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Abstract

How can unlabeled video augment visual learning? Ex-

isting methods perform “slow” feature analysis, encourag-

ing the representations of temporally close frames to exhibit

only small differences. While this standard approach cap-

tures the fact that high-level visual signals change slowly

over time, it fails to capture how the visual content changes.

We propose to generalize slow feature analysis to “steady”

feature analysis. The key idea is to impose a prior that

higher order derivatives in the learned feature space must

be small. To this end, we train a convolutional neural net-

work with a regularizer on tuples of sequential frames from

unlabeled video. It encourages feature changes over time

to be smooth, i.e., similar to the most recent changes. Us-

ing five diverse datasets, including unlabeled YouTube and

KITTI videos, we demonstrate our method’s impact on ob-

ject, scene, and action recognition tasks. We further show

that our features learned from unlabeled video can even sur-

pass a standard heavily supervised pretraining approach.

1. Introduction

Visual feature learning with deep neural networks has

yielded dramatic gains for image recognition tasks in re-

cent years [22, 37]. While the main techniques involved in

these methods have been known for some time, a key factor

in their recent success is the availability of large human-

labeled image datasets like ImageNet [6]. Deep convolu-

tional neural networks (CNNs) designed for image recog-

nition typically have millions of parameters, necessitating

notoriously large training databases to avoid overfitting.

Intuitively, however, visual learning should not be re-

stricted to sets of category-labeled exemplars. Taking hu-

man learning as an obvious example, children build up vi-

sual representations through constant observation and ac-

tion in the world. This hints that machine-learned repre-

sentations would also be well served to exploit long-term

video observations, even in the absence of deliberate labels.

Indeed, researchers in cognitive science find that temporal

coherence plays an important role in visual learning. For

Figure 1: From unlabeled videos, we learn “steady features” that

exhibit consistent feature transitions among sequential frames.

example, altering the natural temporal contiguity of visual

stimuli hinders translation invariance in the inferior tempo-

ral cortex [26], and functions learned to preserve temporal

coherence share behaviors observed in complex cells of the

primary visual cortex [4].

Our goal is to exploit unlabeled video, as might be ob-

tained freely from the web, to improve visual feature learn-

ing. In particular, we are interested in improving learned

image representations for visual recognition tasks.

Prior work leveraging video for feature learning focuses

on the concept of slow feature analysis (SFA). First for-

mally proposed in [42], SFA exploits temporal coherence in

video as “free” supervision to learn image representations

invariant to small transformations. In particular, SFA en-

courages the following property: in a learned feature space,

temporally nearby frames should lie close to each other, i.e.

for a learned representation z and adjacent video frames

a and b, one would like z(a) ≈ z(b). The rationale be-

hind SFA rests on a simple observation: high-level seman-

tic visual concepts associated with video frames typically

change only gradually as a function of the pixels that com-

pose the frames. Thus, representations useful for recog-

nizing high-level concepts are also likely to possess this

property of “slowness”. Another way to think about this

is that scene changes between temporally nearby frames

are usually small and represent label-preserving transforma-

tions. A slow representation will tolerate minor geometric

or lighting changes, which is essential for high-level visual

recognition tasks. The value of exploiting temporal coher-

ence for recognition has been repeatedly verified in ongoing

research, including via modern deep convolutional neural
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network implementations [30, 3, 14, 46, 12, 41].

However, existing approaches require only that high-

level visual signals change slowly over time. Crucially, they

fail to capture how the visual content changes over time. In

contrast, our idea is to incorporate the steady visual dynam-

ics of the world, learned from video. For instance, if trained

on videos of walking people, slow feature-based approaches

would only require that images of people in nearby poses be

mapped close to one another. In contrast, we aim to learn a

feature space in which frames from a novel video of a walk-

ing person would follow a smooth, predictable trajectory.

A learned steady representation capturing such dynamics

would be influenced not only by object motions, but also

other types of visual transformations. For instance, it would

capture how colors of objects in the sunlight change over the

course of a day, or how the views of a static scene change

as a camera moves around it.

To this end, we propose steady feature analysis—a gen-

eralization of slow feature learning. The key idea is to im-

pose higher order temporal constraints on the learned vi-

sual representation. Beyond encouraging temporal coher-

ence i.e., small feature differences between nearby frame

pairs, we would like to encourage consistent feature tran-

sitions across sequential frames. In particular, to preserve

second order slowness, we look at triplets of temporally

close frames a, b, c, and encourage the learned represen-

tation to have z(b) − z(a) ≈ z(c) − z(b). We develop a

regularizer that uses contrastive loss over tuples of frames to

achieve such mappings with CNNs. Whereas slow feature

learning insists that the features not change too quickly, the

proposed steady learning insists that—in whichever way the

features are evolving—they continue to evolve in that same

way in the immediate future. See Figure 1.

We hypothesize that higher-order temporal coherence

could provide a valuable prior for recognition by embedding

knowledge of the rich dynamics of the visual world into

the feature space. We empirically verify this hypothesis us-

ing five datasets for a variety of recognition tasks, including

object instance recognition, large-scale scene recognition,

and action recognition from still images. In each case, by

augmenting a small set of labeled exemplars with unlabeled

video, the proposed method generalizes better than both a

standard discriminative CNN as well as a CNN regularized

with existing slow temporal coherence metrics [14, 30]. Our

results reinforce that unsupervised feature learning from un-

constrained video is an exciting direction, with promise to

offset the large labeled data requirements of current state-

of-the-art computer vision approaches by exploiting virtu-

ally unlimited unlabeled video.

2. Related Work

To build a robust object recognition system, the image

representation must incorporate some degree of invariance

to changes in pose, illumination, and appearance. While

invariance can be manually crafted, such as with spatial

pooling operations or gradient descriptors, it may also be

learned. One approach often taken in the convolutional neu-

ral network (CNN) literature is to pad the training data by

systematically perturbing raw images with label-preserving

transformations (e.g., translation, scaling, intensity scaling,

etc.) [36, 38, 8]. A good representation will ensure that the

jittered versions originating from the same content all map

close by in the learned feature space.

In a similar spirit, unlabeled video is an appealing re-

source for recovering invariance. The simple fact that things

typically cannot change too quickly from frame to frame

makes it possible to harvest sets of sequential images whose

learned representations ought not to differ substantially.

Slow feature analysis (SFA) [42, 16] leverages this notion

to learn features from temporally adjacent video frames.

Recent work uses CNNs to explore the power of learn-

ing slow features, also referred to as “temporally coher-

ent” features [30, 3, 46, 12, 41]. The existing methods ei-

ther produce a holistic image embedding [30, 3, 12, 14],

or else track local patches to learn a localized representa-

tion [46, 47, 41]. Most methods exploit the learned fea-

tures for object recognition [30, 46, 3, 41], while others em-

ploy them for dimensionality reduction [14] or video frame

retrieval [12]. In [30], a standard deep CNN architecture

is augmented with a temporal coherence regularizer, then

trained using video of objects on clean backgrounds rotat-

ing on a turntable. The method of [3] builds on this con-

cept, proposing the use of decorrelation to avoid trivial so-

lutions to the slow feature criterion, with applications to

handwritten digit classification. The authors of [12] pro-

pose injecting an auto-encoder loss and explore training

with unlabeled YouTube video. Building on SFA subspace

ideas [42], researchers have also examined slow features for

action recognition [45], facial expression analysis [44], fu-

ture prediction [39], and temporal segmentation [31, 27].

Related to all the above methods, we aim to learn fea-

tures from unlabeled video. However, whereas all the past

work aims to preserve feature slowness, our idea is to pre-

serve higher order feature steadiness. Our learning objec-

tive is the first to move beyond adjacent frame neighbor-

hoods, requiring not only that sequential features change

gradually, but also that they change in a similar manner in

adjacent time intervals.

Another class of methods learns transformations [29,

28, 33]. Whereas the above feature learning methods (and

ours) train with unlabeled video spanning various unspeci-

fied transformations, these methods instead train with pairs

of images for which the transformation is known and/or

consistent. Then, given a novel input, the model can be used

to predict its transformed output. Rather than use learned

transformations for extrapolation like these approaches, our
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goal is to exploit transformation patterns in unlabeled video

to learn features that are useful for recognition.

Aside from inferring the transformation that implicitly

separates a pair of training instances, another possibility is

to explicitly predict the transformation parameters. Recent

work considers how the camera’s ego-motion (e.g., as ob-

tained from inertial sensors, GPS) can be exploited as su-

pervision during CNN training [17, 2]. These methods also

lack the higher-order relationships we propose. Further-

more, they require training data annotated with camera/ego-

pose parameters, which prevents them from learning with

“in the wild” videos (like YouTube) for which the camera

was not instrumented with external sensors to record motor

changes. In contrast, our method is free to exploit arbitrary

unlabeled video data.

Several recent papers [5, 40, 13] have trained unsuper-

vised image representations targeting specific narrow tasks.

[5] learn efficient generative codes to synthesize images,

while [40] learn features to predict pixel-level optical flow

maps for video frames. Contemporary with an earlier ver-

sion of our work [18], [13] proposed to learn features that

vary linearly in time, for the specific task of extrapolating

future video frames given a pair of past frames. They re-

port qualitative results for toy video frame synthesis. While

our formulation also encourages collinearity in the feature

space, our aim is to learn generally useful features from real

videos without supervision, and we report results on natural

image scene, object, and action recognition tasks.

3. Approach

Given auxiliary raw unlabeled video, we wish to learn an

embedding amenable to a supervised classification task. We

pose this as a feature learning problem in a convolutional

neural network, where the hidden layers of the network are

tuned not only with the backpropagation gradients from a

classification loss, but also with gradients computed from

the unlabeled video that exploit its temporal steadiness.

3.1. Notation and framework overview

A supervised training dataset S = {(xi,yi)} provides

target class labels yi ∈ Y = [1, 2, .., C] for images xi ∈
X (represented in pixel space). The unsupervised training

dataset U = {xt} consists of ordered video frames, where

xt is the video frame at time instant t.1

Importantly, we do not assume that the video U necessar-

ily stems from the same categories or even the same domain

as images in S . For example, in results we will demonstrate

cases where S and U consist of natural scene images and

autonomous vehicle video, respectively; or Web photos of

1For notational simplicity, we will describe our method assuming that

the unsupervised training data is drawn from a single continuous video, but

it is seamless to train instead with a batch of unlabeled video clips.

human actions and YouTube video spanning dozens of dis-

tinct activities. The idea is that training with diverse unla-

beled video should allow the learner to recover fundamental

cues about how objects move, how scenes evolve over time,

how occlusions occur, how illumination varies, etc., inde-

pendent of their specific semantic content.

The full image-pixels-to-class label classifier we learn

will have the compositional form ŷθ,W = fW ◦zθ(.), where

zθ : X → RD is a D-dimensional feature map operating

on images in the pixel space, and fW : RD → Y takes as

input the feature map zθ(x), and outputs the class estimate.

We learn a linear classifier fW represented by a C × D
weight matrix W with rows w1, . . . ,wC . At test time, a

novel image is classified as ŷθ,W = argmaxi w
T
i zθ(x).

To learn the classifier ŷθ,W , we optimize an objective

function of the form:

(θ∗,W ∗) = argmin
θ,W

Ls(θ,W,S) + λLu(θ,U), (1)

where Ls(.) represents the supervised classification loss,

Lu(.) represents an unsupervised regularization loss term,

and λ is the regularization hyperparameter. The parameter

vector θ is common to both losses because they are both

computed on the learned feature space zθ(.). The super-

vised loss is a softmax loss:

Ls(θ,W,S) = −
1

Ns

Ns∑

i=1

log(σyi
(Wzθ(xi)), (2)

where σyi
(.) is the softmax probability of the correct class

and Ns is the number of labeled training instances in S .

In the following, we first discuss how the unsupervised

regularization loss Lu(.) may be constructed to exploit tem-

poral smoothness in video (Sec 3.2). Then we generalize

this to exploit temporal steadiness and other higher order

coherence (Sec 3.3). Sec 3.4 then shows how a neural net-

work corresponding to ŷθ,W may be trained to minimize

Eq (1) above.

3.2. Review: First­order temporal coherence

As discussed above, slow feature analysis (SFA) [42]

seeks to learn image features that vary slowly over the

frames of a video, with the aim of learning useful invari-

ances. This idea of exploiting “slowness” or “temporal co-

herence” for feature learning has been explored in the con-

text of neural networks [30, 14, 3, 46, 12]. We briefly re-

view that underlying objective before introducing the pro-

posed higher order generalization of temporal coherence.

A temporal neighbor pair dataset U2 is first constructed

from the unlabeled video U , as follows:

U2 = {〈(j, k), pjk〉 :xj ,xk ∈ U and

pjk = ✶(0 ≤ j − k ≤ T )}, (3)
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where T is the temporal neighborhood size, and the sub-

script 2 signifies that the set consists of pairs. U2 indexes

image pairs with neighbor-or-not binary annotations pjk,

automatically extracted from the video. We discuss the set-

ting of T in results. In general, one wants the time window

spanned by T to include motions that are small enough to

be label-preserving, so that correct invariances are learned;

in practice this is typically on the order of a second or less.

With this dataset, the SFA property translates as

zθ(xj) ≈ zθ(xk), ∀pjk = 1. A simple formulation of this

as an unsupervised regularizing loss would be as follows:

R′
2(θ,U) =

∑

(j,k)∈N

d(zθ(xj), zθ(xk)), (4)

where d(., .) is a distance measure (e.g., ℓ1 in [30] and

ℓ2 in [14]), and N ⊂ U2 denotes the subset of “posi-

tive” neighboring frame pairs i.e. those for which pjk = 1.

This loss by itself admits problematic minimizers such as

zθ(x) = 0, ∀x ∈ X , which corresponds to R′
2 = 0.

Such solutions may be avoided by a contrastive [14] ver-

sion of the loss function that also exploits “negative” (non-

neighbor) pairs:

R2(θ,U) =
∑

(j,k)∈U2

Dδ(zθ(xj), zθ(xk), pjk)

=
∑

(j,k)∈U2

pjk d(zθj , zθk) + pjk max(δ − d(zθj , zθk), 0),

(5)

where zθi denotes zθ(xi) and p = 1− p. As shown above,

the contrastive loss Dδ(a, b, p) penalizes distance between

a and b when the pair are neighbors (p = 1), and encour-

ages distance between them when they are not (p = 0), up

to a margin δ.

3.3. Higher­order temporal coherence

The slow feature formulation of Eq (5) encourages fea-

ture maps that produce small first-order temporal deriva-

tives in the learned feature space: dzθ(xt)/dt ≈ 0. This

first-order temporal coherence is restricted to learning to ig-

nore small jitters in the visual signal.

Our idea is to model higher order temporal coherence

in the unlabeled video, so that the features can further cap-

ture rich structure in how the visual content changes over

time. In the general case, this means we want a regular-

izer that encourages higher order derivatives to be small:

dnzθ(xt)/dt
n ≈ 0, ∀n = 1, 2, ..N . Accordingly, we need

to generalize from pairs of temporally close frames to tuples

of frames.

In this work, we focus specifically on learning steady

features—the second-order case, which can be encoded

with triplets of frames, as we will see next. In a nutshell,

whereas slow learning insists that the features not change

too quickly, steady learning insists that feature changes in

the immediate future remain similar to those in the recent

past.

First, we create a triplet dataset U3 from the unlabeled

video U as:

U3 = {〈(l,m,n), plmn〉 : xl,xm,xn ∈ U and

plmn = ✶(0 ≤ m− l = n−m ≤ T )}. (6)

U3 indexes image triplets with binary annotations indicating

whether they are in-sequence, evenly spaced frames in the

video, within a temporal neighborhood T . In practice, we

select “negatives” (plmn = 0) from triplets where m− l ≤
T but n − m ≥ 2T to provide a buffer and avoid noisy

negatives.

We construct our steady feature analysis regularizer us-

ing these triplets, as follows:

R3(θ,U) =
∑

(l,m,n)∈U3

Dδ(zθl − zθm, zθm − zθn, plmn),

(7)
where zθl is again shorthand for zθ(xl) and Dδ refers to

the contrastive loss defined above. For positive triplets—

meaning those occurring in sequence and within a temporal

neighborhood—the above loss penalizes distance between

the adjacent pairwise feature difference vectors. For neg-

ative triplets, it encourages this distance, up to a maxi-

mum margin distance δ. Effectively, R3 encourages the

feature representations of positive triplets to be collinear i.e.

zθ(xl)− zθ(xm) ≈ zθ(xm)− zθ(xn). See Figure 1.

Our final optimization objective combines the first and

second order losses (Eq (5) and (7)) into the unsupervised

regularization term:

Lu(θ,U) = R2(θ,U) + λ′R3(θ,U), (8)

where λ′ controls the relative impact of the two terms. Re-

call this regularizer accompanies the classification loss in

the main objective of Eq (1).

Beyond second-order coherence: The proposed frame-

work generalizes naturally to the n-th order, by defining Rn

analogously to Eq (7) using a contrastive loss over (n− 1)-
th order discrete derivatives, computed over recursive dif-

ferences on n-tuples. While in principle higher n would

more thoroughly exploit patterns in video, there are poten-

tial practical drawbacks. As n grows, the number of sam-

ples |Un| would likely need to also grow to cover the space

of n-frame motion patterns, requiring more training time,

compute power, and memory. Besides, discrete n-th deriva-

tives computed over large n-frame time windows may grow

less reliable, assuming steadiness degrades over longer tem-

poral windows in typical visual phenomena. Given these

considerations, we focus on second-order steadiness com-

bined with slowness, and find that slow and steady does in-

deed win the race (Sec 4). The empirical question of apply-

ing n > 2 is left for future work.
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Figure 2: “Siamese” network configuration (shared weights for the zθ layer stacks) with portions corresponding to the 3 terms Ls, R2 and

R3 in our objective. R2 and R3 compose the unsupervised loss Lu in Eq (1). Ls is the supervised loss for recognition in static images.

Equivariance-inducing property of R3(θ,U): While

first-order coherence encourages invariance, the proposed

second-order coherence may be seen as encouraging the

more general property of equivariance. z(.) is equivariant

to an image transformation g if there exists some “simple”

function fg : RD → RD such that z(gx) ≈ fg(z(x)).
Equivariance has been found to be useful for visual rep-

resentations [15, 35, 25, 17]. To see how feature steadi-

ness is related to equivariance, consider a video with frames

xt, 1 ≤ t ≤ T . Given a small temporal neighborhood ∆t,
frames xt+∆t and xt must be related by a small transfor-

mation g (small because of first order temporal coherence

assumption) i.e. xt+∆t = gxt. Assuming second order co-

herence of video, this transformation g itself remains ap-

proximately constant in a small temporal neighborhood, so

that, in particular, xt+2∆t ≈ gxt+∆t.

Now, for equivariant features z(.), by the definition of

equivariance and the observations above, z(xt+2∆t) ≈
fg(z(xt+∆t)) ≈ fg ◦ fg(z(xt)). Further, given that g is

a small transformation, fg is well-approximated in a small

neighborhood by its first order Taylor approximation, so

that: (1) z(xt+∆t) ≈ z(xt) + c(t), and (2) z(xt+2∆t) ≈
z(xt) + 2c(t). In other words, under the realistic assump-

tion that natural videos evolve smoothly, within small tem-

poral neighborhoods, feature equivariance is equivalent to

the second order temporal coherence formulated in Eq (7),

with l,m, n set to t, t+∆t, t+2∆t respectively. This con-

nection between equivariance and the second order tempo-

ral coherence induced by R3 helps motivate why we can

expect our feature learning scheme to benefit recognition.

3.4. Neural networks for the feature maps

We use a convolutional neural network (CNN) archi-

tecture to represent the feature mapping function zθ(.).
The parameter vector θ represents the CNN’s learned layer

weight matrices. See Sec 4.1 and Supp for architecture

choices.

To optimize Eq (1) with the regularizer in Eq (8), we

employ standard mini-batch stochastic gradient descent (as

implemented in [19]) in a “Siamese” setup, with 6 replicas

of the stack zθ(.), as shown in Fig 2, 1 stack for Ls (input:

supervised training samples xi), 2 for R2 (input: tempo-

ral neighbor pairs (xj ,xk)) and 3 for R3 (input: triplets

(xl,xm,xn)). The shared layers are initialized to the same

random values and modified by the same gradients (sum of

the gradients of the 3 terms) in each training iteration, so

they remain identical throughout. See Supp for details.

4. Experiments

We test our approach using five challenging pub-

lic datasets for three tasks—object, scene, and action

recognition—spanning 432 categories. We also analyze its

ability to learn higher order temporal coherence with a se-

quence completion task.

4.1. Experimental setup

Our three recognition tasks (specified by the names of

the unsupervised and supervised datasets as U → S) are

NORB→NORB object recognition, KITTI→SUN scene

recognition and HMDB→PASCAL-10 single-image action

recognition. Table 1 (left) summarizes key dataset statistics.

Supervised datasets S: (1) NORB [24] has 972 images

each of 25 toys against clean backgrounds captured over a

grid of camera elevations and azimuths. (2) SUN [43] con-

tains Web images of 397 scene categories. (3) PASCAL-

10 [9] is a still-image human action recognition dataset with

10 categories. For all three datasets, we use few labeled

training images (see Table 1), since unsupervised regular-

ization schemes should have most impact when labeled data

is scarce [17, 30]. This is an important scenario, given the

“long tail” of categories lacking ample labeled exemplars.

Unsupervised datasets U : (1) NORB consists of pose-

registered turntable images (not video), but it is straightfor-

ward to generate the pairs and triplets for U2 and U3 assum-

ing smooth motions in the annotated pose space. We mine

these pairs and triplets from among the 648 images per class

that are not used for testing. (2) KITTI [10] has videos cap-

tured from a car-mounted camera in a variety of locations

around the city of Karlsruhe. Scenes are largely static ex-

cept for traffic, but there is large and systematic camera mo-

tion. (3) HMDB [23] contains 6849 short Web and movie

video clips containing 51 diverse actions. We select 1000

clips at random. While some videos include camera mo-

tion (e.g. to follow an athlete running), most have stationary

cameras and small human pose-change motions. The time

window T is a hyperparameter of both our method as well
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Task Img/frame dims #Classes Recog. Task #Train #Test Unsup. Input Type #Pairs (1:3) #Triplets (1:1)

NORB→NORB 96×96×1 25 object 150 8100 pose-reg. images 50,000 75,000

KITTI→SUN 32×32×1 397 scene 2382 7940 car-mounted video 100,000 100,000

HMDB→PASCAL-10 32×32×3 10 action 50 2000 web video 100,000 100,000

Datasets→ NORB KITTI HMDB

SFA-1 [30] 0.95 31.04 2.70

SFA-2 [14] 0.91 8.39 2.27

SSFA (ours) 0.53 7.79 1.78

Table 1: Left: Statistics for the unsupervised and supervised datasets (U → S) used in the recognition tasks (positive to negative ratios for

pairs and triplets indicated in headers). Right: Sequence completion normalized correct candidate rank η. Lower is better. (See Sec 4.2.)

as existing SFA methods. We fix T = 2 and T = 0.5 sec-

onds for KITTI and HMDB, respectively, based on cross-

validation for best performance by the SFA baselines.

Baselines: We compare our slow-and-steady feature anal-

ysis approach (SSFA) to four methods, including two key ex-

isting methods for learning from unlabeled video. The three

unsupervised baselines are: (1) UNREG: An unregularized

network trained only on the supervised training samples S .

(2) SFA-1: An SFA approach proposed in [30] that uses ℓ1
for d(.) in Eq 5. (3) SFA-2: Another SFA variant [14] that

sets the distance function d(.) to the ℓ2 distance in Eq 5.

The SFA methods train with the unlabeled pairs, while SSFA

trains with both the pairs and triplets.

These comparisons are most crucial to gauge the impact

of the proposed approach versus the state of the art for fea-

ture learning with unlabeled video. However, we are also

interested to what extent learning from unlabeled video can

even start to compete with methods learned from heavily la-

beled data (which costs substantial human effort). Thus, we

also compare against a supervised pretraining and finetun-

ing approach denoted SUP-FT (details in Sec 4.3).

Network architectures: For the NORB→NORB task,

we use a fully connected network architecture: input →
25 hidden units → ReLU nonlinearity → D=25 features.

For the other two tasks, we resize images to 32 × 32 to al-

low fast and thorough experimentation with standard CNN

architectures known to work well with tiny images [1], pro-

ducing D=64-dimensional features. Recognition tasks on

32×32 images are much harder than with full-sized im-

ages, so these are highly challenging tasks. All networks

are optimized with Nesterov-accelerated stochastic gradi-

ent descent until validation classification loss converges or

begins to increase. Optimization hyperparameters are se-

lected greedily through cross-validation in the following or-

der: base learning rate, λ and λ′ (starting from λ=λ′=0).

The relative scales of the margin parameters δ of the con-

trastive loss Dδ(.) in Eq (5) and Eq (7) are validated per

dataset. See Supp for more details on the 32×32 architec-

ture, data pre-processing and optimization.

4.2. Quantifying steadiness

First we use a sequence completion task to analyze

how well the desired steadiness property is induced in the

learned features. We compose a set of sequential triplets

from the pool of test images, formed similarly to the posi-

tives in Eq (6). At test time, given the first two images of

each triplet, the task is to predict what the third looks like.

We apply our SSFA to infer the missing triplet item as

follows. Recall that our formulation encourages sequen-

tial triplets to be collinear in the feature space. As a re-

sult, given zθ(x1) and zθ(x2), we can extrapolate zθ(x3)
as z̃θ(x3) = 2zθ(x2) − zθ(x1). To backproject to the im-

age space, we identify an image closest to z̃θ(x3) in feature

space. Specifically, we take a large pool C of candidate im-

ages, map them all to their features via zθ , and rank them

in increasing order of distance from z̃θ(x3). The rank r
of the correct candidate x3 is now a measure of sequence

completion performance. See Supp for details.

Tab 1 (right) reports the mean percentile rank η =
E[r/|C|] × 100 over all query pairs. Lower η is better.

Clearly, our SSFA regularization induces steadiness in the

feature space, reducing η nearly by half compared to base-

line regularizers on NORB and by large margins on HMDB

too. Our regularizer R3 is closely matched to this task, so

these gains are expected. Note however that these gains

are reported after training to minimize the joint objective,

which includes Ls and R2, apart from R3, and with regu-

larization weights tuned for recognition tasks.

Fig 3 shows sequence completion examples from all 3

video datasets. Particularly impressive results are the third

NORB example (where despite a difficult viewpoint, the se-

quence is completed correctly by the top-ranked candidate),

and the third HMDB example, where a highly dynamic

baseball pitch sequence is correctly completed by the third

ranked image. The top-ranked candidate for this example il-

lustrates a common failure mode—the second image of the

query pair is itself picked to complete the sequence. This

may reflect the fact that HMDB sequences in particular ex-

hibit very little motion (camera motions rare, mostly small

object motions). Usually, as in the third KITTI example,

even the top-ranked candidates other than the ground truth

frame are highly plausible completions.

4.3. Recognition results

Unlabeled video as a prior for supervised recognition:

Now we report results on the 3 unsupervised-to-supervised

recognition tasks. Table 2 shows the results. Our SSFA

method comprehensively outperforms not only the purely

supervised UNREG baseline, but also the popular SFA-1 and
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NORB KITTI HMDB

Figure 3: Sequence completion examples from all three video datasets. In each instance, a query pair is presented on the left, and the top

three completion candidates as ranked by our method are presented on the right. Ground truth frames are marked with black highlights.

Task type→ Objects Scenes Actions

Datasets→ NORB→NORB KITTI→SUN HMDB→PASCAL-10

Methods↓ [25 cls] [397 cls] [397 cls, top-10] [10 cls]

random 4.00 0.25 2.52 10.00

UNREG 24.64±0.85 0.70±0.12 6.10±0.67 15.34±0.28

SFA-1 [30] 37.57±0.85 1.21±0.14 8.24±0.25 19.26±0.45

SFA-2 [14] 39.23±0.94 1.02±0.12 6.78±0.32 19.04±0.24

SSFA (ours) 42.83±0.33 1.65±0.04 9.19±0.10 20.95±0.13

Table 2: Recognition results (mean ± standard error of accuracy

% over 5 repetitions) (Sec 4.3). Our method outperforms both ex-

isting slow feature/temporal coherence methods and the unregular-

ized baseline substantially, across three distinct recognition tasks.

SFA-2 slow feature learning approaches, beating the best

baseline for each task by 9%, 36% and 9% respectively.

The results on KITTI→SUN and HMDB→PASCAL-10

are particularly impressive because the unsupervised and

supervised dataset domains are mismatched. All KITTI

data comes from a single car-mounted road-facing cam-

era driving through the streets of one city, whereas SUN

images are downloaded from the Web, captured by differ-

ent cameras from diverse viewpoints, and cover 397 scene

categories mostly unrelated to roads. PASCAL-10 images

are bounding-box-cropped and therefore centered on single

persons, while HMDB videos, which are mainly clips from

movies and Web videos, often feature multiple people, are

not as tightly focused on the person performing the action,

and are of low quality, sometimes with overlaid text etc.

Aside from the diversity of tasks (object, scene, and ac-

tion recognition), our unsupervised datasets also exhibit di-

verse types of motion. NORB is generated from planned,

discrete camera manipulations around a central object of

interest. The KITTI camera moves through a real largely

static landscape in smooth motions on roads at varying

speeds. HMDB videos on the other hand are usually cap-

tured from stationary cameras with a mix of large and small

foreground and background object motions. Even the dy-

namic camera videos in HMDB are sometimes captured

from hand-held devices leading to jerky motions, where our

temporal steadiness assumptions might be stressed.

Pairing unsupervised and supervised datasets: Thus

far, our pairings of unsupervised and supervised datasets

reflect our attempt to learn from video that a priori seems

related to the ultimate recognition task, e.g. HMDB human

action videos are paired with PASCAL-10 Action still im-

ages. However, as discussed above, the domains are only

roughly aligned. Curious about the impact of the choice

of unlabeled video data, we next try swapping out HMDB

for KITTI in the PASCAL action recognition task. On this

new KITTI→PASCAL task, we still easily outperform our

nearest baseline, although our gain drops by ≈ 0.9% (SFA-

2:19.06% vs. our SSFA:20.01%). Despite the fact that the

human motion dynamics of HMDB ostensibly match the ac-

tion recognition task better than the egomotion dynamics of

KITTI (where barely any people are visible), we maintain

our advantage over the purely slow methods. This indicates

that there is reasonable flexibility in the choice of unlabeled

videos fed to SSFA.

Increasing supervised training sets: Thus far, we have

kept labeled sets small to simulate the “long tail” of cate-

gories with scarce training samples where priors like ours

and the baselines’ have most impact. In a preliminary study

for larger training pools, we now increase SUN training

set sizes from 6 to 20 samples per class for KITTI→SUN.

Our method retains a 20% gain over existing slow methods

(SSFA: 3.24% vs SFA-2: 2.65%). This suggests our ap-

proach is valuable even with larger supervised training sets.

Varying unsupervised training set size: To observe the

effect of unsupervised training set size, we now restrict

SSFA to use varying-sized subsets of unlabeled video on the

HMDB→PASCAL-10 task. Performance scales roughly

log-linearly with the duration of video observed,2 suggest-

ing that even larger gains may be achieved simply by train-

ing SSFA with more freely available unlabeled video.

Purely unsupervised feature learning: We now evalu-

ate the usefulness of features trained to optimize the un-

supervised SSFA loss Lu (Eq (8)) alone. Features trained

on HMDB are evaluated at various stages of training, on

2At 3, 12.5, 25, and 100% resply. of the full unlabeled dataset (≈32k

frames), performance is 18.06, 19.74, 20.36, and 20.95% (see Supp)

3858



Extra supervision for SUP-FT
×10

4

0 1 2 3 4 5

A
c
c
u
ra

c
y

14

16

18

20

22
PASCAL-10 Actions

SUP-FT
SSFA (ours)
SFA-2
SFA-1

Extra supervision for SUP-FT
×10

4

0 1 2 3 4 5

A
c
c
u

ra
c
y

0.5

1

1.5

2

2.5
SUN Scenes

SUP-FT
SSFA (ours)
SFA-2
SFA-1

Figure 4: Comparison to CIFAR-100 supervised pretraining SUP-

FT, at various supervised training set sizes. Flat dashed lines re-

flect that our method (and SFA) always use zero additional labels.

the task of k-nearest neighbor classification on PASCAL-

10 (k =5, and 100 training images per action). Start-

ing at ≈ 17.8% classification accuracy for randomly ini-

tialized networks, unsupervised SSFA training steadily im-

proves the discriminative ability of features to 19.62, 20.32

and 22.14% after 1, 2 and 3 passes respectively over train-

ing data (see Supp). This shows that SSFA can train useful

image representations even without jointly optimizing a su-

pervised objective.

Comparison to supervised pretraining and finetuning:

Recently, a two-stage supervised pretraining and finetun-

ing strategy (SUP-FT) has emerged as the leading approach

to solve visual recognition problems with limited training

data where high-capacity models like deep neural networks

may not be directly learned [11, 7, 32, 20]. In the first

stage (“supervised pretraining”), a neural network “NET1”

is first trained on a related problem for which large training

datasets are available. In a second stage (“finetuning”), the

weights from NET1 are used to initialize a second network

(“NET2”) with similar architecture. NET2 is then trained

on the target task, using reduced learning rates to minimally

modify the features learned in NET1.

In principle, completely unsupervised feature learning

approaches like ours have important advantages over the

SUP-FT paradigm. In particular, (1) they can leverage es-

sentially infinite unlabeled data without requiring expensive

human labeling effort thus potentially allowing the learning

of higher capacity models and (2) they do not require the

existence of large “related” supervised datasets from which

features may be meaningfully transferred to the target task.

While the pursuit of these advantages continues to drive vig-

orous research, unsupervised feature learning methods still

underperform supervised pretraining for image classifica-

tion tasks, where great effort has gone into curating large

labeled databases, e.g., ImageNet [6], CIFAR [21].

As a final experiment, we examine how the proposed un-

supervised feature learning idea competes with the popular

supervised pretraining model. To this end, we adopt the

CIFAR-100 dataset consisting of 100 diverse object cate-

gories as a basis for supervised pretraining.3 The new base-

3We choose CIFAR-100 for its compatibility with the 32 × 32 images

line SUP-FT trains NET1 on CIFAR (see Supp), then fine-

tunes NET2 for either PASCAL-10 action or SUN scene

recognition tasks using the exact same (few) labeled in-

stances given to our method. In parallel, our method “pre-

trains” only via the SSFA regularizer learned with unlabeled

HMDB / KITTI video respectively for the two tasks. Our

method uses zero labeled CIFAR data.

Fig 4 shows the results. On PASCAL-10 action recog-

nition (left), our method significantly outperforms SUP-FT

pretrained with all 50,000 images of CIFAR-100! Gather-

ing image labels from the crowd for large multi-way prob-

lems can take on average 1 minute per image [34], meaning

we are getting better results while also saving ∼ 830 hours

of human effort. On SUN scene recognition (right), SSFA

outperforms SUP-FT with 5K labels and remains competi-

tive even when the supervised method has a 17,500 label

advantage. However, SUP-FT-50K’s advantage on the SUN

task is more noticeable; its gain is similar to our gain over

the best slow-feature method.

The upward trend in accuracy for SUP-FT with more

CIFAR-100 labeled data indicates that it successfully trans-

fers generic recognition cues to the new tasks. On the other

hand, the fact that it fares worse on PASCAL actions than

SUN scenes reinforces that supervised transfer depends on

having large curated datasets in a strongly related domain.

In contrast, our approach successfully “transfers” what it

learns from purely unlabeled video. In short, our method

can achieve better results with substantially less supervi-

sion. More generally, we view it as an exciting step towards

unlabeled video bridging the gap between unsupervised and

supervised pretraining for visual recognition.

5. Conclusion

We formulated an unsupervised feature learning ap-

proach that exploits higher order temporal coherence in un-

labeled video, and demonstrated its powerful impact for

several recognition tasks. Despite over 15 years of research

surrounding slow feature analysis (SFA), its variants and ap-

plications, to the best of our knowledge, we are the first

to identify that SFA is only the first order approximation

of a more general temporal coherence idea. This basic ob-

servation leads to our intuitive approach that can be easily

plugged into applications where first order temporal coher-

ence has already been found useful [30, 3, 46, 12, 41, 14,

45, 44, 31, 27]. To our knowledge, ours are the first re-

sults where unsupervised learning from video actually sur-

passes the accuracy of today’s favored approach, heavily

supervised pretraining.
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used throughout our results, which let us leverage standard CNN architec-

tures known to work well with tiny images [1].
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