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Abstract

Generating object proposals has become a key compo-

nent of modern object detection pipelines. However, most

existing methods generate the object candidates indepen-

dently of each other. In this paper, we present an ap-

proach to co-generating object proposals in multiple im-

ages, thus leveraging the collective power of multiple object

candidates. In particular, we introduce a deep structured

network that jointly predicts the objectness scores and the

bounding box locations of multiple object candidates. Our

deep structured network consists of a fully-connected Con-

ditional Random Field built on top of a set of deep Convolu-

tional Neural Networks, which learn features to model both

the individual object candidates and the similarity between

multiple candidates. To train our deep structured network,

we develop an end-to-end learning algorithm that, by un-

rolling the CRF inference procedure, lets us backpropagate

the loss gradient throughout the entire structured network.

We demonstrate the effectiveness of our approach on two

benchmark datasets, showing significant improvement over

state-of-the-art object proposal algorithms.

1. Introduction

Generating object proposals has recently become one

of the key components of modern object detection tech-

niques [7, 9, 10, 6]. By filtering out the irrelevant portions

of the input image, these proposals hugely reduce the search

space of object detectors, which has proven beneficial for

both speed an accuracy.

Existing object proposal methods [1, 4, 15, 18, 22, 25,

12], however, all generate candidate detections one by one,

independently of each other. By contrast, in a parallel

line of research, object co-detection [2, 8, 10, 11] has

emerged as an effective approach to leveraging the infor-

mation jointly contained in multiple images to improve de-

tection accuracy. Unfortunately, to model the similarity
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of multiple objects, existing methods rely on either hand-

crafted features [2, 8, 20, 11], or features learned for object

recognition [10]. As a consequence, they are ill-suited to

handle general object proposals, whose appearance is sub-

ject to much larger variations than specific object classes.

In this paper, we introduce an approach to co-generating

object proposals in multiple images. To this end, we pro-

pose a deep structured network that lets us learn features

to model (i) the appearance of individual object candidates;

and (ii) the similarity between multiple object candidates.

As a result, our model is able to leverage the collective

power of multiple object candidates, while coping with the

large appearance variability of general object proposals.

More specifically, given an initial pool of object candi-

dates, our model consists of a fully-connected Conditional

Random Field (CRF) built on top of a set of deep Con-

volutional Neural Networks (CNNs), one for each candi-

date. The CNN module of each candidate predicts (i) an

objectness score; (ii) a bounding box location; and (iii) a

low-dimensional feature vector employed in the pairwise

term of the CRF. This pairwise term takes the form of a

Gaussian kernel, which allows us to perform inference ef-

ficiently [13], even for large numbers of candidates. Alto-

gether, the resulting deep structured model jointly produces

improved objectness scores for multiple candidates and re-

fined locations for the foreground objects.

We introduce an end-to-end learning algorithm to esti-

mate the weights of our deep structured network. To this

end, we follow a stochastic gradient descent procedure us-

ing mini-batches on which we define the CRF. By unrolling

the iterations of our CRF inference strategy, we can back-

propagate the gradient of our loss function throughout the

entire structured network. This lets us learn the similarity of

pairs of candidates, thus effectively benefitting from multi-

ple candidates to co-generate high-quality object proposals.

We demonstrate the effectiveness of our approach on two

benchmark datasets for object proposal generation: Pascal

VOC 2007 [5] and MS COCO [17]. Our experiments evi-

dence the benefits of leveraging multiple images for object

proposal generation over state-of-the-art methods that gen-

erate the proposals individually.
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2. Related Work

Objectness has essentially lead to a paradigm shift in ob-

ject detection. Instead of the traditional sliding window

approach, objectness facilitates detection by proposing a

smaller number of interesting candidate regions. These ob-

ject proposals have now become ubiquitous in state-of-the-

art detectors [7, 9, 6]. While object proposals have also

been considered in the context of depth images [24], below,

we focus on methods designed for RGB images, which are

more common for large-scale object detection.

Most objectness methods rely on well-engineered hand-

crafted features. For instance, Alexe et al. [1] introduced a

generic objectness measure using four image cues, includ-

ing multi-scale saliency, color contrast, edge density and

superpixel straddleness. Instead of performing exhaustive

search over the image, the Selective Search method of Ui-

jlings et al. [22] utilizes an image over-segmentation. This

method achieves high accuracy, and is therefore widely used

as an initial step for detection. Krähenbühl et al. [15] intro-

duced a fast method based on the geodesic distance trans-

form, which can be computed in near-linear time and gener-

ates object proposals at different scales. To date, the fastest

method to generate object proposals is that of Cheng et

al. [4]. To achieve speed, this method relies on a binary

representation of gradient-based features. This speed, how-

ever, comes at some loss in object localization accuracy. By

contrast, Zitnick et al. [25] exploited the edges and edge

groups at the object boundaries to better localize the objects

and generate good-quality proposals.

Recently, Pinheiro et al. [18] proposed to go beyond

handcrafted features for object proposal generation. In

particular, [18] leverages the representation power of deep

networks to learn a discriminative CNN that generates

boxes and segmentation proposals. Ultimately, this method

achieves state-of-the-art accuracy and competitive speed.

While effective, all existing objectness methods essen-

tially generate one proposal at a time, without consider-

ing interactions between the proposals beyond simple ex-

clusion via non-maximum suppression. By contrast, object

co-detection [2] attempts to simultaneously exploit the sim-

ilarity between pairs of objects to perform detection jointly

in multiple images. Most existing co-detection methods

rely on simple handcrafted features to model object simi-

larity [2, 8, 20, 11]. By contrast, in our previous work [10],

we performed feature selection using pre-trained CNN fea-

tures. In both cases, however, the resulting techniques are

ill-suited to produce general object proposals, because the

employed features are tuned to the problem of detecting

specific objects. Here, instead, we co-generate object pro-

posals from multiple images by introducing a deep struc-

tured network that lets us learn general object features, as

well as pairwise features to model proposal similarity. To

the best of our knowledge, leveraging the power of multiple

images has never been achieved in the context of objectness.

The idea of deep structured neural networks has nonethe-

less been exploited in the past and can be traced back to

the 90s [16]. More recently, such structured networks have

been exploited for the task of object recognition and seman-

tic segmentation [3, 19, 23]. In this context, Schwing et

al. [19] and Zheng et al. [23] have also proposed to exploit

the efficient mean-field inference procedure of [13]. How-

ever, these approaches, beside tackling a different prob-

lem than ours, still rely on simple handcrafted features in

their pairwise term. By contrast, here, in addition to the

unary features, we also learn pairwise features that are back-

propagated throughout the entire network. As demonstrated

by our experiments, by learning this similarity, we effec-

tively exploit the joint information of multiple object candi-

dates to produce high-quality object proposals.

3. Co-Generating Object Proposals

We tackle the problem of jointly predicting a set of ob-

ject proposals from multiple images1. Ultimately, our goal

is to leverage the collective information contained in a set

of object candidates to obtain high-quality object proposals.

To this end, we start from an initial pool of object candi-

dates and develop a deep structured network that improves

their ranking and localization. This deep structured network

models both the appearance of each object candidate and the

interactions between these candidates.

Formally, let X = {x1, · · · ,xN} be an initial pool of

object candidates generated from a set of images I, typi-

cally by an existing object proposal method, such as Bing or

Selective Search. Each object candidate xi denotes an im-

age window cropped from one of the images in I. For each

xi, we introduce (i) a binary variable yi, which indicates

whether xi is a foreground object (yi = 1) or background

clutter (yi = 0); and (ii) a continuous real-valued vector

ti = (ti,x, ti,y, ti,w, ti,h)
T containing the offset to the true

object location if xi is a foreground object and 0 otherwise.

We formulate the co-generation of object proposals for

image set I as a multi-label prediction problem, in which

we simultaneously predict the labels Y = {y1, · · · , yN}
and the location offsets T = {t1, · · · , tN} of the object

candidate set X. To this end, we develop a deep struc-

tured network that defines a joint distribution over Y and

T given X, denoted by P (Y,T|X). Our deep structured

network consists of two components: One CNN for each

object candidate, with weights shared across all candidates,

which provides a general object representation, and one

fully-connected CRF, which captures the similarity between

every pair of object candidates.

Specifically, the joint distribution defined by the deep

1Note that our approach also applies to the multiple proposals of a sin-

gle image.
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Figure 1: Overview of our deep structured network for

object proposal co-generation. Our model consists of one

deep CNN module per object candidate, linked by a fully-

connected CRF.

structured network can be written as

P (Y,T|X) =
1

Z(X)
exp

(

−

N
∑

i=1

φ(yi, ti|xi)

−
N
∑

i=1

∑

j>i

ψ(yi, yj |xi,xj)

)

, (1)

where Z(·) is the partition function, and φ, ψ are the unary

and pairwise potential functions, respectively. The unary

potential φ encodes how likely a candidate xi is to be as-

signed label yi with location offset ti, while the pairwise

potential ψ is a symmetric term encouraging any two simi-

lar candidates to have the same label assignment.

To fully leverage the representative power of CNNs, we

make both the unary and pairwise potentials depend on the

CNN modules of our deep structured network. Intuitively,

and as illustrated by Fig. 1, a CNN module corresponding

to candidate xi produces features for the unary term of xi

and features for the pairwise terms involving xi. Further-

more, the pairwise term connects multiple CNN modules to

form a structured prediction model. In the remainder of this

section, we describe our network architecture and potential

functions in details.

3.1. Deep CNNs for Individual Object Candidates

The network architecture constituting the CNN module

for each individual object candidate xi is depicted by Fig. 2.

As mentioned above, this CNN module produces (i) a unary

term consisting of an objectness score and of a refined ob-

ject location; and (ii) a feature vector for the pairwise term.

To this end, the output of this network consists of three sib-

ling layers. The first one relies on a softmax layer to predict

the foreground/background probabilities; the second one

makes use of a regression layer that outputs the four real-

valued coordinates of the foreground location offset; and

the third one employs a fully-connected layer to generate a

low-dimensional feature vector for the CRF pairwise terms.

More specifically, let us denote by fneti the output of the

FC7 layer of the CNN for object candidate xi. The three

network outputs are computed as

Pu(yi) ∝ exp(wT
u,yi

fneti ) (2)

t̃i = WT
r f

net
i Jyi = 1K , (3)

h
p
i = WT

p f
net
i , (4)

where wu,yi
, Wr and Wp denote the fully-connected

weights to generate the label probabilities, the estimated ob-

ject location offsets and the features for the pairwise poten-

tial, respectively. By Jyi = 1K, we mean that the estimated

offset will be WT
r f

net
i if the predicted label yi = 1, and 0

otherwise. This lets us write our unary potential as

φ(yi, ti|xi) = −wT
u,yi

fneti + ‖ti −WT
r f

net
i Jyi = 1K‖2,

(5)

which measures the cost for a candidate xi to belong to the

foreground/background class and have offset ti.

3.2. Fully­connected CRF for Candidate Similarity

On top of the deep CNN modules, we construct a fully-

connected CRF, which models inter-candidate similarity.

To this end, we define the pairwise potential ψ as a data-

dependent smoothing term that encourages similar object

candidates to share the same label. As in [13], we restrict

the data-dependent weight in the pairwise potential to take

the form of a Gaussian kernel. This yields

ψ(yi, yj |Xi,Xj) = µ(yi, yj)k(h
p
i ,h

p
j ) (6)

= µ(yi, yj)k(W
T
p f

net
i ,WT

p f
net
j ) ,

with

k(hp
i ,h

p
j ) = exp

(

−
1

2
‖hp

i − h
p
j‖

2)

)

, (7)

where hp is defined in Eq. 4, and µ is a label compatibil-

ity function. While a general compatibility function can be

learned [14], in practice, we found that a Potts model, i.e.,

µ(yi, yj) = Jyi 6= yjK, was already effective.

Our deep structured model differs from the existing

fully-connected CRFs for semantic labeling in several ways.

First, since our nodes correspond to object proposals, our

CRF implements multiple tasks, including labeling object

candidates and refining their locations. In addition, we do

not rely on the traditional bilateral kernels, which use man-

ually selected features. Instead, we learn a low-dimensional

feature representation that, when used in a Gaussian ker-

nel, is able to encode candidate similarity. As a side effect,

we do not need to define a covariance matrix for the kernel,

since the weights Wp implicitly handle this. This simplifies

the end-to-end learning of the full network.
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Figure 2: Detailed architecture of our deep structured network for object proposal co-generation. Each input image first

goes through a series of convolutional layers, followed by Region-of-Interest (RoI) pooling corresponding to the different

candidates in the image. Each candidate then passes through several fully-connected layers to predict unary features, pairwise

features and bounding box location offsets. The features are finally employed in a fully-connected CRF. During training, our

model makes use of a multi-task loss.

3.3. Efficient Object Proposal Co­Generation

Given our deep structured model, we co-generate object

proposals by taking a set of initial object candidates as in-

put, and jointly inferring the MAP estimates of the objects’

labels and location offsets, as well as the posterior marginal

probabilities of the labels. Note that the MAP estimates of

the labels and location offsets are decoupled. Indeed, for

any label assignment yi, the minimizer of the second term

in Eq. 5 is given by

t∗i = WT
r f

net
i Jyi = 1K , (8)

since ti does not appear in the pairwise terms. Therefore,

we can first compute the MAP label assignment and obtain

the location offsets from Eq. 8.

To compute the MAP and posterior marginals of the

label variables, we make use of the same efficient mean-

field inference as in [13]. Specifically, we approximate the

joint label probability by a factorized distribution Q(Y) =
∏

i qi(yi). The mean-field inference updates approximate

the marginals iteratively as

q
(t)
i (yi) =

1

Zi

exp
(

wT
u,yi

fneti (9)

−
∑

j 6=i

∑

yj

µ(yi, yj)k(h
p
i ,h

p
j )q

(t−1)
j (yj)

)

,

where t denotes the iteration step, and Zi is the approxi-

mate partition function (i.e., the normalizer). These updates

can be computed efficiently for a large number of object

candidates using a fast Gaussian filtering technique. After

performing inference, the MAP estimate of the object label

is approximated by y∗i = argmaxyi
qi(yi). We use the (ap-

proximate) marginal probabilities of the foreground class as

scores to generate the final ranking of the object proposals.

4. Learning our Deep Structured Network

We now develop an end-to-end learning method to esti-

mate the parameters of our multi-output deep structured net-

work. To this end, let D = {X, Ŷ, T̂} = {(xi, ŷi, t̂i)}
N
i=1

be a set of object candidates extracted from training im-

ages with ground-truth object bounding boxes. Note that

this training set contains both foreground objects and back-

ground clutter, obtained with the same objectness algorithm

as at test time. The offsets of these candidates are normal-

ized by the size of the bounding boxes (scale-invariant) and

expressed in log-space. Furthermore, to handle the iterative

nature of mean-field inference, we unroll its iterations and

denote the output of the final one by {q
(m)
i }Ni=1.

To train our deep structured network, we employ a multi-

task loss L, which combines a classification loss Ly for the

object labels and a regression loss Lr for the box offsets.

This loss can be expressed as

L(D) = Ly(Q
m, Ŷ) + λLr(T, T̂) (10)

= −
∑

i

[

logq
(m)
i (ŷi) + λJŷi = 1K‖ti − t̂i‖SL1

]

,

where T = {ti} is the offset predictions from the network,

and λ is a hyperparameter balancing the two tasks. For off-

set regression, Eq. 10 makes use of a smoothed L1 loss,

denoted by ‖ · ‖SL1
and defined as

‖z‖SL1
=
∑

k

0.5z2kJ|zk| < 1K + (|zk| − 0.5)J|zk| ≥ 1K .

Our deep structured network has four sets of parameters, in-

cluding the network weights Wcnn before the FC7 layer of

the CNN module, the unary term weights Wu, the regres-

sion weights Wr and the pairwise feature weights Wp. We

use stochastic gradient descent (SGD) to train those weights

in an end-to-end manner. The overall training procedure

consists of two steps: We first pre-train the CNN modules

and then train the full structured model using mini-batches.

4.1. Pre­training the Deep CNN Module

In a first stage, we train the CNN module corresponding

to the individual object candidates. In other words, in this

stage, we ignore the pairwise features and the dense CRF

layer. The CNN module has two outputs: the object label

probability Pu(yi) and the bounding box location offset ti.

We train it using the same procedure as the Fast RCNN [6].

2568



More specifically, we start from a convolutional neural

network (VGG-16 [21]) pre-trained on ImageNet, which

gives us an initialization for the weights Wcnn. We then

define our training loss as

Lc = −
∑

i

[

logPu(ŷi) + λJŷi > 0K‖ti − t̂i‖SL1

]

, (11)

and adopt the same strategy of mini-batch sampling and

back-propagation through RoI pooling layers as in [6]. This

pre-training step initializes the unary and regression weights

(Wu and Wr), and fine-tunes the network ones (Wcnn).

4.2. End­to­end Learning with Mini­batches

In a second stage, given the weight initializations de-

scribed above, we learn our complete deep structured net-

work. To this end, we follow an SGD procedure using mini-

batches on which we define the fully-connected CRF. The

main challenge of this procedure is to derive the gradient of

the loss function L(D) with respect to the weight parame-

ters and to compute this gradient efficiently. Below, we will

focus on the gradient of Ly , since the second term Lr, not

involving the CRF, can be handled in the same manner as in

Fast RCNN (as in the pre-training of Section 4.1).

We derive a mean-field gradient method which computes

the parameter gradients of our deep structured model recur-

sively, similarly to [14]. Note that, unlike [14], we need to

compute the gradient w.r.t. the unary and pairwise weights

Wu and Wp, as well as the network features fneti in order

to backpropagate the gradient to the CNN modules.

As before, let us denote the marginals by q =
(qT

1 , · · · ,q
T
N )T . The gradient of the loss Ly w.r.t. a pa-

rameter w can be written as

∂Ly

∂w
=
∂Ly

∂q

∂qT

∂w
. (12)

Let u = (uT
1 , · · · ,u

T
N )T be the unary term for the label

variables, where ui = −[wu,0,wu,1]
T fneti , and Ψ̂ be the

matrix form of the pairwise term, i.e., Ψ̂ = K ⊗ µ, where

K = [kij ]N×N is the kernel matrix and kij = k(hp
i ,h

p
j ).

Following [14], the gradient can be recursively computed as

∂Ly(q
m(w))

∂w
=

m
∑

t=1

b(t)T

(

∂u

∂w
+ q(t−1) ∂Ψ̂

∂w

)

, (13)

where b(t) = (b
(t),T
1 , · · · ,b

(t),T
N )T is the normalized loss

gradient at iteration t. This normalized loss gradient is de-

fined recursively as

b(m) = A(m)
(

∇Ly(q
(m))

)T

(14)

b(t) = A(t)Ψ̂b(t+1), t = 1, · · · ,m− 1 , (15)

where A(t) is a block diagonal matrix with blocks A
(t)
i =

q
(t)
i q

(t)T

i − diag(q
(t)
i ). We now derive the two partial

derivatives in Eq. 13 for different weights and features.

Unary weights and features. The unary weight matrix

Wu only appears in the first term of Eq. 13. This term can

be computed as

∂bTu

∂Wu

=
∑

i

bif
net T
i . (16)

The gradient of the unary term w.r.t. the deep network fea-

tures fneti can be computed similarly as

∂bTu

∂fneti

= WT
ubi . (17)

Note that this feature gradient will be combined with the

feature gradient of the pairwise term derived below.

Pairwise weights and features. For the pairwise term,

we apply the chain-rule and first compute the gradient w.r.t.

the pairwise features h
p
i . This yields

∂bT Ψ̂q

∂h
p
i

=
∂

∂hi

(

bTK(m) ⊗ µ(m)q
)

=
∑

j

(hp
j − h

p
i )q

T
j K

(m)
ij µ(m)bi (18)

=
∑

j

h
p
jq

T
j K

(m)
ij µ(m)bi − h

p
ib

T
i

∑

j

K
(m)
ij µ(m)qj .

This gradient can be computed efficiently using high-

dimensional filtering on the permutohedral lattice [13].

The gradient w.r.t. the pairwise weight matrix Wp and

the CNN features fneti can be computed as

∂bT Ψ̂q

∂Wp

=
∑

i

∂bT Ψ̂q

∂h
p
i

∂h
p T
i

∂Wp

=
∑

i

∂bT Ψ̂q

∂h
p
i

fnet Ti (19)

∂bT Ψ̂q

∂fneti

=
∂bT Ψ̂q

∂h
p
i

∂h
p T
i

∂fneti

= WT
p

∂bT Ψ̂q

∂h
p
i

. (20)

Altogether, we can compute all the gradients in a sin-

gle forward and backward pass over our full deep struc-

tured network. The overall mean-field gradient computa-

tion framework is summarized in Algorithm 1. In practice,

we use different step sizes for the unary, pairwise, regres-

sion and CNN weights, which helps the learning procedure

focus on the pairwise and regression weights, while only

fine-tuning the rest of the network.

5. Experiments

In this section, we demonstrate the effectiveness of our

method on the problem of large-scale proposal generation

for generic objects. To this end, we evaluate our approach

on two challenging datasets with multiple object classes,

i.e., PASCAL VOC 2007 and Microsoft COCO, and com-

pare our results with those of the state-of-the-art object pro-

posal methods.
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Algorithm 1 Mean-field Gradient for Classification Loss

Input: Features {fnet
i }Ni=1, Initial Weights Wu, Wp, Mean-field

Iterations m, Loss Function Ly

Output: Feature and Weight Gradients: gu
w, gp

w, gnet
f,i

Phase 1: Joint Inference

1: procedure (Forward pass)

2: ui = q0
i = −WT

u f
net
i

3: h
p
i = WT

p f
net
i

4: for t = 1 ... m do

5: q
(t)
i = 1

Z
exp

(

ui −
∑

j 6=i

k(hp
i ,h

p
j )µq

(t−1)
j

)

6: end for

7: end procedure

Phase 2: Gradient Computation

8: procedure (Backward pass)

9: gu
w ← 0

10: gp
w ← 0

11: gnet
f ← 0

12: A
(m)
i = q

(m)
i q

(m)T

i − diag(q
(m)
i )

13: b(m−1) = A(m)
(

∇Ly(q
(m))T

)

14: for t = m− 1 ... 1 do

15: A
(t)
i = q

(t)
i q

(t)T

i − diag(q
(t)
i )

16: gu
w ← gu

w + ∂
∂Wu

(

b(t)T u
)

⊲ Eq. 16

17: gnet
f,i ← gnet

f,i + ∂

∂fnet
i

(

b(t)T u
)

⊲ Eq. 17

18: gp
w ← gp

w + ∂
∂Wp

(

b(t)T Ψ̂q(t)
)

⊲ Eq. 19

19: gnet
f,i ← gnet

f,i + ∂

∂fnet
i

(

b(t)T Ψ̂q(t)
)

⊲ Eq. 20

20: b(t−1) = A(t)Ψ̂b(t)

21: end for

22: end procedure

5.1. Datasets and Setup

The Pascal VOC 2007 dataset [5] comprises 5011

training-validation (trainval) images and 4952 test images,

and the Microsoft COCO 2014 validation dataset [17] con-

tains 82783 training images and 40504 validation images.

For Pascal VOC 2007, we used all the trainval data to learn

our deep structured model, and evaluated it using all the test

data. For Microsoft COCO, we also used all the training im-

ages to learn our model, but, following [18], used only the

first 5000 validation images for evaluation purpose.

In our experiments, we evaluated several techniques to

generate the initial set of candidates. The choice of the

particular initial proposal generation methods we use was

motivated by the fact that [12], whose protocol we follow,

and other existing methods used them for these datasets. In

particular, we used Bing [4] for both datasets, as well as

Selective Search [22] for Pascal and Edge Box [25] for MS

COCO, which represent the most commonly-used methods

for each dataset, respectively. For training, we obtained

the mini-batches by randomly sampling 2 images from the

training set and taking 512 candidates per image. At test

time, given the initial candidates of all the test images, we

extracted the unary features, bounding box location off-

sets and pairwise features for each candidate using the deep

CNN, and then performed inference in the fully-connected

CRF using all the candidates. This allows us to truly exploit

the similarities across all the test data, and, thanks to the ef-

ficient inference procedure, remains fast (e.g., 1.4 sec. for

roughly 10k Bing candidates per image).

The standard error measures to evaluate object proposal

quality rely on Average Recall (AR). It has been shown that,

for a fixed number of proposals per image, AR correlates

well with the mean Average Precision of the object detector

applied to the proposals [12]. We therefore report our re-

sults using the average recall metrics defined by Hosang et

al. [12] and the COCO-style metrics [17] used in [18].

5.2. Results on VOC 2007

In Table 1, we provide a quantitative comparison of our

approach with state-of-the-art objectness methods accord-

ing to the criteria of [17] on the Pascal VOC 2007 dataset.

The results of these baselines were directly reproduced from

their respective papers. Note that our approach yields state-

of-the-art results; for 10 and 100 proposals, when using

Bing candidates, and for 1000 proposals, when using Se-

lective Search candidates. Table 1 also shows that, when

selecting 100 proposals, our co-generation approach yields

consistent improvement across different sizes of objects. In

terms of runtime, our method remains highly competitive.

Altogether, we believe that these results clearly evidence

the benefits of co-generating the object proposals.

The results of our approach and of the baselines accord-

ing to the criteria defined by Hosang et al. [12] are shown

in Fig. 32. In particular, the top row of Fig. 3 depicts the

recall as a function of the Intersection over Union (IoU)

threshold when using the 10, 100, 1000 & 10000 highest-

scoring bounding boxes per image, respectively. The bot-

tom row of Fig. 3 shows the AR and the recall as a func-

tion of the number of proposals for IoU thresholds of 0.5,

0.7 and 0.8, respectively. Again, these curves clearly show

that co-generating the proposals yields to much better ob-

ject bounding boxes. In particular, it is interesting to note

that, even though the AR of the initial Bing bounding boxes

is quite low, it is boosted to state-of-the-art results after our

deep structured co-generation process. Note also that, while

initially better, the Selective Search candidates still benefit

from our approach. Interestingly, at high IoU, our results

with Bing candidates tend to outperform our results with

Selective Search candidates.

To evidence that our approach is not simply learning the

2Note that we do not have access to the code, or the bounding boxes,

of [18], and were thus unable to compute these curves for their approach.
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PASCAL VOC07 AR@10 AR@100 AR@1000 AR@Small AR@Medium AR@Large Time (sec)

Bing 0.141 0.262 0.344 0.000 0.083 0.369 0.003

EdgeBoxes 0.203 0.407 0.601 0.035 0.159 0.559 0.25

Geodesic 0.121 0.364 0.596 - - - 1.7

Selective Search 0.085 0.347 0.618 0.017 0.134 0.364 10

MCG 0.232 0.462 0.634 0.073 0.228 0.618 30

Deep-Mask 0.337 0.561 0.690 - - - 1.2

Ours Co-Obj (Sel. Search) 0.325 0.509 0.745 0.114 0.321 0.629 1.1

Ours Co-Obj (Bing) 0.430 0.602 0.675 0.453 0.517 0.654 1.4

Table 1: AR analysis on the PASCAL VOC 2007 test set: We compare our method with state-of-the-art object proposal

baselines according to the criteria of [17]. The results of our approach are provided in Rows 7-8 when using Bing and Selec-

tive Search to generate the initial candidates, respectively. The AR for small, medium and large objects were computed for

100 proposals. Note that our co-generation approach outperforms the state-of-the-art baseline in all metrics. The difference in

speed between two versions of our approach is due to the fact that Bing yields a larger candidate pool than Selective Search.
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Figure 3: Pascal VOC 2007 test: We compare our method with state-of-the-art object proposal baselines according to the

criteria of [12]. Top: Recall v.s. IoU threshold. These recall curves were generated using the highest-scoring 10, 100, 1000

and 10000 object proposals, respectively. Bottom: Recall v.s. Number of Proposals. The first plot shows the AR, and the

remaining recall curves were generated using IoU thresholds of 0.5, 0.7 and 0.8, respectively. In all the plots, the dashed lines

correspond to our co-generation results, in blue when using Selective Search candidates (Co-Obj (SS)) and in black when

using Bing candidates (Co-Obj (B)). The baselines correspond to Bing (B), EdgeBoxes (EB70), Geodesic (G), MCG (M)

and SelectiveSearch (SS). These results clearly evidence the benefits of our co-generation approach.

behavior of a particular proposal method, we evaluated it

with different proposal generation techniques during train-

ing and test time. As shown in Table 2, our method still

outperforms the initial proposal generation methods, thus

evidencing that it truly learns the relevant context for the ob-

ject candidates themselves. We acknowledge, however, that

the best results are obtained when using the same method at

training and test time.

PASCAL VOC07 Train Test AR@10 AR@100 AR@1000

Bing - - 0.141 0.262 0.344

MCG - - 0.232 0.462 0.634

Ours Co-Obj MCG MCG 0.365 0.573 0.709

Ours Co-Obj MCG Bing 0.350 0.481 0.558
Ours Co-Obj Bing MCG 0.392 0.517 0.641
Ours Co-Obj Bing Bing 0.430 0.602 0.675

Table 2: Using different initial proposal methods: Rows

1-2 show the baseline object proposal methods. Rows 3-6

show our results using various candidate generation options

at training and test time.
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Microsoft COCO 2014 AR@10 AR@100 AR@1000 AR@Small AR@Medium AR@Large

Bing 0.042 0.100 0.189 0.001 0.063 0.319

EdgeBoxes 0.074 0.178 0.338 0.015 0.134 0.502

Geodesic 0.040 0.180 0.359 - - -

Selective Search 0.052 0.163 0.357 0.012 0.132 0.466

MCG 0.101 0.246 0.398 0.008 0.119 0.530

DeepMask 0.153 0.313 0.446 - - -

Ours Co-Obj (Bing) 0.183 0.340 0.423 0.111 0.438 0.590
Ours Co-Obj (Edge Boxes 70) 0.189 0.366 0.492 0.107 0.449 0.686

Table 3: AR analysis on the MS COCO validation set: We compare our method with state-of-the-art object proposal

baselines according to the criteria of [17]. The results of our approach are provided in Rows 7-8 when using Bing and

EdgeBox to generate the initial candidates, respectively. The AR for small, medium and large objects were computed for 100

proposals. Note that our co-generation approach outperforms the state-of-the-art baseline in all metrics.
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Figure 4: MS COCO validation: We compare our method with state-of-the-art object proposal baselines according to the

criteria of [12]. Top: Recall v.s. IoU threshold. These recall curves were generated using the highest-scoring 10, 100, 1000

and 10000 object proposals, respectively. Bottom: Recall v.s. Number of Proposals. The first plot shows the AR, and the

remaining recall curves were generated using IoU thresholds of 0.5, 0.7 and 0.8, respectively. In all the plots, the dashed

lines correspond to our co-generation results, in blue when using EdgeBox candidates (Co-Obj (EB)) and in black when

using Bing candidates (Co-Obj (B)). The baselines correspond to Bing (B), EdgeBoxes (EB70), Geodesic (G), MCG (M)

and SelectiveSearch (SS). These results again evidence the benefits of our co-generation approach.

5.3. Results on Microsoft COCO

The results on Microsoft COCO, using the same met-

rics as before, are provided in Table 3 and Fig. 4, respec-

tively. The same conclusions as before can be drawn from

this analysis: Co-generating object proposals clearly is ben-

eficial over generating the proposals independently. Our

approach with EdgeBox initial candidates yields state-of-

the-art results, with our Bing-based approach still outper-

forming the baselines for all metrics, with the exception

of AR@1000. The improvement due to our approach is

again consistent across all object sizes. The runtimes of

our method on the MS COCO dataset are 1 and 0.8 sec per

image when using Bing and EdgeBox, respectively.

6. Conclusion
We have introduced a framework to jointly generate ob-

ject proposals from multiple images, thus leveraging the

collective power of multiple object candidates. Our method

is based on a deep structured network that jointly predicts

the objectness scores and the bounding box locations of

multiple object candidates by extracting features that model

the individual object candidates and the similarity between

them. Our experiments have demonstrated the benefits of

our approach over the state-of-the-art methods that gener-

ate object proposals individually. In the future, we intend

to exploit our high-quality object proposals to improve the

accuracy of object (co-)detection.
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