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Abstract

Linear Dynamical Systems (LDSs) are the fundamental

tools for encoding spatio-temporal data in various disci-

plines. To enhance the performance of LDSs, in this paper,

we address the challenging issue of performing sparse cod-

ing on the space of LDSs, where both data and dictionary

atoms are LDSs. Rather than approximate the extended ob-

servability with a finite-order matrix, we represent the s-

pace of LDSs by an infinite Grassmannian consisting of the

orthonormalized extended observability subspaces. Via a

homeomorphic mapping, such Grassmannian is embedded

into the space of symmetric matrices, where a tractable ob-

jective function can be derived for sparse coding. Then, we

propose an efficient method to learn the system parameter-

s of the dictionary atoms explicitly, by imposing the sym-

metric constraint to the transition matrices of the data and

dictionary systems. Moreover, we combine the state covari-

ance into the algorithm formulation, thus further promot-

ing the performance of the models with symmetric transition

matrices. Comparative experimental evaluations reveal the

superior performance of proposed methods on various tasks

including video classification and tactile recognition.

1. Introduction

Object recognition based on spatio-temporal data is an

active research area across several domains such as machine

learning [3, 18], computer vision [34, 16, 17] and robotics

[28]. The coupling of the spatial texture and the temporal

dynamics makes spatio-temporal data analysis more chal-

lenging than static data. A popular method of representing

spatio-temporal data is to model them by Linear Dynami-

cal Systems (LDSs) [9]. To allow the comparison between

∗This work is jointly supported by National Natural Science Foun-

dation of China under Grant No. 61327809, 61210013, 91420302 and

91520201.

dynamical processes, a distance metric or kernel function

needs to be defined first. Once the distance or kernel has

been defined, classifiers such as Nearest Neighbors (NNs)

and Support Vector Machines (SVMs) can be used to rec-

ognize spatio-temporal sequences. For this purpose, various

kinds of distances or kernels have been proposed, such as

Martin Distance [34, 6], Kullback-Leibler divergence [5],

and Binet-Cauchy kernel [40]. Several recent studies have

been carried out to integrate learning techniques into LDSs;

for instance, Vidal et al. [39] proposed a LDS-based boost-

ing method for time series modeling; and Ravichandran et

al. [33] designed bag-of-systems for video analysis.

Despite the wide applications of LDSs, little attention

has been paid to combining sparse coding with LDS model-

ing to deliver robust techniques. In the past decade, sparse

coding has been successfully adopted in various tasks such

as image restoration [30], face recognition [43], and texture

classification [31] to name a few. For sparse coding, natural

signals such as images are represented as a combination of

a few atoms in a dictionary that is usually over-complete.

Using sparsity as a prior leads to state-of-the-art results in

many fields [43]. In this paper, we generalize sparse coding

from Euclidean space to the space of LDSs. Specifically, we

attempt to reconstruct a given LDS by using a superposition

of LDS atoms, where the coefficients of the superposition

are enforced to be sparse. Both the codes and the dictionary

atoms are learned to minimize the coding objective func-

tion. Sparse coding with the LDS dictionary can then be

seamlessly used for categorizing spatio-temporal data.

However, the space of LDSs, which is non-Euclidean,

has a complicated manifold structure [1, 33]. Carrying out

sparse coding and dictionary learning on this kind of space

is challenging. Recent studies such as [37] proposed to em-

bed LDSs into a finite-dimensional Grassmann manifold.

With this embedding, sparse coding and dictionary learning

with LDSs can then be performed on the finite Grassmanni-

an [23, 21]. The first cornerstone of these models [23, 21]

is to represent each LDS with its finite observability sub-

3938



space by taking a fixed-order approximation of the extend-

ed observability matrix. Nevertheless, as we will discuss

in this paper, this may result in several drawbacks. Firstly,

such finite approximation is computationally expensive if

the observability order is large; but it is insufficient to mod-

el the changes along the rows of the extended observabili-

ty otherwise. Secondly, if we want to learn the dictionary

atoms with the finite method, we can only learn the embed-

ding points of the finite observability but not the parameters

of the dictionary LDSs (e.g. the measurement matrix and

the transition matrix). It is believed that these parameters

are important for further analysis of the learned dictionary.

Moreover, various methods have been developed for defin-

ing the distance metric [32, 7, 34] and performing classifi-

cation tasks [34, 6, 33] on the space of infinite LDSs, in-

dicating that deriving sparse coding and dictionary learning

with infinite LDSs could be theoretically interesting.

Hence, in this paper, we attempt to make the following

contributions. (1) We perform sparse coding and dictionary

learning with the original form of LDSs that is represented

by the extended observability subspace. As a more general

framework of [21], learning the codes and dictionary atoms

on infinite Grassmannian maintains the full changes along

the sequences. More importantly, in our models, the calcu-

lations related to the infinite observability subspaces can be

efficiently derived by the representation of the system pa-

rameters, which enables us to learn the system parameter-

s of the dictionary explicitly and reduce the computation-

al cost significantly compared to the finite method. (2)To

overcome the limitation caused by the the symmetry con-

straint to the state transition matrix in dictionary learning,

we additionally consider the state covariance as a comple-

mentary feature of the symmetric transition matrix to de-

scribe the state process, thus further promoting the model-

ing performance. (3) We employ proposed models to cate-

gorize spatio-temporal sequences on diversified benchmark

datasets including videos and tactile series. Compared to

state-of-the-art methods, our models achieve considerable

improvements in discrimination accuracy on most tasks.

The rest of the paper is organized as follows. Section 2

reviews the LDS preliminaries. Sparse coding is derived in

Section 3 and dictionary learning is developed in Section 4.

Then, Section 5 combines the state covariance into the algo-

rithm framework and Section 6 analyzes the computational

complexities of proposed models. Finally, Section 7 con-

ducts the experiments; and Section 8 concludes this paper.

2. Briefs of Fundamental Concepts
2.1. Linear dynamical systems

LDSs represent time series by assuming them to be the

output of the following model:
{

xt+1 = Axt +Bvt,

yt = Cxt +wt + y,
(1)

where X = [x1, · · · ,xT ] ∈ R
n×T is a sequence of n-

dimensional hidden state vectors, and Y = [y1, · · · ,yT ] ∈
R

m×T is a sequence of m-dimensional observed variables.

The model is parameterized by Θ = {A,B,C,R,y},

where A ∈ R
n×n is the transition matrix; C ∈ R

m×n

is the measurement matrix; B ∈ R
n×nv (nv ≤ n) is

the noise transformation matrix; vt ∼ N (0, Inv×nv
) and

wt ∼ N (0,R) denote the process and measurement noise

components, respectively; y ∈ R
m represents the mean of

Y. Given the observed sequence, several methods [38, 36]

have been proposed to learn the optimal system parameters,

while the method in [9] is widely used.

Since C describes the spatial appearance and A repre-

sents the dynamics, the tuple (A,C) can be adopted as the

feature descriptor for an LDS . Unfortunately, (A,C) does

not lie in a vector space as it needs to satisfy several con-

straints [37]. The transition matrix A needs to be stable

with eigenvectors inside the unit circle. The columns of C

are constrained to be orthonormal. Furthermore, any Rie-

mannian metric for the space of LDS needs to be invariant

to the changes of the state space basis. All these constraints

make it hard to determine the Riemannian geometry of the

LDS space [33]. To circumvent the difficulties associated

to utilizing the tuple (A,C), a family of approaches ap-

ply the extended observability subspace to represent an LDS

[34, 6, 33, 37], which is the topic of the next section.

2.2. The extended observability subspaces

Starting from the initial state x1, the expected ob-

servation sequence is obtained as E[y1,y2,y3, · · · ] =
[CT, (CA)T, (CA2)T, · · · ]Tx1, meaning that it lies in the

column space of the extended observability matrix given by

O = [CT, (CA)T, (CA2)T, · · · ]T ∈ R
∞×n. Since the

column space of O , i.e. the extended observability sub-

space, is invariant to the choice of the basis of the state s-

pace, it can be applied as the descriptor of an LDS. There-

fore, the distance between two LDSs is considered as the

distance between the respective extended observability sub-

spaces, which can be derived by computing the subspace

angles [7]. The subspace angles between two extended ob-

servability matrices O1 and O2, associated with parameter-

s (A1,C1) and (A2,C2) respectively, can be calculated by

solving the following Lyapunov equation
AT

i OijAj −Oij = −CT
i Cj , (2)

where Oij = OT
i Oj =

∑∞
t=0(A

t
i)

TCT
i CjA

t
j , i, j ∈

{1, 2}. The squared cosine of the subspace angle αk is equal

to the k-th principal eigenvalue of O−1
11 O12O

−1
22 O21. The

LDS distance (such as geodesic distance [44] and Martin

distance [32]) can then be defined with the subspace angles.

2.3. Sparse coding on finite Grassmannian

As proposed by [37, 21], one can approximate the ex-

tended observability by taking the L-order observability
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matrix, i.e. O(n, L) = [CT, (CA)T, · · · , (CAL−1)T]T.

In this way, an LDS can be alternately identified as an n-

dimensional subspace of RLm. Sparse coding with LDSs

is then performed on finite Grassmannian. Because it is

hard to define tractable arithmetical calculations and dis-

tance metric on Grassmannian, Harandi et al. [21] home-

omorphically embeds the Grassmannian into the space of

symmetric matrices, thus leading to the coding objective:

min
Z

N
∑

i=1

‖ XiX
T
i −

K
∑

j=1

Zj,iDjD
T
j ‖2F +λ ‖ [Z]i ‖1 . (3)

Here, Xi ∈ R
Lm×n and Dj ∈ R

Lm×n are the L-order or-

thonormalized observability matrices of the i-th data LDS

and the j-th dictionary atom, respectively, while the coeffi-

cient matrix is Z ∈ R
K×N and [Z]i denotes the i-th column

of Z. The learning task aims to represent each data in the set

{Xi}
N
i=1 of size N as a sparse linear combination of the dic-

tionary atoms {Dj}
K
j=1 of size K, where Zj,i is the repre-

sentation coefficient of Xi with respect to Dj . The ℓ1-norm

regularization is employed to the coefficients {[Z]i}
N
i=1 for

sparsity assurance; and λ is the sparsity penalty factor.

3. Sparse Coding with Infinite LDSs

Approximating the observability with a finite matrix re-

sults in an unavoidable issue about how to choose the val-

ue of the order L: if L is small, it is insufficient to model

the asymptotical behavior of the extended observability; in-

creasing the value of L could make the finite observability

contain rich information but also increase the computation-

al complexity. In this section, we perform sparse coding

directly on the space of extended observability subspaces,

i.e. infinite Grassmannian. To this end, the space formu-

lation, the distance metric and arithmetical calculations on

infinite Grassmannian should be discussed.

3.1. Formulation of the infinite Grassmannian

The group of the extended observability matrices togeth-

er with the stability and orthonormality constraints for A

and C respectively, can be written as O(n,∞) = {O | O =
[CT, (CA)T, (CA2)T, · · · ]T,CTC = In, | µ(A) |< 1},

where In is a n × n identity matrix, and µ(A) denotes an

arbitrary eigenvalue of A. Prior to further derivation, we

need to perform orthonormalization on O(n,∞) by virtue

of the Cholesky decomposition. For any O ∈ O(n,∞), we

derive the Cholesky decomposition L = Chol(OTO), i.e.

LLT = OTO, where L is a lower triangular matrix. Ac-

cording to Equation (2), OTO is positive definite as A is

stable. Thus, the Cholesky decomposition of OTO always

exists, and L is guaranteed to be inventible. The column-

s of the matrix V = OL−T are orthonormal and span the

same subspace as the columns of O. We denote the or-

thonormalization of O(n,∞) as V(n,∞) = {V | V =
OL−T,L = Chol(OTO),O ∈ O(n,∞)}. The quotient

space of V(n,∞) is defined as S(n,∞) based on the e-

quivalence relation ∼ which is given by: for any V1,V2 ∈
V(n,∞), V1 ∼ V2 if and only if Span(V1) = Span(V2),
where Span(V) denotes the subspace spanned by columns

of V. The infinite Grassmannian that is embedded in the

infinite-dimensional vector space, i.e. G(n,∞), has already

been defined in [44]. The definition of S(n,∞) indicates

that S(n,∞) is actually a special G(n,∞) with an extra in-

trinsic structure due to the stability and orthonormality con-

straints to A and C, respectively. We represent LDSs with

points in S(n,∞).

3.2. Constructing the coding objective

Inspired by the method proposed in [21], we attempt to

embed S(n,∞) into the space of symmetric matrices via

mapping Π : S(n,∞) → Sym(∞),Π(V) = VVT. The

metric on Sym(∞) is naturally induced by the Frobenius

norm: ‖ W ‖2F= Tr(WTW), W ∈ Sym(∞). However,

it will encounter the difficulty that the Frobenius norm of a

point on Sym(∞) is usually infinite due to the infinite di-

mensionality. Fortunately, the Frobenius norm of the point

in the embedding Π(S(n,∞)) is guaranteed to be finite,

which can be derived by Corollary 1. More generally, the

Frobenius norm of the linear combination of the points in

Π(S(n,∞)) is finite, as proven in the following theorem.

Theorem 1. Suppose V1,V2, · · · ,VM ∈ S(n,∞), and

y1, y2, · · · , yM ∈ R, we have

‖
M
∑

i=1

yiΠ(Vi) ‖
2
F =

M
∑

i,j=1

yiyj ‖ VT
i Vj ‖

2
F ,

where VT
i Vj = L−1

i OT
i OjL

−T
j . OT

i Oj is computed with

the Lyapunov equation defined in Equation (2), Li and

Lj are Cholesky decomposition matrices for OT
i Oi and

OT
j Oj , respectively.1

Based on Theorem (1), we have two corollaries:

Corollary 1. For any V1,V2 ∈ S(n,∞), we have

‖ Π(V1)−Π(V2) ‖
2
F = 2

(

n− ‖ VT
1 V2 ‖2F

)

.

Furthermore, ‖ Π(V1) − Π(V2) ‖2F= 2
∑n

k=1 sin
2 αk,

where {αk}
n
k=1 are subspace angles between V1 and V2.

Corollary 2. The embedding map Π(V) is diffeomor-

phism (a one-to-one, continuous, and differentiable map-

ping with a continuous and differentiable inverse), meaning

that S(n,∞) is topologically isomorphic to the embedding

Π(S(n,∞)), i.e. S(n,∞) ∼= Π(S(n,∞)).

Hence, the sparse coding objective function on infinite

Grassmannian is formulated as min
Z

L(Z,D), where

L(Z,D) =

N
∑

i=1

dist2(Vi,D) + λ ‖ [Z]i ‖1, (4)

1The proofs of all theorems are given in the supplementary material.
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Algorithm 1 Dictionary learning with infinite LDSs

Input: X

Extract the data system parameters {(Θi,Ci)}
N
i=1 with

Algorithm 2 (proposed in the supplementary material);

Assign the values of the dictionary system parameters

{(Θ̄r, C̄r)}
K
r=1 by random;

for t = 1 to MaxNumIters do

Learn the sparse codes Z by solving Equation (5);

for r = 1 to K do

for k = 1 to n do

Compute S(r, k) as defined in Equation (8);

Update [C̄r]k according to Theorem 3;

Update θ̄r,k according to Equation (10);

end for

end for

end for

Output: {(Θ̄r, C̄r)}
K
r=1

and, dist(Vi,D) =‖ ViV
T
i −

∑K
j=1 Zj,iDjD

T
j ‖F ; Vi

and Dj are points in S(n,∞).

According to Theorem (1), we can ignore the terms that

are irrelevant to Z and rewrite L(Z,D) as
N
∑

i=1

[Z]Ti K(D)[Z]i − 2[Z]Ti k(Vi,D) + λ ‖ [Z]i ‖1, (5)

where K(D)i,j =‖ DT
i Dj ‖2F and [k(Vi,D)]j =‖

VT
i Dj ‖2F . This problem is convex as K(D) is positive

semi-definite. It can be solved efficiently by using methods

like homotopy-LARS algorithm [8]. We are aware that E-

quation (5) is similar to the kernel sparse coding for static

images which is recently proposed in [19]. However, our

goal is to obtain sparse coding of LDSs using LDSs as dic-

tionary atoms. Moreover, the dedicated algorithm for dic-

tionary learning should be devised, which will be discussed

in the next section.

4. Dictionary Learning with Infinite LDSs

The dictionary learning problem is finding the good dic-

tionary that has a small reconstruction error over all obser-

vations while preserving the sparsity penalty. Based on E-

quation (4), dictionary learning on LDSs can be defined as

min
Z,D

L(Z,D). A common approach for solving this problem

is to update Z and D alternately. When the dictionary D is

fixed, optimizing the codes Z is exactly the sparse coding

problem raised in Equation (5). In reverse, to update dic-

tionary atoms with the codes fixed, we break the minimiza-

tion problem into K sub-minimization problems by updat-

ing each atom independently. As we have denoted in Sec-

tion 3.1, each dictionary atom or data sequence is associated

with a parameter tuple consisting of a transition matrix and

a measurement matrix. The tuples of the atom Dr and the

data Vi are (Ār, C̄r) and (Ai,Ci), respectively. By sub-

stituting the tuples into L(Z,D) and ignoring the terms that

are irrelevant to dictionary atoms, dictionary learning can

be seen as solving min
D

∑K
r=1 2Γ(r), where

Γ(r) =

N
∑

i=1

K
∑

j=1
j 6=r

Zr,iZj,i ‖ L̄−1
r

∞
∑

t=0

(Āt
r)

TC̄T
r C̄jĀ

t
jL̄

−T
j ‖2F

−
N
∑

i=1

Zr,i ‖ L̄−1
r

∞
∑

t=0

(Āt
r)

TC̄T
r CiA

t
iL

−T
i ‖2F . (6)

Here, L̄j and Li are the Cholesky decomposition matri-

ces for orthonormalizing the extended observability matri-

ces associated with the dictionary atom Dj and the data Vi,

respectively. By imposing the stability constraint to Ār and

the orthonormality constraint to C̄r, the sub-problem can

be written as

min
Ār,C̄r

Γ(r), s.t. C̄T
r C̄r = In; |µ(Ār)| < 1. (7)

There are mainly two challenges in solving this sub-

problem: (1) The infinite summations involved in Equation

(6) make the transition matrix and the measurement matrix

coupled together, hence impeding separate update of Ār

and C̄r. (2) For any orthonormal square matrix P ∈ R
n×n,

the tuple (P−1ĀrP, C̄rP) derives the same objective Γ(r)
as (Ār, C̄r), implying that (Ār, C̄r) does not lie in a Eu-

clidean space. The traditional optimization methods adopt-

ed in Euclidean space such as gradient decent method and

Newton method may be inapplicable to this problem.

Fortunately, this minimization sub-problem can be effi-

ciently addressed if assuming the transition matrices of the

dictionary and the data to be symmetric. As presented in the

supplement material, if Ār is symmetric, (Ār, C̄r) can be

equivalently transformed to (Θ̄r, Ĉr), where the diagonal

matrix Θ̄r consists of the eigenvalues of Ār; Ĉr = C̄rP
−1
r

and Pr is an orthonormal square matrix. For consistency,

we denote Ĉr as C̄r by ignoring the difference between

them in the following context. We can derive:

Theorem 2. If the transition matrices of dictionary atoms

and the data systems are all symmetric, then Equation (7) is

equivalent to

min
C̄r,θ̄r

n
∑

k=1

[C̄r]
T
k S(r, k)[C̄r]k

s.t. C̄T
r C̄r = In; − 1 < θ̄r,k < 1, 1 ≤ k ≤ n.

(8)

Here, S(r, k) =
∑N

i=1

∑K
j=1,j 6=r Zr,iZj,iC̄jE(r, j, k)C̄T

j −
∑N

i=1 Zr,iCiF(r, i, k)C
T
i ; Both E(r, j, k) and F(r, i, k)

are diagonal matrices:

E(r, j, k) = diag([
(1−θ̄2

r,k)(1−θ̄2

j,1)

(1−θ̄r,kθ̄j,1)2
, · · · ,

(1−θ̄2

r,k)(1−θ̄2

j,n)

(1−θ̄r,kθ̄j,n)2
]);

F(r, i, k) = diag([
(1−θ̄2

r,k)(1−θ2

i,1)

(1−θ̄r,kθi,1)2
, · · · ,

(1−θ̄2

r,k)(1−θ2

i,n)

(1−θ̄r,kθi,n)2
]);

where [θ̄j,1, · · · , θ̄j,n] and [θi,1, · · · ,θi,n] denote the

eigenvalues of the matrix Āj and Ai, respectively.
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We further break the optimization in Equation (8) in-

to n sub-minimization problems. Precisely speaking, we

find the optimal pair ([C̄r]k, θ̄r,k) by fixing other pairs

{([C̄r]o, θ̄r,o)}
n
o=1,o 6=k, thereby leading to the following

sub-minimization problem,

min
[C̄r]k,θ̄r,k

[C̄r]
T
k S(r, k)[C̄r]k

s.t. [C̄r]
T
k [C̄r]k = 1, [C̄r]

T
k [C̄r]o = 0,

1 ≤ o ≤ n, o 6= k,−1 < θ̄r,k < 1.

(9)

We are able to obtain the solution of [C̄r]k for Equation

(9) by the following theorem.

Theorem 3. We denote [C̄r]−k ∈ R
m×(n−1) as the

sub-matrix of C̄r by removing the column [C̄r]k, i.e.

[C̄r]−k = [[C̄r]1, · · · , [C̄r]k−1, [C̄r]k+1, · · · , [C̄r]n], and

define W = [w1, · · · ,wm−n+1] ∈ R
m×(m−n+1) as

the orthonormal basis of the orthonormal complemen-

t of [C̄r]−k. If u ∈ R
(m−n+1)×1 is the eigenvector of

WTS(r, k)W corresponding to the smallest eigenvalue,

then Wu is the optimal solution of [C̄r]k for Equation (9).

We apply gradient-based method to update θ̄r,k. Since

the value of θ̄r,k is constrained within (−1, 1), an auxiliary

variable ρr,k is used to replace θ̄r,k by setting

θ̄r,k = 2Sig(ρr,k)− 1, (10)

where Sig(·) is a sigmoid function. The gradient of the

objective function in Equation (9) with respect to ρr,k is

given by
∂Φ(r,k)
∂ρr,k

= 2∂Φ(r,k)

∂θ̄r,k

∂Sig(ρr,k)
∂ρr,k

, where Φ(r, k) =

[C̄r]
T
k S(r, k)[C̄r]k.

In our dictionary learning algorithm, we use LDS with

Symmetric Transition matrix (LDSST) to model the spatio-

temporal data. Given the observed sequences, learning the

transition matrix in LDSST is different from that in LD-

S. The details are presented in the supplementary material.

For reader’s convenience, we provide the algorithmic pro-

cedures for dictionary learning in Algorithm 1.

5. Models Considering the State Covariance

We have derived sparse coding and dictionary learning

by parameterizing each LDS with the tuple (A,C). As

shown in Equation (1), the matrix B determines the co-

variance of the state process. Applying B as an additional

descriptor is able to re-discover the dynamical patterns con-

tained in the covariance component when A can not model

the dynamics well. In our dictionary learning algorithm, we

constrain A to be symmetric, which could somewhat limit

the modeling ability of LDSs . Combining the matrix B into

the model formulation helps to overcome this limitation.

The covariance matrix of the whole sequence derived by

[5] is hard to be combined in our models. In this paper,

we consider the one-step covariance. Equation (1) demon-

strates that the conditional probability of frame yt+1 giv-

en xt is expressed as p(yt+1 | xt) = N (yt+1;CAxt +

ȳ,CBBTCT + R), with the one-step covariance of

CBBTCT+R. We neglect the measurement covariance R

as we only focus on the covariance of the state dynamic. As

presented in the supplementary material, B = U′S′1/2. For

more stable performance, we normalize B by eliminating

the scale effect and only reserving the directions term. Then

the final one-step covariance we obtain is CU′U′TCT. S-

ince the covariance locates in the space of symmetric matri-

ces, the distance metric can be induced by Frobenius norm.

Adding the covariance terms to the sparse coding objec-

tive in Equation (4) with a linear combination, we obtain

L(Z,D) = βLmean + (1− β)Lcov + λ ‖ [Z]i ‖1, (11)

where Lmean =
∑N

i=1 ‖ ViV
T
i −

∑K
j=1 Zj,iDjD

T
j ‖2F ;

Lcov =
∑N

i=1 ‖ Ωi −
∑K

j=1 Zj,iΩ̄j ‖
2
F ; Ωi and Ω̄j denote

the one-step covariances of the i-th data and the j-th dictio-

nary, respectively; β determines the weights of the trade-off

between Lmean and Lcov . Equation (11) can be reduced to

the form similar to Equation 5 for learning the codes.

The dictionary learning problem is reformulated as solv-

ing min
D

∑K
r=1 Γ(r), where

Γ(r) = βΓmean(r) + (1− β)Γcov(r). (12)
Here, Γmean(r) has been defined in Equation (6);

Γcov(r) =
∑N

i=1

∑K
j=1,j 6=r Zr,iZj,iTr(Ω̄rΩ̄j) −

∑N
i=1 Zr,iTr(Ω̄rΩi). Since Ω̄r = C̄rŪ′

rŪ′T
r C̄

T
r ,

Γmean(r) and Γcov(r) are relevant due to the common

factor C̄r. For simplicity and practicability, we get

rid of this relevance by reassigning the covariance as

Ω̄r = H̄rH̄
T
r , where H̄r ∈ R

m×nv is orthonormal. For

data LDS, Hi = CiU
′
i; while for dictionary atoms, H̄r

is independent of C̄r . In this way, we update C̄r and Ār

by minimizing Γmean(r) and update H̄r by minimizing

Γcov(r), separately. With derivations similar to Theorem 3,

the optimized H̄r is given as the eigenvectors of the matrix

SH corresponding to the nv smallest eigenvalues, where

SH =
∑N

i=1

∑K
j=1,j 6=r Zr,iZj,iH̄jH̄

T
j −

∑N
i=1 Zr,iHiH

T
i .

It is easy to develop the algorithm for learning the

covariance-involved dictionary. We only need to revise

Algorithm 1 by computing the sparse codes with Equation

(11) instead and adding the update of H̄r for each atom.

6. Computational Complexity

For sparse coding (Equation (11)), the key is the kernel-

matrix computation. For each kernel, we need to perfor-

m Cholesky decomposition, solve the Lyapunov Equation

and calculate the matrix multiplication, which scale O(n3),
O(n3) and O(mn2), respectively. Recalling that n ≪ m,

all these computations scale O(mn2). The number of ker-

nels between dictionary atoms and that between dictionary

and data are K2 and NK, respectively. Thus, the total com-

plexity of sparse coding is O((NK +K2)mn2).
For each subproblem of dictionary learning (Equation

(12)), we primarily need to calculate the matrix S(r, k) and
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find the smallest eigenvector of WTS(r, k)W for minimiz-

ing Γmean(r); calculate the matrix SH and find its nv s-

mallest eigenvectors for minimizing Γcov(r). Computing

S(r, k) and SH scales O(K(N + nm2) + γnm2), where

γ denotes the number of non-zero members in the r-th

row of Z. We apply the Grassmannian-based Conjugate

Gradient Method [12] to find the smallest eigenvector of

WTS(r, k)W, which has a computational cost of O(m2).
This operation needs to be repeated for n times until we

have all the columns of C̄r updated. Thus solving the eigen-

vector problem costs O(nm2) in total. Similarly, finding

the the nv smallest eigenvectors of SH scales O(nvm
2). To

sum up, the computation complexity of updating one dictio-

nary atom adds up to O(K(N + nm2) + γnm2).

As shown in Equation (3), the finite-approximation

method [21] employs the L-order observability O(n, L) ∈
R

Lm×n as the representations of the data and dictionary

LDSs. With the analysis similar to our models, the com-

putation complexities of the finite method are found to be

O(L(NK + K2)mn2) for sparse coding and O(K(N +
nL2m2) + γnL2m2) for updating one dictionary atom,

respectively. Compared to our infinite models, the finite

method scales poorly specially when L is large; we will

further demonstrate this in the experimental section.

7. Experiments

We evaluate our proposed models on two groups of ex-

periments in this section. For the first group, we compare

the performance of our sparse coding algorithms with state-

of-the-art methods on several benchmark datasets. For the

second group, we evaluate the effectiveness of the dictio-

nary learning method. For sake of consistency, we hereafter

denote sparse coding on LDSs with arbitrary transition ma-

trices (Section 3) as LDS-SC, sparse coding on LDSs with

symmetric transition matrices (Section 4) as LDSST-SC,

the LDSST-SC model combining the state covariance (Sec-

tion 5) as covLDSST-SC, the dictionary learning algorith-

m (Section 4) as LDSST-DL, LDSST-DL considering the

the state covariance (Section 5) as covLDSST-DL. For the

compared models, the basic LDS model [34, 6] where the

Martin distance is applied is denoted as LDS-Martin; sparse

coding and dictionary learning on finite Grassmannian [21]

are denoted as gLDS-SC and gLDS-DL, respectively. All

experiments are carried out with Matlab 8.1.0.604 (R2013a)

on Intel Core i7, 2.90-GHz CPU with 8-GB RAM.

7.1. Benchmark datasets

A variety of datasets are applied in our experiments,

including the hand gesture dataset Cambridge [25], the

traffic scene analysis dataset UCSD [5], the face emotion

recognition dataset CK+ [27], the dynamic texture recog-

nition dataset DynTex++ [20], and three tactile recognition

datasets SD [28], SPR [28] and BDH [42]. For Cambridge

Figure 1. Samples of the benchmark datasets: (a) Cambridge; (b)

UCSD; (c) CK+; (d) DynTex++; (e) SD and SPR; (f) BDH.

and UCSD, the image sequences are treated as the input.

The images in Cambridge are resized to 20 × 20 pixels as

suggested by [25]. For DynTex++, we utilize the histogram

of LBP from Three Orthogonal Planes (LBP-TOP) [45] by

splitting each video into sub-videos of length 8, with a 6-

frame overlap. For CK+, the input are the extracted 68-

landmark of face images. For SD, SPR, and BDH, the tactile

series obtained from the array sensors on the robot hands

are used to recognize the objects that the robot hands are

grasping. Thus, the input are the force values recorded in

the sensor arrays along the time axis. We apply the sug-

gested divisions of the training set and testing set by pre-

vious works on all datasets except CK+. Specifically, on

Cambridge, the first 80 videos of each class are used for

testing while the remaining 20 for training [22]. On UCSD,

four random divisions have been performed by the authors

in [5]. In each division, 75% of the sequences are utilized

for training and the rest 25% for testing. On DynTex++, the

training and testing data are generated with a random fifty-

fifty division of the dataset over 20 trials [20]. The three

tactile datasets, i.e. SD, SPR, and BDH, are split randomly

into the training and testing sets with a ratio of 9 : 1 over 10
trials [28, 42]. For CK+, the authors in [15] employed the

leave-one-out cross-validation scheme. Here, we perform a

more challenging division by applying half of the dataset for

training while the remaining for testing. For reader’s conve-

nience, we illustrate some samples in Figure 1. The details

of the datasets are presented in the supplement material.

7.2. Sparse coding

In this section, the training samples are considered to be

the dictionary atoms without dictionary learning; and the

reconstruction error approach presented in the the supple-

mentary material is adopted for classification.

Comparison with the state-of-the-arts. We compare

the proposed sparse coding methods, i.e. LDS-SC, LDSST-

SC and covLDSST-SC, with models that achieved compet-

itive results on Cambridge, UCSD, CK+, SD, SPR, and B-

DH. We also implement the LDS-Martin model as a refer-

enced baseline, where the Nearest-Neighbor (NN) method

is utilized as the classifier. For proposed models and LDS-

Martin, we vary the value of n and report the best results.

Additionally for covLDSST-SC, the parameter nv is fixed to

be 4 and the weight β is selected from {0.8, 0.6, 0.2}. Table

1 reports the classification results. We first note that the best
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Table 1. Averaged classification accuracies of the proposed sparse coding methods compared with the state-of-the-arts.

Datasets References LDS-Martin

Proposed models

Our best LDS-SC LDSST-SC
covLDSST-SC (nv = 4)

β = 0.8 β = 0.6 β = 0.2
Cambridge 90.7 [22], 83.05 [29] 88.3 91.7 91.7 85.7 85.7 86.8 90.3

UCSD 95.0 [5], 87.8 [35] 92.9 93.3 93.3 89.4 89.8 90.2 93.3

CK+ 83.7 [15], 76.0 [13] 77.3 86.7 84.5 85.4 86.7 86.5 86.3

SD 97 [28], 92 [10] 95 100 98 98 98 98 100

SPR 91 [28], 89 [10] 95 97 96 95 97 97 97

BDH 87 [42] 98 100 100 99 100 100 98

0 5 10 15 20 25 30

0.65

0.7

0.75

0.8

0.85

0.9

0.95

n

A
c
c
u

ra
c
y

 

 

LDS−Martin
LDS−SC
LDSST−SC
covLDSST−SC

0 5 10 15 20 25 30 35 40
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

n

A
c
c
u

ra
c
y

 

 

LDS−Martin
LDS−SC
LDSST−SC
covLDSST−SC

0 1 2 3 4 5 6 7

0.65

0.7

0.75

0.8

0.85

0.9

n

A
c
c
u
ra

c
y

 

 

LDS−Martin
LDS−SC
LDSST−SC
covLDSST−SC

0 5 10 15 20 25 30 35 40

0.8

0.85

0.9

0.95

1

n

A
c
c
u
ra

c
y

 

 

LDS−Martin
LDS−SC
LDSST−SC
covLDSST−SC

Figure 2. Averaged classification accuracies of varying state dimensionality n on Cambridge, UCSD, CK+, and SD. (β, nv) = (0.2, 4).
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Figure 3. Comparisons between LDS-SC and gLDSs. The first three figures display the averaged classification accuracies on Cambridge,

UCSD and SPR. The fourth figure demonstrates the training time of the compared models on UCSD. n = 10.
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Figure 4. Comparisons between covLDSST-DLs and gLDS-DLs by varying number of dictionary atoms K on Cambridge and DynTex++.

The left two figures show the averaged accuracies, while the right two ones display the training time. (n, β, nv) = (10, 0.2, 4).

results of proposed models outperform all compared model-

s on all datasets except UCSD. On UCSD, the method pro-

posed in [5] achieves the best performance due to its highly-

complicated distance; LDS-SC obtains a comparable accu-

racy while its complexity to calculate the distance is much

simpler. LDSST-SC is found to be worse than LDS-SC as a

whole, because the symmetric constraint to transition matri-

ces could limit the modeling ability. With an appropriate β,

covLDSST-SC can promote the performance of LDSST-SC

significantly, and even outperform LDS-SC in some cases,

thus verifying the effectiveness of the state covariance on

enhancing the modeling ability of LDSST.

Varying n. To evaluate the sensitivity of the hidden di-

mensionality n to the eventual performance, we vary the

value of n and report the classification results of LDS-

Martin, LDS-ST, LDSST-SC, and covLDSST-SC on Cam-

bridge, UCSD, CK+, and SD. Figure 2 demonstrates that,

the LDS-Martin model performs consistently on Cambridge

and UCSD but much worse on CK+ and SD. Our models

perform consistently on all datasets after n grows beyond

a certain value. The model covLDSST-SC can constantly

improve the performance of LDSST-SC, which once again

validates the importance of the state covariance to the per-

formance of covLDSST-SC.

Comparison with the finite method. As clarified in

Section 3, the model LDS-SC is an infinite generalization

of the finite-approximation method gLDS-SC. Thus, we are

interested in the asymptotical behavior of gLDS-SC when

the observability order L increases. For this purpose, we

carry out experiments on Cambridge, UCSD and SPR. As

expected, the classification accuracy of gLDS-SC finally

converges to that of LDS-SC when L increases, which is
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Figure 5. The visualization of the initial and the learned dictionaries on Cambridge. (n, β, nv) = (10, 0.2, 4). (a) Samples of the 4
sub-categories in Cambridge. (b) Visualization of C: rows corresponds to atoms and columns to the state dimensions. (c) Plots of A:

different plots display the values of the transition eigenvalues of different atoms.

illustrated in Figure 3. In Section 6, we have shown that

the computational complexity of gLDS-SC (O(L(NK +
K2)mn2)) is L times of LDS-SC (O((NK + K2)mn2)).
Larger L will cause more computational cost of gLDS-SC.

On the dataset UCSD, for example, gLDS-SC needs more

training time than LDS-SC when L > 3, as demonstrated in

Figure 3. Since LDS-SC additionally requires Cholesky de-

composition and Lyapunov equation derivation, it performs

more slowly than gLDS-SC when L < 3.

7.3. Dictionary learning

As demonstrated by the experimental results in the last

section, taking the state covariance term into the algorith-

m formulation can further improve the performance. Thus,

in this section, we implement covLDSST-DL instead of

LDSST-DL to perform comparison with other methods.

The dictionary atoms are initialized randomly. The codes

of training and testing systems with respect to the learned

dictionary are fed to a linear SVM [14] for classification.

Learning effectiveness analysis. To verify the effective-

ness of covLDSST-DL, we also test the baseline model, i.e

covLDSST-Rand, in which the dictionary atoms are chosen

from the training set randomly and no dictionary learning is

involved. Besides, we implement the finite-approximation

method gLDS-DL with L = 2, 3. For fair comparison, we

use the same classifier (linear SVM) and the same value of n

(n = 10), for covLDSST-DL, covLDSST-Rand and gLDS-

DL. Experiments are carried out on Cambridge and Dyn-

Tex++. On Cambridge, we apply the first half sequences

of each class for learning the dictionary while the rest are

for testing. On DynTex++, We evaluate the performance

of the compared models on a 9-classes subset. In particu-

lar, we select the videos of the first 9 classes from the o-

riginal dataset, thus constructing a smaller dataset with 900
videos in total. Half of the videos are used for learning and

the others for testing. Figure 4 shows that covLDSST-DL

consistently outperforms covLDSST-Rand under the vary-

ing number of the dictionary atoms. Compared to gLDS-

DLs, covLDSST-DL achieves higher accuracies when the

dictionary size K is small (e.g. K < 16), and obtain-

s equivalent performance when K is large. As discussed

in Section 5, the computational complexity of gLDS-DL

is higher than covLDSST-DL. We also display the training

time of gLDS-DLs and covLDSST-DL in Figure 4. Obvi-

ously, gLDS-DLs become much computationally expensive

as K increases. Our covLDSST-DL performs scalably even

with a large K. In addition to the 9-classes subset, we also

evaluate covLDSST-DL on original DynTex++. The mod-

el covLDSST-DL reaches a recognition rate of 92.0% when

K = 516, which is comparable to that of the Grassmannian-

kernel-based dictionary learning method [23], i.e. 92.8%.

Dictionary visualization. The model covLDSST-DL is

capable of learning the dictionary measurement matrix C

and the transition matrix A, explicitly and separately. Thus,

we can visualize the learned pairs (A,C) to demonstrate

what patterns they have discovered. For simplicity, we per-

form covLDSST-DL on the 4-class subset of Cambridge,

i.e. Flat\Leftward, Flat\Rightward, Spread\Leftward,

and Spread\Rightward. Dictionary atoms are initialized

randomly by choosing 8 videos from one single class:

Flat\Leftward. Figure 5 (a) visualizes both the initial and

the learned pairs. Clearly, more spatial patterns such as the

spread-hand shape and the hand-rightward state, have been

discovered by the learned C. There are also slight changes

in A after the learning. The transition matrices of different

atoms have a small difference, indicating that the dynamic

within each dictionary is similar to each other, presumably

because the movement speed of the hand and the sampling

frequency of the camera keep almost consistent.

8. Conclusion

In this paper, we address the challenging issue about per-

forming sparse coding and dictionary learning on the true

space of LDSs that is formulated as an infinite Grassmanni-

an. Compared to the finite-approximation methods, the pro-

posed models are not only theoretically beneficial but also

computationally efficient. In addition, we combine the state

covariance into the model formulation, thus further improv-

ing the performance significantly. The effectiveness of our

models is verified by various experiments on different tasks

including hand gesture recognition, dynamical scene classi-

fication, face emotion recognition, dynamic texture catego-

rization and tactile recognition.
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