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Abstract

Top-down saliency detection is a knowledge-driven

search task. While some previous methods aim to learn this

“knowledge” from category-specific data, others transfer

existing annotations in a large dataset through appearance

matching. In contrast, we propose in this paper a locate-

by-exemplar strategy. This approach is challenging, as we

only use a few exemplars (up to 4) and the appearances

among the query object and the exemplars can be very dif-

ferent. To address it, we design a two-stage deep model to

learn the intra-class association between the exemplars and

query objects. The first stage is for learning object-to-object

association, and the second stage is to learn background

discrimination. Extensive experimental evaluations show

that the proposed method outperforms different baselines

and the category-specific models. In addition, we explore

the influence of exemplar properties, in terms of exemplar

number and quality. Furthermore, we show that the learned

model is a universal model and offers great generalization

to unseen objects.

1. Introduction

The human visual system has an outstanding ability

to rapidly locate salient regions in complex scenes [20].

Our attention is mainly drawn by factors relevant to ei-

ther bottom-up or top-down saliency detection. Bottom-

up visual saliency is stimulus-driven, and thus sensitive to

the most interesting and conspicuous regions in the scene.

Top-down visual saliency, on the other hand, is knowledge-

driven and involves high-level visual tasks, such as inten-

tionally looking for a specific object.

In computer vision, bottom-up saliency detection [19,

37, 36, 16, 17, 41, 40] receives much research attention,

due to its task-free nature. For the same reason, it can only

capture the most salient object(s) in the scene. On the other

hand, top-down saliency [21, 22, 12, 38, 23, 7] aims to lo-

cate all the intended objects in the scene, which can help
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(a) Chair & motorbike (b) Person & sofa (c) Horse & person

Figure 1: The proposed method can locate top-down

saliency using a few exemplars (shown under each saliency

map), even though there are significant differences among

them.

reduce the search space for object detection. Existing meth-

ods typically learn the “knowledge” that guides top-down

saliency detection, from a set of categorized training data.

Thus, they are confined to the pre-defined categories and

restricted from training a universal model.

However, human knowledge does not only come from

memory (i.e., locating salient objects in the scene using

knowledge from training data), but also from object asso-

ciation (i.e., locating objects in the scene using known or

unknown exemplars) [2]. For example, we can easily iden-

tify and locate a similar object in an image when given an

unseen example object in another. As suggested in cognitive

studies [27, 2], instead of recognizing an object according

to an explicit category representation, human brain catego-

rizes objects by associating an input unseen object to a set
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of instances. This motivates us to learn the intra-class asso-

ciation between an input query object and some exemplars.

This is a challenging task as such association should be uni-

versal and is built from a few exemplars (only 2 - 4 exem-

plars in our experiments) rather than the entire dataset. In

addition, objects from the same category may appear in dif-

ferent colors, scales, and viewpoints, which makes the task

even more challenging.

In this paper, we propose a multi-exemplar convolutional

neural network (CNN) [25] for detecting top-down saliency

by establishing visual association between a query image

and multiple object exemplars, as shown in Figure 1. The

intra-class association is learned in a unified manner by

jointly extracting features from the exemplars and query ob-

ject in a two-stage scheme. These two stages correspond to

association and background discrimination learning. The

main contributions of our work are summarized as follows:

1. We design a two-stage deep model (Figure 2 left) to

detect top-down saliency by associating multiple ex-

emplars with the query object, and explore the perfor-

mance of different network structures.

2. We delve into the relationship between exemplars and

the learned associations. In particular, we explore how

different numbers of exemplars as well as the exemplar

quality affect saliency detection performance.

3. We explore the proposed deep model in different

tasks, including same-class identification, object loca-

tion predication, and top-down saliency detection (Fig-

ure 2 right). Experiments on the Pascal VOC 2012

dataset show that the proposed model outperforms

different baselines and the state-of-the-art category-

specific methods.

4. We investigate the generalization capability of the

learned intra-class association by applying it to un-

seen objects. The proposed networks offer surprisingly

good generalization.

To the best of our knowledge, our work is the first to design

and explore a multi-exemplar deep model.

2. Related Work

In this section, we first discuss relevant top-down

saliency detection methods. We then describe object local-

ization methods, as they share a similar objective to top-

down saliency detection.

Top-down saliency includes two main processes, dic-

tionary learning for each category (i.e., learning category

“knowledge”) and saliency computation (i.e., knowledge-

driven searching). An early work by Torralba et al. [33] pro-

pose to use contextual information in a Bayesian framework

to detect top-down saliency. Gao et al. [12] propose to char-

acterize discriminant features using the statistical differ-

ences of presense/absense of the target class. Judd et al. [21]

and Borji [3] combine bottom-up and top-down models by

introducing high-level information to detect saliency, as ob-

jects like human persons, faces, and cars typically attract

human attention. Ehing et al. [10] incorporate target appear-

ance, location and scene context to model saliency. Kanan

et al. [22] use independent component analysis (ICA) to

learn target appearance, and then a trained SVM to detect

top-down saliency. In [38, 23], top-down saliency is mod-

eled by jointly learning category-specific dictionaries and

CRF parameters. Similar to top-down saliency, Oquab et

al. [28, 29] propose to generate a confidence map for each

category location using CNN. In [28], large-scale knowl-

edge in ImageNet is transferred to locate objects, while

in [29], a weakly-supervised CNN is used to predict ob-

ject locations. However, adapting limited amount of train-

ing data to unlimited test data is always desirable. Existing

methods requires category-specific learning, and are thus

restricted from training a universal model.

Object Localization aims to produce bounding boxes

on the target objects, and can be roughly categorized into

two classes, generic object localization and accurate object

localization. Generic object localization (or object proposal

detection) [24, 34, 6, 1, 42, 18, 30] aims to cover all ob-

jects in the scene with fewer and better bounding boxes than

sliding windows, and to reduce the computational overhead

of object detection. However, they are too general to ob-

tain high accuracy with few proposals. Accurate object lo-

calization is mainly to produce one bounding box for each

target object category in the image. It is much challeng-

ing and typically requires additional information. Dai et

al. [8] assume that a given detected bounding box is not

accurate, and propose to re-localize the object by propagat-

ing the target appearance information. In [14, 31], anno-

tations in the database are used to label target object class.

Song et al. [32] combine a discriminative submodular cover

problem with a smoothed latent SVM formulation to locate

objects with minimal supervision. While these works are

promising, they attempt to find the best bounding box with

visually consistent appearance to the training data. On the

contrary, the proposed method is able to locate objects using

just a few exemplars, which may contain large appearance

variations.

3. Intra-class Association Network

Given a few exemplar objects from the same category

and a query image, our goal is to determine whether the

query image belongs to the same category of the exemplars.

This process should not rely on any semantic information,

and it should be as universal as possible and able to apply

to unseen objects. Our approach is to train the proposed

multi-exemplar deep model in two stages. As objects from

the same class shares similar properties and features, the

first stage is to learn to extract intra-class features, which

determines objects being in the same category. To remove
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Figure 2: The pipeline of the proposed method. We treat the exemplars and query images as a unified multi-channel input

and learn the intra-class association in a two-stage process. The first stage is fed with object patches to learn the intra-class

association. The second stage is fed with sliding patches to learn background discrimination. The trained network is powerful

and can be applied to different tasks.

background distraction, the second stage is to learn how to

discriminate the background. The trained network can then

be applied to top-down saliency detection, same-class iden-

tification, and object location prediction. The pipeline of

the proposed method is shown in Figure 2.

3.1. Initialization and Network Architecture

As demonstrated in [13, 41], a network pre-trained on a

large scale dataset shows great generalization for different

types of tasks and input data. Starting with a pre-trained net-

work can significant improve the task performance, even if

the task is very different from the one in pre-training. Simi-

larly, we initialize our network using the fast VGG network

(VGG-f) [5] pre-trained on ImageNet [9], which comprises

5 convolutional layers and 3 fully connected layers. (Other

networks can also be used here.) As the number of inputs

is different from the pre-training task, we need to alter the

network architecture to adapt to our problem. There are two

possible models for our purpose.

Siamese network is a multi-tower architecture [4]. Each

tower has the same layer structure and shares the same set

of parameters. Fully connected layers are placed on top of

these towers. Each input image is assigned to one tower

to extract features of the image. The output feature maps

are concatenated and passed to the fully connected layers.

To adapt our problem to this network, we initialize each

tower as a VGG-f network without the fully connected lay-

ers, which are added back to cover all the towers after the

initialization. The sizes of the fully connected layers are

expanded accordingly to measure the similarity among the

images. The number of outputs for the last fully connected

layer is set to 2, as we are solving a binary classification

problem.

This type of network is mainly used to compare the sim-

ilarity of two images [39, 15], and it shares a similar idea

as the traditional descriptor-based approach. Each tower

takes one image as input. This process can be viewed as

descriptor computation. The fully connected layers at the

top measure all these feature maps and thus can be viewed

as a similarity function. However, extracting features from

individual inputs is not a proper way to learn object associ-

ation, especially with multiple exemplars. This is because

the network only learns to describe image locally, i.e., the

learned features are independent of the other inputs. Based

on these mutually independent features, learning a similar-

ity function is not enough to identify the large intra-class

appearance differences.

Unified network learns to describe all input images

jointly. In contrast to the Siamese network, all input images

here are treated as a single multi-channel input. For exam-

ple, four exemplars and one query image are combined to

form a 5 × 3 channels image volume, with 3 being the 3

color channels. Due to the change in input dimension, the

first convolutional layer needs to expand its channels ac-

cordingly. In our implementation, we have tried setting the

parameters of the first convolutional layer in two ways: with

random values and making multiple copies (equal to the

number of exemplars) of the parameter values from the pre-

trained model. As expected, the latter approach performs

much better than randomly initialized parameters. Other

layers of the VGG-f network remain the same, except that

the number of outputs for the last fully connected layer is

set to 2 for binary classification.

Compared with the Siamese network, our unified net-

work has a greater flexibility to learn features of multiple

objects, as all of them are considered jointly and the ex-

tracted features are intra-class features. In addition, the uni-

fied network is faster in both training and testing, especially
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with a large number of exemplars, as the computational

complexity of the Siamese network is proportional to the

number of inputs. The performance of the Siamese network

and our unified network will be examined in Section 4.

Once the network architecture is determined and the pa-

rameters are initialized, we may then train the network for

object association.

3.2. Stage 1: Object Association Training

As the initial network is pre-trained for image classifica-

tion with centered objects, we further train the network on

the Pascal VOC 2012 dataset [11] with object-level super-

vision. In order to learn the association among objects, the

training process should be supervised in an object-to-object

manner. As a result, we crop all the objects in the train-

ing data into patches for training. These patches are resized

to the same size as the input size of the first convolutional

layer (224×224 for the VGG-f network). The object-based

training data is augmented by introducing jitter for robust

association learning and combating overfitting. All train-

ing patches are randomly flipped, shifted, rotated, and en-

larged/shrinked by a small amount.

There are two types of inputs for our network, exem-

plars and query images. Different construction methods for

the input image volume lead to intrinsically different su-

pervision approaches. If we train the network by randomly

sampling objects from the training set, it is equivalent to

identifying if a set of images belong to the same category,

which is not our purpose. The proposed model is exemplar-

driven, which means that all given exemplars should come

from the same category. This construction method reduces

the learning ambiguity, allowing the network to focus on

delving into the relationship between the known-positives

and unknown query (i.e., multiple-to-one connection), and

the exemplars are able to provide guidance for both training

and testing. For each training query object, its label is ran-

domly defined by selecting exemplars from the same class

of the query object or from other classes. (At least 30% of

the data is positive to balance data distribution.) Note that

the selected exemplars belong to the same category for both

positive and negative training samples.

The network is trained using stochastic gradient descent

(SGD) with a batch size of 50. Cross-entropy error is mini-

mized in our network. The learning rate for this stage is set

to 0.001.

3.3. Stage 2: Background Discrimination Training

In stage 1, we learn the association between the ex-

emplars and query object. However, in order to effec-

tively detect top-down saliency, we also needs to differen-

tiate cluttered background to prevent background distrac-

tion. We fine-tune our network using the sliding window

strategy to obtain diverse patches for training. The patches

are extracted following the sliding window setting in [28].

All the patches are square with width s = min(w, h)/λ,

where w and h are the image width and height, and λ ∈
{1, 1.3, 1.6, 2, 2.4, 2.8, 3.2, 3.6, 4}. They are sampled on a

regular grid with at least 50% overlap with its neighbors. In

total, there are around 500 patches for a 500 × 400 image.

Similar to stage 1, these patches are resized to 224 × 224
before feeding to the network. Compared to the training

with object proposals [13], the bounding boxes obtained by

sliding windows are more diverse and thus can train the net-

work with less patches.

For each target category in the image, we randomly se-

lect exemplars from the same category, and the positive

query patches are defined loosely with certain extent of

background. The label of patch P is positive if all the fol-

lowing conditions are satisfied: (i) the intersection ratio be-

tween P and the ground truth bounding box Gc of class c
is larger than 0.2|P |; (ii) large portion of object Gc is in-

cluded in P such that |P ∩ Gc| ≥ 0.6|Gc|; (iii) P includes

only one object. The training setting is the same as in stage

1 except for the learning rate, which is set to a smaller value

of 0.0001 for fine-tuning the parameters of stage 1.

The training process in stage 2 has a different objective

to the one in stage 1. Stage 1 trains on objects only, and

its goal is to learn to identify what makes objects being in

the same category. Stage 2 fine-tunes the network with ar-

bitrary data using a smaller learning rate, and its goal is to

learn to differentiate the background as well as the nega-

tive patches that partially overlap with the object. While

stage 2 may be more important to top-down saliency per-

formance (reducing background errors), stage 1 is the key

for learning association and a universal model. As such, we

intentionally bias the training process to stage 1. We will

show results of different stages in Section 4.

3.4. Prediction

Once the network is properly trained, we are ready to

apply it to different tasks. For all these tasks, we only use

the final network trained by the two-stage approach.

Same-class identification: The most intuitive task of

the propose network is to classify if a query object belongs

to the same class of the exemplars. This task is the most

straightforward way to show the learned association. It is

also fundamental to the other tasks.

Top-down saliency detection: To detect saliency, we

apply same-class identification to the entire image. Like the

training process in stage 2, we first extract a set of patches

from the image, but unlike it, the patch sampling strategy is

not limited to sliding windows. In practice, we have found

that the learned network has great generalization capability

and can process patches with arbitrary sizes and scales. We

have tested two bounding box sampling strategies: sliding

windows in Section 3.3 and EdgeBoxes [42]. The first one
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# Method plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mStd mAP

1 Siamese 83.7 80.4 70.4 77.8 75.1 85.6 83.6 77.8 72.5 77.7 73.1 75.0 75.8 82.0 82.1 83.8 80.6 70.2 81.8 85.1 1.6 78.7

2 Ours - stage 1 88.3 85.9 75.0 82.3 79.6 90.9 87.9 81.5 77.2 82.3 78.1 79.0 80.1 85.9 86.7 88.7 84.6 75.0 86.6 89.4 1.38 83.3

3 Ours - stage 2 81.6 77.2 67.5 73.3 70.1 83.4 82.5 72.2 67.5 73.5 70.5 71.5 71.3 77.1 76.9 81.5 77.4 62.7 77.8 83.7 1.9 75.0

4 Ours (1 expl) 84.8 83.4 76.0 77.0 76.8 83.9 80.0 82.8 72.0 78.2 76.8 79.3 75.0 80.2 80.5 80.3 80.6 70.4 82.0 82.4 1.46 79.1

5 Ours (2 expls) 80.6 88.1 77.0 75.7 76.9 86.3 86.0 83.6 76.8 83.7 79.3 80.6 80.6 86.3 86.6 85.0 84.5 75.3 84.9 89.3 1.38 82.4

6 Ours (3 expls) 86.3 89.5 76.8 84.7 79.9 92.3 87.2 86.6 82.0 83.1 83.6 83.8 82.8 84.5 89.1 91.1 85.5 73.3 87.6 90.9 1.36 85.0

7 Ours (4 expls) 90.0 87.7 77.1 84.3 81.6 92.6 89.9 83.6 79.3 84.1 80.3 81.1 82.4 88.0 88.5 90.4 86.8 77.0 88.1 91.4 1.31 85.2

8 Category-Specific 87.6 80.2 75.3 81.4 82.1 87.6 90.7 87.8 81.9 72.6 73.7 82.1 75.2 81.9 89.2 80.8 78.6 78.8 84.8 80.2 – 81.6

Table 1: Same-class identification results on the Pascal VOC 2012 validation set. The proposed method is evaluated with

different network architectures, stages, and numbers of exemplars. The category-specific network is trained using the same

training strategy and architecture as ours. The proposed method consistently outperforms the category-specific model.

produces diverse bounding boxes, while the latter locates

objects tightly. However, object proposal detection requires

a larger number of windows (around 1000) in order to cover

most of the objects. As such, we use sliding windows in

all our experiments, as a trade-off between accuracy and

efficiency. Each patch is then fed to the network, and the

saliency value of pixel Q for class c is computed as:

sal(Q, c) =

M
∑

i=1

y(Pi, 1) · δ(Pi, Q, y), (1)

where M is the total number of patches. y(Pi, 1) is the

confidence score of Pi belonging to the same class as the

exemplars. δ is an indicator function:

δ(Pi, Q, y) =

{

1, if Q ∈ Pi and y(Pi, 1) > y(Pi, 0)

0, otherwise.

(2)

The final saliency map is normalized to [0, 1].
Object location prediction: The proposed method is

able to output a precise location of a specific object. Based

on the top-down saliency map of a target category, the ob-

ject location can be easily obtained by applying a global

max-pooling operation on the entire map. An example of

the saliency map and its corresponding predicted location

are shown in Figure 2 right. Note that this approach is able

to obtain one location per category, but it is sufficient to

evaluate the accuracy of the proposed method.

4. Experiments

In this section, we evaluate the performance of the pro-

posed method, explore the use of different numbers of ex-

emplars, and investigate the generalization capability of it

to unseen objects. The proposed method is implemented us-

ing MatConvnet [35] and tested on a PC with an i7 3.4GHz

CPU, a Nvidia 980M GPU, and 32GB RAM. It takes 2-

3s to process a 500 × 400 image. In our experiments, all

the compared networks are trained with the same amount of

data (i.e., the same number of epoches). Stage 1 takes 4 -

5 days for the training to converge, and stage 2 takes 3 - 4

days.

4.1. Same­class Identification

We first evaluate the learned association on same-class

identification. The network is trained on the Pascal VOC

2012 training set and tested on the validation set. The in-

put exemplars and query images are cropped according to

the ground truth bounding boxes. In total, there are 13,609

object images in the training set, and 13,841 in the valida-

tion set. For both training and validation sets, there are at

least 280 object images per category. During testing, we

use the objects from the training set as exemplars and those

from the validation set as query objects. As the use of dif-

ferent numbers of exemplars may affect identification per-

formance, we randomly generate 5 exemplar sets for each

number of input exemplars (1 - 4 are tested in our evalu-

ations). All the other evaluations use the same 5 sets of

inputs. Table 1 shows the average performance for the 5

sets of exemplars on each class and the average per-class

standard deviation for evaluating the influence of different

numbers of exemplars.

Compared with the Siamese network. We first com-

pare the proposed network with the Siamese network, which

has a multi-tower structure. The Siamese network is trained

using 4 exemplars and follows the same training strategy

as ours. As shown in Table 1, the Siamese network (row

1) performs much worse than ours (row 7) using 4 exem-

plars. This is because the Siamese network extracts features

from the input exemplars individually, while the proposed

network jointly considers all the inputs and thus has higher

flexibility to learn the association.

Results of different stages. We then evaluate if training

the network with only one of the two stages can achieve

good results. Two networks are trained with the same

amount of data individually with 4 exemplar inputs. The

learning rate is set to 0.001 for both stages. To make the

comparison fairer, we randomly skipped 20% background

training samples while training stage 2 to make the positive

and negative samples balance. Due to the intrinsically dif-

ferent objectives and training processes of the two stages,

the performances are different on identification. As shown

in rows 2 and 3 of Table 1, stage 1 has better identifica-
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# Method plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mStd Mean

1 Yang [38] 14.7 28.1 9.8 6.1 2.2 24.1 30.2 17.3 6.2 7.6 10.3 11.5 12.5 24.1 36.7 2.2 20.4 12.3 26.1 10.2 – 15.6

2 Kocak [23] 46.5 45.0 33.1 60.2 25.8 48.4 31.4 64.4 19.8 32.2 44.7 30.1 41.8 72.1 33.0 40.5 38.6 12.2 64.6 23.6 – 40.4

3 Oquab [29] 48.9 42.9 37.9 47.1 31.4 68.4 39.9 66.2 27.2 54.0 38.3 48.5 56.5 70.1 43.2 42.6 52.2 34.8 68.1 43.4 – 48.1

4 Ours (1 expl) 38.5 32.4 48.7 31.4 27.5 80.4 52.7 68.2 25.9 62.6 30.0 68.6 62.5 65.1 45.5 37.6 61.2 39.5 66.8 52.4 1.85 50.5

5 Ours (2 expls) 48.0 32.6 51.4 34.2 32.5 78.5 54.1 69.0 25.1 62.7 36.6 69.0 61.3 64.0 46.9 41.1 57.1 42.9 70.0 58.4 1.63 52.0

6 Ours (3 expls) 52.7 36.9 46.4 42.3 43.5 81.8 55.6 69.0 27.1 69.1 38.1 67.5 61.7 64.0 58.5 43.2 59.4 40.8 71.4 57.0 1.51 54.3

7 Ours (4 expls) 55.9 37.9 45.6 43.8 47.3 83.6 57.8 69.4 22.7 68.5 37.1 72.8 63.7 69.0 57.5 43.9 66.6 38.3 75.1 56.7 1.41 56.2

Table 2: Top-down saliency precision rates (%) at EER on the Pascal VOC 2012 validation set. All the compared methods

(rows 1 - 3) are category-specific approaches.

(a) Inputs (b) Using 1 exemplar (c) Using 2 exemplars (d) Using 3 exemplars (e) Using 4 exemplars

Figure 3: Saliency maps generated by the proposed method using different numbers of exemplars. The target objects (top to

bottom) are cow, person, and car.

tion performance than stage 2. This is because stage 1 fo-

cuses on object-to-object association, while stage 2 biases

to object-to-background learning. The trained network of

stage 2 is difficult to classify objects across classes.

Relationship between exemplars and query object.

We further explore if more exemplars help the identification

performance. As shown in rows 4 - 7 of Table 1, more ex-

emplars indeed improve identification performance. There

are two possible reasons. First, the chance of selecting good

exemplars is higher with more inputs. Second, intra-class

association is learned more robustly with more exemplars.

Regarding the first conjecture, it is also related to whether

exemplar quality affects identification performance. We re-

port the average per-class standard deviation in the second

last column. We can see that the variances of training with

more exemplars are smaller than those with fewer inputs.

This indicates that the association trained with fewer exem-

plars relies more on input quality and vice versa. However,

in general, the small standard deviations show that the ex-

emplar quality will not significantly influence the identifi-

cation performance. We will further demonstrate this ob-

servation in Section 4.2 qualitatively.

Compared with a category-specific network. In this

experiment, a category-specific VGG-f network pre-trained

on ImageNet and fine-tuned on Pascal VOC 2012 (using the

same learning rate of 0.001) is used as a baseline. Its per-

formance is shown in row 8 of Table 1. Surprisingly, this

category-specific network performs only similarly to ours

when using 2 exemplars. It is even worse than ours when

using 3 or 4 exemplars. We attribute this to our restricted

multi-exemplar model. Exemplars are selected from the

same class, which reduces the learning ambiguity. This also

suggests that once the network has learnt the association,

exemplars provide powerful guidance.
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4.2. Top­down Saliency Detection

We then examine the performance of top-down saliency

detection and delve into the learnt association. We com-

pare our method with two latest top-down saliency detec-

tion methods [38, 23], and one latest object localization

method [29]. All these methods compared are category-

specific. We use the sliding window sampling strategy in

Section 3.3 to extract patches for saliency detection. Sim-

ilarly, we randomly generate 5 sets of exemplars per test

image for comparison. We evaluate the top-down saliency

maps using the segmentation annotation of the Pascal VOC

2012 validation set, which consists of 1,449 images. Unlike

the evaluation setting in [38], we evaluate the saliency map

in pixel-level rather than patch-level for higher accuracy.

We first binarize the saliency map for every threshold in the

range of [0, 255] to generate the precision-recall curves (P-

R curves), and the performance of each category is summa-

rized by the precision rates at equal error rates (EER, where

precision is equal to recall). The performances of differ-

ent methods are shown in Table 2. The two state-of-the-

art top-down saliency detection methods (rows 1 - 2 in Ta-

ble 2) encode object information using dictionary learning,

but the large appearance differences among the objects of

the same class are difficult to capture using their approach.

The CNN-based approach (row 3 in Table 2) performs not

as good as ours, due to the learning guidance provided by

our two-stage training process.

Relationship between exemplars and query object.

As shown in Table 2, the performance of our method in-

creases with the number of exemplars, and the per-class

variations are also small. This is similar to the last exper-

iment. Here, we mainly explore how exemplar quality in-

fluences detection performance. Figure 3 shows some top-

down saliency detection examples. The saliency maps are

produced using the same sets but differnt numbers of exam-

plars. It demonstrates how each additional exemplar may

affect the result. We can also see that a bad exemplar harms

the detection. In the first example, the second exemplar is

a bad one and it distracts the detection to the wooden wall

(due to a similar color). In the second example, the second

exemplar of the human feet causes the second saliency map

to focus on the human face. In the third example with 3 ex-

emplars, the proposed method wrongly renders the bus as

salient, since it shares a similar appearance to the added ex-

emplar. All these cases suggest that color similarity is one

of the main influential factors. However, bad exemplar only

produces false positive and will not significantly affect the

true positive results. In addition, the association learnt using

more exemplars is more robust to outliers. As we can see

from all three examples with 4 exemplars, the 4-exemplar

network is more capable of tolerating bad exemplars and

can properly predict salient regions.

Figure 4: Examples of object location prediction.

4.3. Object Location Prediction

We further evaluate the accuracy of the predicted object

locations. As mentioned above, a simple max-pooling op-

erator applied on the saliency map is able to predict an ob-

ject location for a target category. Here, we compare to

the three methods used in Section 4.2. In addition, we add

the stage-of-the-art object detector RCNN [13] as a base-

line, which outputs a bunch of bounding boxes along with

the confidence values in order to cover all the objects in the

image. We select the bounding box with the highest con-

fidence value for each target category, and pick the center

pixel as the object location. The localization performances

of all these methods are examined by simply labeling the

predicted location as correct if it falls into the ground truth

bounding box of the target category, and negative other-

wise. Unlike [29], which sets a 18-pixel tolerance to the

predicted location, we restrict the correct predicted location

to be within the ground truth bounding box for a more ac-

curate evaluation. The confidence values of the predicted

locations are used to generate the P-R curves, and the final

performance of each category is summarized by Average

Precision (AP). We note that his metric can be challenging

for cluttered scenarios. The location prediction experiment

is conducted on the Pascal VOC 2012 validation set.

The location prediction results are shown in Table 3. Our

method with 2, 3 or 4 exemplars outperforms all three ex-

isting methods and the state-of-the-art object detector over-

all. Our method with 4 exemplars achieves the best perfor-
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# Method plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mStd mAP

1 Yang [38] 57.2 49.6 47.6 45.0 10.3 58.5 41.0 54.6 14.5 40.1 21.4 49.7 57.6 50.1 58.3 22.7 54.4 17.2 51.6 36.3 – 41.9

2 Kocak [23] 70.7 55.4 60.9 53.4 27.3 68.4 52.3 75.4 31.8 60.1 36.1 64.9 70.5 69.6 71.8 33.3 68.2 29.2 70.8 52.5 – 56.1

3 Oquab [29] 83.2 68.2 71.9 69.2 33.7 79.0 57.8 73.8 42.0 75.8 50.1 72.7 75.7 75.7 77.6 37.1 76.7 44.2 81.1 60.6 – 65.3

4 RCNN [13] 86.5 72.1 74.2 66.7 43.1 78.3 68.8 80.8 44.9 62.3 51.1 74.4 73.6 83.0 83.0 49.2 78.4 40.6 74.1 69.2 – 67.7

5 Ours (1 expl) 77.4 81.9 67.6 40.6 26.4 85.0 52.2 85.4 38.1 87.3 33.8 80.5 84.0 87.5 79.6 51.4 85.5 49.6 79.7 53.8 2.03 66.4

6 Ours (2 expls) 84.1 80.3 69.8 40.6 26.8 87.5 55.1 92.7 38.7 92.7 37.7 84.9 87.8 90.9 86.7 51.9 89.7 55.2 80.0 54.5 1.78 69.4

7 Ours (3 expls) 87.1 85.5 71.3 43.6 30.8 87.3 58.0 93.9 45.3 93.6 40.5 84.3 88.7 91.8 85.8 57.8 90.9 55.7 83.9 59.2 1.59 71.7

8 Ours (4 expls) 86.8 87.2 72.7 46.8 31.7 91.0 58.6 95.2 44.5 94.8 41.5 87.0 91.4 94.3 89.2 57.7 93.5 59.2 84.7 60.5 1.53 73.4

Table 3: Object location prediction results on the Pascal VOC 2012 validation set.
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Figure 5: Same-class identification results for unseen categories on the MS COCO validation set. The category-specific

network is trained on the entire training set. The proposed method is trained on a subset of categories and tested on the

unseen ones.

mance in most of the classes. Note that the bounding box

sampling strategy affects prediction performance. Since

most of the top-down saliency detection methods (includ-

ing Yang et al. [38], Oquab et al. [29], and ours) detect ob-

jects in a sliding window fashion, they may not be able to

precisely locate small scale objects, e.g., bottles. On the

contrary, RCNN uses a large number of object proposals

and can thus capture objects in different sizes and scales.

However, the large number of object proposals increases the

error rates due to false positive. As a result, its overall per-

formance is not as good as ours. Some examples of object

location predictions from our method are shown in Figure 4.

4.4. Unseen Category Evaluation

The high accuracy of the proposed method on the Pascal

VOC 2012 dataset does not guarantee that the learnt associ-

ation can be generalized to unseen categories. To evaluate

the generalization capability of the proposed method, we

apply it to the much larger MS COCO dataset [26], which

consists of 80 classes. Due to the significant increase in the

number of categories from Pascal VOC 2012 (which has 20

categories), we fine-tune the proposed network by randomly

selected additional 16 categories for training, leaving us 44

unseen categories for evaluation.

We test the unseen categories on same-class identifica-

tion using 4 exemplars. Again, a category-specific VGG-f

network trained on the MS COCO training set is used as

the baseline. Figure 5 shows results on the unseen cat-

egories. We can see that the proposed method performs

slightly worse than, but still comparable to, the category-

specific network on unseen objects. This suggests that the

proposed network has good generalization capability to un-

seen classes.

5. Conclusion

In this paper, we have proposed a novel locate-by-

exemplar top-down saliency detection framework. With

this approach, object association is captured by a multi-

exemplar network and learnt in a two-stage training process.

We have shown that the network learnt with more exemplars

achieves more robust association quantitatively and qualita-

tively. We have also shown that the proposed network out-

performs the state-of-the-art category-specific methods in

different tasks. Even for unseen objects, the proposed net-

work can infer the association from learnt knowledge.

The proposed same-class identification is a fundamental

task for a lot of vision applications. As a future work, we

aim to extend it to same-object identification, which would

be useful for visual object tracking to identify objects under

different circumstances.
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