optic Flow Algorithms as of

the submission date. Fl-all is the percentage of pixels with eu-

clidean error > 3 pixels. The FAST network was not trained on

this benchmark by the submission time.

for 32D. Based on these results, further improvements of

our method’s accuracy are expected with larger patch and

representation sizes.

In another experiment we tested the ACCURATE net-

work trained on KITTI2015 on the KITTI2012 validation

images. The performance seems comparable to that of the

KITTI2012 ACCURATE network, attesting to the general-

ity of the learned patch matching function.

Our method was designed with the requirement of ob-

taining a generic pipeline that employs L2 distances of

patches. In this way, the ANN and interpolation methods

can be replaced with other, perhaps more efficient methods,

and the gain in performance can be preserved. The running

time of each step of the computation for the baseline and the

4242



Method EPE all, ‘final’ pass

FlowFields [1] 5.810

CPM-Flow (anon.) 5.960

DiscreteFlow [28] 6.077

EpicFlow [32] 6.285

Deep+R [13] 6.769

PatchBatch-CENT+SD 6.783

DeepFlow2 (anon.) 6.928

PatchBatch-SPRG 7.188

SparseFlowFused [36] 7.189

DeepFlow [38] 7.212

FlowNetS+ft+v [15] 7.218

NNF-Local [9] 7.249

PatchBatch-SPRG+SD 7.281

PatchBatch-CENT 7.323

SPM-BP [25] 7.325

AggregFlow [16] 7.329

Table 6. Top MPI-Sintel results as of the submission date. Each

number represents the EPE (end-point-error), averaged over all the

pixels in the comparison images, using the ’final’ rendering pass

of MPI-Sintel. Four ACCURATE variants are shown. The CENT-

FIGURE+SD network is ranked 6th as of the paper’s submission

date. The TF+OFM method [22] (EPE 6.727) is removed from

this table since it is not a pure 2-frame optical flow method.

Method KITTI2012 err Encode time

ACCURATE 8.08 / 4.80 27s

FAST 9.45 / 5.3 2.5s

ACCURATE 71× 71 7.85 / 4.79 37s

ACCURATE 32D 9.34 / 5.23 27s

ACCUARTE 1024D 8.10 / 4.81 37s

Train on KITTI2015 8.99 / 4.97 27s

Table 7. Additional variants comparison on KITTI2012. All re-

sults are reported using the CENTRIFUGE+SD loss, while tak-

ing the model with the lowest loss on validation data out of 4000

epochs. The error is computed on the local validation set. Each

row presents the % of pixels with euclidean error > 3 pixels after

the ANN process (left) and after the interpolation and bidirectional

consistency check (right). In addition, the time it takes to compute

the patch descriptors in seconds is shown. As can be seen, addi-

tional improvement for our method is expected when using larger

patches and a longer representation vector.

FAST methods are detailed in Tab. 8. The patch encoding

process is the only process currently done on the GPU. Its

running time dominates the ACCURATE network’s execu-

tion time, but is less than 10% of that of the FAST network.

6. Discussion and future work

Using CNNs for encoding each patch separately leads to

a solution that is entirely flexible. On one hand the CNN can

be modified, pruned, or compressed [33] in order to control

Step ACCURATE FAST

Descriptor computation 27s 2.5s

ANN (PatchMatch) 6.5s 6.5s

Connected component analysis 0.5s 0.5s

Interpolation (EpicFlow) 16s 16s

Total 50s 25.5s

Table 8. The runtime of our ACCURATE network (using fine-

grained batch normalizatoin) and the FAST method. The descrip-

tor computation is done in parallel for the two images and so are

the PatchMatch computations per direction.

the accuracy to run time trade-off. On the other hand, the

other steps can be replaced, implemented on the GPU, or

bypassed as needed. A fast alternative, for example, for

the ANN solution employed is the kd-tree solution of [19].

Our reliance on simple vector representations means that

this integration does not require any modification.

The problem of metric learning is a central Machine

Learning task that is used in computer vision domains

ranging from low-level vision to almost all high level vi-

sion tasks. Mahalanobis distances, and other distances that

translate to L2 matching of learned representations domi-

nate the relevant literature.

The DrLIM loss is a prominent solution for learning L2

distances using deep networks. We believe that the two or-

thogonal types of improvements that we presented here can

lead not only to state of the art optical flow, but also to im-

proved results in many other domains. The success on what

might be the simplest imaginable (and therefore the most

general) synthetic data is highly suggestive of that.

In addition to this very general contribution, the very

idea of using batch losses is novel, as far as we know.

Losses are always constructed per sample and then aggre-

gated. This locality is compatible with the stochastic gradi-

ent descent. However, when using mini batches, per batch

losses are also compatible.

Batch losses can tie together the samples in a batch and

support the design of networks that take into account inter-

relations between the samples in the batch. We have demon-

strated the effectiveness of this approach in the domain of

metric learning. Future work might take advantage of this

in order to whiten the representation layer, whiten the error

of regressors along the output dimensions, or balance the

error between the classes in a multiclass scenario.

Acknowledgments

This research is supported by the Intel Collaborative Re-

search Institute for Computational Intelligence (ICRI-CI).

The authors would like to thank Michael Rotman for valu-

able insights.

4243



References

[1] C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense corre-

spondence fields for highly accurate large displacement opti-

cal flow estimation. arXiv preprint arXiv:1508.05151, 2015.

2, 4, 7, 8

[2] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-

stein. The generalized patchmatch correspondence algo-

rithm. In ECCV, pages 29–43. 2010. 1, 2

[3] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-

stein. The generalized PatchMatch correspondence algo-

rithm. In ECCV, Sept. 2010. 4

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.

Theano: a CPU and GPU math expression compiler. In Pro-

ceedings of the Python for Scientific Computing Conference

(SciPy), June 2010. 4

[5] J. Braux-Zin, R. Dupont, and A. Bartoli. A general dense im-

age matching framework combining direct and feature-based

costs. In ICCV, pages 185–192, 2013. 7

[6] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.

In ECCV, pages 25–36. 2004. 7

[7] T. Brox and J. Malik. Large displacement optical flow: de-

scriptor matching in variational motion estimation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

33(3):500–513, 2011. 2

[8] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

In ECCV, pages 611–625, 2012. 2

[9] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displace-

ment optical flow from nearest neighbor fields. In CVPR,

pages 2443–2450, 2013. 8

[10] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In CVPR, volume 1, pages 539–546 vol. 1, 2005. 3

[11] S. Dieleman, J. Schlter, C. Raffel, E. Olson, S. K. Snderby,

D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly,

and et al. Lasagne: First release., 2015. 4

[12] P. Dollár and C. L. Zitnick. Structured forests for fast edge

detection. In ICCV, pages 1841–1848, 2013. 5

[13] B. Drayer and T. Brox. Combinatorial regularization of de-

scriptor matching for optical flow estimation. In British Ma-

chine Vision Conference (BMVC), 2015. 8

[14] G. Farnebäck. Two-frame motion estimation based on poly-

nomial expansion. In Image Analysis, pages 363–370.

Springer, 2003. 7

[15] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas,

V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

arXiv preprint arXiv:1504.06852, 2015. 2, 8

[16] D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of

local parametric candidates with exemplar-based occlusion

handling for optical flow. arXiv preprint arXiv:1407.5759,

2014. 8

[17] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

CVPR, 2012. 2

[18] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning an invariant mapping. In CVPR, volume 2,

pages 1735–1742, 2006. 1, 2, 3

[19] K. He and J. Sun. Computing nearest-neighbor fields via

propagation-assisted kd-trees. In CVPR, pages 111–118,

2012. 8

[20] B. K. Horn and B. G. Schunck. Determining optical flow.

In 1981 Technical symposium east, pages 319–331. Interna-

tional Society for Optics and Photonics, 1981. 2

[21] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 1, 2, 3

[22] R. Kennedy and C. J. Taylor. Optical flow with geometric

occlusion estimation and fusion of multiple frames. In En-

ergy Minimization Methods in Computer Vision and Pattern

Recognition, pages 364–377, 2015. 8

[23] S. Korman and S. Avidan. Coherency sensitive hashing. In

ICCV, pages 1607–1614, 2011. 2

[24] Y. LeCun and Y. Bengio. Convolutional networks for images,

speech, and time series. The handbook of brain theory and

neural networks, 3361(10), 1995. 1

[25] Y. Li, D. Min, M. S. Brown, M. N. Do, and J. Lu. SPM-

BP: Sped-up PatchMatch belief propagation for continuous

MRFs. In ICCV, 2015. 8

[26] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-

earities improve neural network acoustic models. In ICML,

2014. 3

[27] M. Menze and A. Geiger. Object scene flow for autonomous

vehicles. In CVPR, 2015. 2

[28] M. Menze, C. Heipke, and A. Geiger. Discrete optimiza-

tion for optical flow. In Pattern Recognition, pages 16–28.

Springer, 2015. 7, 8

[29] I. Olonetsky and S. Avidan. Treecann-kd tree coherence ap-

proximate nearest neighbor algorithm. In ECCV, pages 602–

615. 2012. 2

[30] R. Ranftl, K. Bredies, and T. Pock. Non-local total general-

ized variation for optical flow estimation. In ECCV, pages

439–454. 2014. 7

[31] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

Deepmatching: Hierarchical deformable dense matching.

CoRR, abs/1506.07656, 2015. 2, 5, 6

[32] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

Epicflow: Edge-preserving interpolation of correspondences

for optical flow. arXiv preprint arXiv:1501.02565, 2015. 2,

5, 7, 8

[33] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. arXiv

preprint arXiv:1412.6550, 2014. 8

[34] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 3

[35] D. Sun, S. Roth, and M. J. Black. A quantitative analysis

of current practices in optical flow estimation and the princi-

ples behind them. International Journal of Computer Vision,

106(2):115–137, 2014. 7

[36] R. Timofte and L. Van Gool. Sparse flow: Sparse matching

for small to large displacement optical flow. In Applications

of Computer Vision (WACV), pages 1100–1106, 2015. 8

4244



[37] D. Wei, C. Liu, and W. T. Freeman. A data-driven regulariza-

tion model for stereo and flow. In International Conference

on 3D Vision (3DV), volume 1, pages 277–284, 2014. 7

[38] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.

Deepflow: Large displacement optical flow with deep match-

ing. In ICCV, pages 1385–1392, 2013. 2, 7, 8

[39] J. Yang and H. Li. Dense, accurate optical flow estimation

with piecewise parametric model. In CVPR, pages 1019–

1027, 2015. 2, 7

[40] C. Zach, T. Pock, and H. Bischof. A duality based approach

for realtime tv-l 1 optical flow. In Pattern Recognition, pages

214–223. Springer, 2007. 7

[41] S. Zagoruyko and N. Komodakis. Learning to compare

image patches via convolutional neural networks. arXiv

preprint arXiv:1504.03641, 2015. 2, 3

[42] J. Zbontar and Y. LeCun. Computing the stereo matching

cost with a convolutional neural network. In CVPR, pages

1592–1599, June 2015. 2, 4

[43] J. Zbontar and Y. LeCun. Stereo matching by training a con-

volutional neural network to compare image patches. arXiv

preprint arXiv:1510.05970, 2015. 2, 3

[44] M. D. Zeiler. ADADELTA: an adaptive learning rate method.

arXiv preprint arXiv:1212.5701, 2012. 4

4245


