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Abstract

Lineage tracing, the tracking of living cells as they move

and divide, is a central problem in biological image analysis.

Solutions, called lineage forests, are key to understanding

how the structure of multicellular organisms emerges. We

propose an integer linear program (ILP) whose feasible solu-

tions define, for every image in a sequence, a decomposition

into cells (segmentation) and, across images, a lineage forest

of cells (tracing). In this ILP, path-cut inequalities enforce

the morality of lineages, i.e., the constraint that cells do not

merge. To find feasible solutions of this NP-hard problem,

with certified bounds to the global optimum, we define ef-

ficient separation procedures and apply these as part of a

branch-and-cut algorithm. To show the effectiveness of this

approach, we analyze feasible solutions for real microscopy

data in terms of bounds and run-time, and by their weighted

edit distance to lineage forests traced by humans.

1. Introduction

Phenomenal progress in microscopy allows biologists to

image large numbers of living cells as they move and di-

vide [30, 45]. Such observations are essential in develop-

mental biology for studying embryogenesis and tissue for-

mation [31, 33, 37]. Consequently, the tracing of cells and

their lineages in sequences of images has become a central

problem in biological image analysis [4, 5, 29].

The lineage tracing problem consists of two sub-problems.

The first sub-problem is to identify the cells in every indi-

vidual image. The second sub-problem is to connect every

cell identified in an image to the same cell and descendant

cells identified in subsequent images. A joint solution of

both sub-problems is a set of pairwise disjoint lineage trees

(depicted in Fig. 1, in red and green) whose nodes are cells.

The first sub-problem is an image decomposition problem:

If every pixel shows a part of a cell and no pixel shows a

background, the objective is to decompose the pixel grid

graph of the image into precisely one component per cell.

If pixels potentially show background, the objective is to
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Figure 1: Given a sequence of images, taken at consecutive points in

time, and given a decomposition of each image into cell fragments

(depicted above as nodes), the objective of lineage tracing is to join

fragments of the same cell within and across images, e.g. {a, b} and

{c, d}, and to join fragments of descendant cells across images, e.g.

{d, e}. Joins (cuts) are depicted as solid (dotted) lines. Fragments

of dividing cells are depicted as black nodes.

jointly select and decompose a subgraph of the pixel grid

graph such that there is precisely one component for each

cell and no component for the background.

The second sub-problem is a cell tracking problem: The

objective is to connect every cell detected in one image to

the same cell and descendant cells identified in subsequent

images. A joint solution of both sub-problems is constrained

by prior knowledge. In particular, every cell has at most one

direct progenitor cell, i.e., cells do not merge. Moreover,

no cell splits into more than two cells at once. Yet, a cell

can appear without a direct progenitor cell when entering

the field of view, and a cell can disappear when dying or

leaving the field of view. Finally, it can appear as if a cell

was dividing into more than two cells at once if the temporal

resolution is too low to separate consecutive divisions.

It is understood that errors in the image decomposition

make it harder to reconstruct the true lineage forest. At-

tempts at reconstructing the lineage forest can help to avoid

such errors. Thus, we state a joint optimization problem

whose feasible solutions define, for every image, a decompo-

sition (segmentation) into cells and, across images, a lineage

forest. Unlike in prior work, we do not constrain the set of

decompositions, except by contracting pixels to superpixels.
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2. Related Work

The image decomposition problem has been tackled by

various abstractions in the form of optimization problems

including the minimum cost spanning forest problem, i.e.,

agglomerative clustering [1], balanced cut problems, i.e.,

spectral clustering [10, 43], and the minimum cost mul-

ticut problem, i.e., correlation clustering [34]. We build

on its formulation as a minimum cost multicut problem,

an optimization problem studied in [16, 18] which is NP-

hard [12, 17] and has been used for image segmentation

in [3, 7, 8, 9, 11, 13, 14, 25, 26, 27, 32, 34, 52, 51].

The lineage forest reconstruction problem has been cast

as an optimization problem in [21, 24, 28, 39, 41, 46, 47, 48,

49]. If cells neither die nor enter or leave the field of view

and if one drops the constraint that cells split into at most

two direct descendant cells, the problem can be formulated

as a minimum cost k disjoint arborescence problem [42,

Section 53.9], as shown in [48, 49]. Here, k is the number of

cells visible in the first image. This problem can be solved in

strongly polynomial time [20]. With the additional constraint

that cells split into at most two descendant cells, the problem

becomes NP-hard, and so do generalizations [21, 24, 28, 39,

41, 46, 47] that model, e.g., the (dis)appearance of cells.

One lineage tracing approach [28] copes with imperfect

decompositions by over-segmenting individual images. This

guarantees that every cell is represented by at least one com-

ponent and that every component represents at most one

cell. Advantageous there is the fact that the true lineage

forest is represented by at least one set of disjoint arbores-

cences. Disadvantageous is the loss of robustness: For the

true decomposition, every component belongs to precisely

one arborescence and thus, every error in the set of disjoint

arborescences implies at least a second error. This renders

solutions robust to perturbations of the objective function.

For an over-segmentation, this property is lost. Another dis-

advantage is the fact that the number of progenitor cells is

not determined by the number of components of the first

image. Over-estimates result in excessive arborescences that

typically conflict with correct ones. Under-estimates result

in a loss of lineage trees. As in [28], we consider an over-

decomposition of each image into cell fragments. In contrast

to [28] where each node of a lineage forest is a single rep-

resentative fragment, each node in the lineage forests we

consider is a clusters of fragments. This idea of clustering

instead of selecting has been used in [44] to track multiple

people in a video sequence. The optimization problem de-

fined in [44] is a hybrid of a minimum cost multicut problem

and a disjoint path problem. The optimization problem we

propose here is a hybrid of a minimum cost multicut problem

and a disjoint arborescence problem.

Two techniques have been proposed to deal with over

and under-decomposition simultaneously: The first [41] is

to allow single image components to represent multiple cells
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Figure 2: Depicted above are examples (graphs and 01-labelings of

edges) in which inequalities (1)-(3) are violated. (a) An inequality

(1) is violated iff there exist t ∈ N and a cycle Y in Gt in which

precisely one edge is labeled 1. (b) An inequality (2) is violated

iff there exist t ∈ N, an edge {v, w} ∈ Et,t+1 labeled 1 and

a path in G+

t connecting v to w in which all edges are labeled

0. (c) An inequality (3) is violated iff there exist t ∈ T and

nodes vt, wt ∈ Vt and vt+1, wt+1 ∈ Vt+1 connected by edges

{vt, vt+1}, {wt, wt+1} ∈ Et,t+1 labeled 0, such that vt and wt

are separated by a cut in Gt with all edges labeled 1 and vt+1 and

wt+1 are connected by a path in Gt+1 with all edges labeled 0.

and thus be part of multiple lineages. This relaxation of the

disjointness constraint of the arborescence problem intro-

duces additional feasible solutions that can represent the true

lineage forest even in the presence of under-decomposition.

The same idea is used in [47] for the reconstruction of curvi-

linear structures and in [50] for the tracking of objects in

containers. The second technique [21, 24, 40] considers a

hierarchy of alternative decompositions and casts lineage

tracing as an optimization problem whose feasible solutions

select and connect components from the hierarchy. Con-

straints guarantee that selected components are mutually

consistent and consistent with a set of disjoint lineages. As

in [21, 24], the feasible solutions we propose define, for

every image, a decomposition into cells and, across images,

a lineage forest. In contrast to prior work, we do not con-

strain the set of decompositions, except by contracting pixels

to superpixels. We compare our experimental results to a

state-of-the-art software system for lineage tracing [2].

Unlike in the work discussed above, feasible lineages and

costs of feasible lineages can be defined recursively, as in

particle filtering. Cf. [15] for a recent comprehensive com-

parison and [5] for a recent application to lineage tracing.

3. Optimization Problem

In this section, we cast lineage tracing as an optimization

problem that we call moral lineage tracing. In Section 3.1,

we define the set of feasible solutions. In Section 3.2, we

define the objective function and optimization problem.

3.1. Feasible Set

In order to encode a combinatorial number of feasible

lineage forests, we define a hypothesis graph. In a hypothe-
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sis graph, every node corresponds to one superpixel of one

image in a sequence and is referred to as a cell fragment

(Def. 1). In order to encode a single feasible lineage forest,

we define a lineage graph (Def. 2). A lineage graph is a

subgraph of the hypothesis graph that defines, within each

image, a clustering of cell fragments into cells and, across

images, a lineage forest of cells (Lemma 1). In order to

state in the form of an ILP an optimization problem whose

feasible solutions are lineage graphs, we identify the charac-

teristic functions of lineage graphs with 01-labelings of the

edges of the hypothesis graph that satisfy a system of linear

inequalities (Lemma 2).

Definition 1 A hypothesis graph is a node-labeled graph1

G = (V,E, τ) in which every edge {v, w} ∈ E holds

|τ(v) − τ(w)| ≤ 1. Every v ∈ V is called a (cell) frag-

ment, and τ(v) is called its time index.

The intuition is this: For any distinct fragments v, w ∈ V
with τ(v) = τ(w), the presence of the edge {v, w} ∈ E in-

dicates the possibility that v and w are fragments of the same

cell. For any fragments v, w ∈ V with τ(w) = τ(v)+1, the

presence of the edge {v, w} ∈ E indicates the possibility

that v and w are fragments of the same cell, observed at

successive points in time, as well as the possibility that v is

a fragment of a progenitor cell of the cell of w.

Next, we characterize those subgraphs of a hypothesis

graph that we consider as feasible solutions. For clarity, we

propose some notation: For every t ∈ N, let Vt := τ−1(t)
the set of all fragments having the time index t. Let Gt =
(Vt, Et) be the subgraph of G induced by Vt. Let Et,t+1 :=
{{v, w} ∈ E|v ∈ Vt ∧ w ∈ Vt+1} be the set of those edges

of G that connect a fragment v having the time index t to a

fragment w having the time index t+1. Let G+
t = (V +

t , E+
t )

be the subgraph of G induced by V +
t := Vt ∪ Vt+1. Finally,

let V≥t := ∪∞
t′=tVt′ be the fragments of at least time index t,

and E≥t := ∪∞
t′=t(Et′ ∪ Et′,t′+1) the set of all edges of G

between such fragments.

Definition 2 For every hypothesis graph G = (V,E, τ), a

set C ⊆ E is called a lineage cut of G, and (V, C̄) with

C̄ := E \ C is called a lineage (sub)graph of G, iff the

following conditions hold:

1. For every t ∈ N, the set Et ∩ C is a multicut2 of Gt

2. For every t ∈ N and every {v, w} ∈ Et,t+1 ∩C, v and

w are not connected by any path in the graph (V +
t , E+

t ∩ C̄)
3. For every t ∈ N, any vt, wt ∈ Vt and any vt+1, wt+1 ∈

Vt+1 such that {vt, vt+1} ∈ E∩C̄ and {wt, wt+1} ∈ E∩C̄,

and for any path in (V,Et+1 ∩ C̄) from vt+1 to wt+1, there

exists a path in (V,Et ∩ C̄) from vt to wt.

1All graphs are assumed to be finite, simple and undirected. A node

labeling of a graph (V,E) is a map τ : V → N.
2A multicut of Gt = (Vt, Et) is a subset M ⊆ Et of edges such that,

for every cycle Y in Gt: |M ∩ Y | 6= 1 [16].

If these conditions are satisfied then, for every t ∈ N and

every non-empty, maximal connected subgraph (V ′
t , E

′
t) of

(Vt, Et ∩ C̄), its node set V ′
t is called a cell at time index t.

A lineage cut and lineage subgraph are called binary iff,

in addition to Conditions 1–3, it holds:

4. For every t ∈ N, every cell V ′
t ⊆ Vt is connected in

the lineage subgraph to at most two distinct cells at t+ 1.

An intuition for Conditions 1–3 is offered by Lemma 1

and the proof.

Lemma 1 For every t ∈ N, a lineage graph well-defines a

decomposition of Gt whose components are the cells at time

index t. Across time, a lineage graph well-defines a (lineage)

forest of cells.

PROOF Condition 1 guarantees that every subgraph defin-

ing a cell is node-induced, i.e., for every t ∈ N and every

{v, w} ∈ Et: {v, w} ∈ C̄ iff v and w are fragments of the

same cell. Condition 2 guarantees, for every t ∈ N, every

cell V ′
t at time index t, and every cell V ′

t+1 at time index

t+ 1 that either all edges of G between V ′
t and V ′

t+1 are in

C̄, or none. Condition 3 guarantees, for every t ∈ N and

every distinct cells V ′
t , V

′′
t at time index t that these are not

connected in (V,E+
t ∩C̄) to the same cell at time index t+1.

This guarentees, by induction, that V ′
t , V

′′
t are not connected

by any path in the graph (V≥t, E≥t ∩ C̄). This guarantees

that distinct cells never merge. ✷

Lemma 2 For every hypothesis graph G = (V,E, τ) and

every x ∈ {0, 1}E , the set x−1(1) of edges labeled 1 is a

lineage cut of G iff x satisfies the linear inequalities (1)–(3)

stated below. It is sufficient in (1) to consider only chordless

cycles. Moreover, the lineage cut is binary iff, in addition, x
satisfies the linear inequality (4).

∀t ∈ N ∀Y ∈ cycles(Gt) ∀e ∈ Y :

xe ≤
∑

e′∈Y \{e}

xe′ (1)

∀t ∈ N ∀{v, w} ∈ Et,t+1 ∀P ∈ vw-paths(G+
t ) :

xvw ≤
∑

e∈P

xe (2)

∀t ∈ N ∀{vt, vt+1}, {wt, wt+1} ∈ Et,t+1

∀T ∈ vtwt-cuts(Gt) ∀P ∈ vt+1wt+1-paths(Gt+1) :

1−
∑

e∈T

(1− xe) ≤ xvtvt+1
+ xwtwt+1

+
∑

e∈P

xe (3)

∀t ∈ N ∀v ∈ Vt ∀w1, w2, w3 ∈ Vt+1

∀P1 ∈ vw1-paths(G+
t ) ∀P2 ∈ vw2-paths(G+

t )

∀P3 ∈ vw3-paths(G+
t ) ∀C12 ∈ w1w2-cuts(Gt+1)

∀C23 ∈ w2w3-cuts(Gt+1) ∀C13 ∈ w1w3-cuts(Gt+1)

1−
∑

e∈C12∪C23∪C13

(1− xe) ≤
∑

e∈P1∪P2∪P3

xe (4)
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A proof of Lemma 2 is given in the supplement. Com-

plementary to the proof, a discussion of (dis)connectedness

w.r.t. a multicut can be found in [6].

Here, the set of all x ∈ {0, 1}E that satisfy (1)–(4) is de-

noted by XG. Examples of violated inequalities are depicted

in Fig. 2. Note that the path-cut inequalities (3) guarantee

that any fragmets of the same cell at time t + 1 cannot be

joined with fragments of distinct cells at time t, i.e., morality.

3.2. Objective Function

Definition 3 A priced hypothesis graph is a tuple (V,E, τ,
c, c+, c−) with (V,E, τ) a hypothesis graph, c : E → R and

c+, c− : V → R
+
0 . For every e ∈ E, ce is called the cut cost

of e. For every v ∈ V , c+v and c−v are called the appearance

and disappearance cost of v, respectively.

The optimization problem we propose is defined below

in the form of an ILP w.r.t. a priced hypothesis graph G =
(V,E, τ, c, c+, c−). This ILP has the following properties:

Every feasible solutions defines a lineage subgraph of G.

For every {v, w} = e ∈ E, the objective function assigns

the cost (or reward) ce to all lineage graphs in which the

cell fragments v and w belong to distinct cells. For every

t ∈ N and every v ∈ Vt+1, the objective function assigns

the (appearance) cost c+v to all lineage graphs in which the

fragment v is not joined with any fragment in Vt. For every

t ∈ N and every v ∈ Vt, the objective function assigns the

(disappearance) cost c−v to all lineage graphs in which the

fragment v is not joined with any fragment in Vt+1.

Definition 4 For any priced hypothesis graph G = (V,E, τ,
c, c+, c−), the instance of the moral lineage tracing problem

w.r.t. G is the ILP in x ∈ {0, 1}E and x+, x− ∈ {0, 1}V

written below.

min
x,x+,x−

∑

e∈E

cexe +
∑

v∈V

c+v x
+
v +

∑

v∈V

c−v x
−
v (5)

subject to x ∈ XG (6)

∀t ∈ N ∀v ∈ Vt+1 ∀T ∈ Vtv-cuts(G+
t ) :

1− x+
v ≤

∑

e∈T

(1− xe) (7)

∀t ∈ N ∀v ∈ Vt ∀T ∈ vVt+1-cuts(G+
t ) :

1− x−
v ≤

∑

e∈T

(1− xe) (8)

If, in an inequality of (7), all edges in the cut T are labeled

1, then x+
v = 1. Otherwise, for every feasible solution x the

same solution but with x+
v := 0 is not worse (as 0 ≤ c+v , by

definition of c+). Thus, a cost c+v 6= 0 is payed iff fragment v
appears at time t+1. The argument for (8) and disappearance

is analogous.

10−3 10−2 10−1

−4.05

−4.00

·102

O
b
je

ct
iv

e

10−3 10−2

0.0

0.5

1.0

·102

#
cu

ts

10−2 101 104

−8.00

−7.00

−6.00

·103

O
b
je

ct
iv

e

10−2 101 104

0.0

1.0

2.0

·104

#
cu

ts

10−2 101 104

−41.5

−41.0

−40.5

−40.0

−39.5
·103

Run-time [s]

O
b
je

ct
iv

e

10−1 101 103

0.0

1.0

2.0

3.0

·104

Run-time [s]

#
cu

ts

Figure 3: Depicted above is the convergence of the branch-and-cut

algorithm that solves the ILP and of the cutting plane algorithm that

solves the canonical LP relaxation. Instances of the moral lineage

tracing problem are, from top to bottom, HeLa-small, HeLa-test

and Flywing. Graphs on the left show the objective values of

intermediate integer feasible solutions (–) and lower bounds (–)

found by the branch-and-cut algorithm, as well as the lower bound

found by the cutting-plane algorithm (–). Dotted lines show the

convergence with the bifurcation constraint (4). It can be seen that

the LP relaxation is not tight for larger problems. Graphs on the

right show numbers of cuts: morality (–), spacetime cycle (–), space

cycle (–), appearance (–), disappearance (–), and bifurcation (–). It

can be seen that violated morality constraints dominate.

4. Optimization Algorithm

4.1. Efficient Separation Procedures

Below, we define, for each class of inequalities, (1)–(4),

(7) and (8), an efficient separation procedure (Tab. 1) that

takes any (x, x+, x−) as input. If any inequality is violated,

it terminates and outputs at least one of these. If no inequality

is violated, it terminates and outputs the empty set. We apply

these procedures in a branch-and-cut algorithm described in

the next section. We have also applied these procedures in

the preparation of the experiments described in Section 5, to

certify the well-definedness of lineages we traced manually.

To separate infeasible solutions by inequalities (1) for a

given t, we label maximal subgraphs of Gt connected by

edges labeled 0. Then, for every {v, w} = e ∈ Et with

xe = 1 and with v and w being in the same subgraph, we

search for a shortest vw-path P in Gt such that xP = 0,

using breadth-first-search (BFS). If the path is chordless, we

output the inequality defined by the cycle P ∪ {e} and e.

To separate infeasible solutions by inequalities (2) for a

given t, we label maximal subgraphs of G+
t connected by
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edges labeled 0. Then, for every {v, w} = e ∈ Et,t+1 with

xe = 1 and with v and w being in the same subgraph, we

search for a shortest vw-path P in G+
t such that xP = 0

using BFS. We output the inequality defined by the cycle

Y := P ∪ {e} and e ∈ Y .

To separate infeasible solutions by inequalities (3) for a

given t, we label maximal subgraphs of Gt connected by

edges labeled 0. Then, for every pair v, w ∈ Vt of nodes

with different labels, we use BFS to search for (i) a shortest

vw-path P in (Vt+1, Et,t+1 ∪ Et+1) such that xP = 0, and

(ii) a vw-cut T in Gt such that xT = 1. We output the

inequality defined by P and T .

To separate infeasible solutions by inequalities (4) for a

given t, we label maximal subgraphs of Gt and Gt+1, resp.,

connected by edges labeled 0. From every v ∈ Vt, we start

a BFS in the subgraph of G+
t whose edges are labeled 0. If

nodes w1, w2, w3 ∈ Vt+1 of three distinct components of

Gt+1 are reached, we output the inequality defined by the

boundaries of these components and by paths from v to wj .

To separate infeasible solutions by inequalities (7) for a

given t, we start a BFS from every v ∈ Vt+1 in the subgraph

of G+
t whose edges are labeled 0. We either find a vertex

w ∈ Vt (no violation) or a cut T ∈ Vtv-cuts(G+
t ) which

separates v from Vt. In the latter case, we output the inequal-

ity defined by the vertex v and the cut T . The separation of

infeasible solutions by inequalities (8) is analogous, in the

opposite order of time indices.

4.2. Branch­and­Cut Algorithm for the ILP

In order to find feasible solutions of the moral lineage trac-

ing problem (Def. 4), with certified bounds, we implement

the separation procedures defined in the previous section in

C++ and call these form the branch-and-cut algorithm of the

ILP solver Gurobi [22] whenever an integer feasible solution

is found. In order to tighten intermediate LP relaxations, we

resort to the cuts implemented in Gurobi.

In all experiments we conduct, less than 1% of the total

run-time is spent on the separation of infeasible solutions

by inequalities (1)–(4), (7) and (8) together. Objective val-

ues, bounds and numbers of added inequalities are shown

w.r.t. run-time, for three instances of the problem, in Fig. 3.

4.3. Cutting­Plane Algorithm for an LP Relaxation

In addition to the moral lineage tracing ILP and (integer)

feasible solutions found by the branch-and-cut algorithm, we

study the canonical LP relaxation and its (possibly fractional)

solutions found by a cutting-plane algorithm. Results shown

in Fig. 3 and Tab. 2 are discussed below:

It can be seen from Fig. 3 that the solution found by our

cutting-plane algorithm for the LP (blue) converges slower

than the lower bound found by our branch-and-cut algorithm

for the ILP (black). This is simply because the separation of

infeasible points by violated inequalities is more complex if

Constraint ILP (branch-and-cut) LP (cutting-plane)

Space O(|Et|
2) O(|Et|

2 log |Vt|)

Spacetime O(|Et,t+1||E
+
t |) O(|Et,t+1||E

+
t | log |V +

t |)

Morality O(|Vt|
2|E+

t |) O(|Vt|
2(m(|Vt|, |Et|)

+|Et+1| log |Vt+1|))

Termination O(|Vt| + |E+
t |) O(|Vt|m(|V +

t |, |E+
t |))

Birth O(|Vt+1| + |E+
t |) O(|Vt+1|m(|V +

t |, |E+
t |))

Bifurcation O(|E| log |V | + |Vt| O(|Vt||Vt+1|
3(m(|Vt+1|, |Et+1|)

+|E+
t | log |V +

t |) +|E+
t | log |V +

t |))

Table 1: Worst case time complexity of the separation procedures

we implement for integral points (ILP) and fractional points (LP).

Here, m(|V |, |E|) denotes the worst case time complexity of a

maximum st-flow algorithm for a graph (V,E).

Problem Instance Variables Fractional Optimal

HeLa-small 1839 5 1834 (100%)

HeLa-test 41571 1180 40078 (99.2%)

Flywing 29063 1174 27740 (99.5%)

Table 2: Analysis of solutions of the canonical LP relaxation of the

moral lineage tracing problem.

the point can be fractional; see Tab. 1.

It can be seen from Fig. 3 and Tab. 2 that the LP relaxation

is almost tight for the problem instance HeLa-small and less

tight for the larger problem instances. This is expected,

as HeLa-small is dominated by the disjoint arborescence

sub-problem, which is in PTIME, while the larger problems

are dominated by the minimum cost multicut sub-problem,

which is NP-hard. The solution of the LP is not half-integral.

Yet, it encourages future work on rounding procedures.

5. Application to Microscopy Data

In order to examine the effectiveness of moral lineage

tracing (MLT) and the proposed branch-and-cut algorithm,

we define three instances of the problem w.r.t. two biomedi-

cal data sets, N2DL HeLa and Flywing Epithelium.

5.1. N2DL HeLa Data

This microscopy data consists of three sequences of im-

ages which show HeLa cells that move and divide as bright

objects in front of a dark background, c.f . Fig. 5(a). Two

sequences are publicly available and one sequence is undis-

closed for an annual competition [36]. Here, we use the

two public sequences, one for learning a cost function, the

other (HeLa-test) for experiments. To obtain, in addition,

a shorter sequence of smaller images, we crop from HeLa-

test a sub-problem (HeLa-small). For both sequences, we

construct a priced hypothesis graph as shown in Fig. 4(a)

and described below. The hypothesis graph for HeLa-test

consists of 10882 nodes and 19807 edges. The hypothesis

graph for HeLa-small consists of 512 nodes and 812 edges.

Optimization. The convergence of the branch-and-cut
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Figure 4: Sketched above is the construction of an instance of the MLT for (a) the N2DL-HeLa Data and (b) the Flywing-Epithelium

Data. For every time index t and the respective image I in the sequence, foreground probabilities p of pixels showing part of a cell and

probabilities p′ and p′′ of pixels showing object boundaries are estimated and used to decompose the image into cell fragments St. A

hypothesis graph (shown for only one fragment each) connects nearby cell fragments within images and across successive images.

(a)

(b)

Figure 5: Depicted above are (a) image crops of the full HeLa-test data set, and (b) decompositions of the images defined by a feasible

solution of the moral lineage tracing problem (Def. 4). Diagonally striped cells indicate cell division.

algorithm for the instances HeLa-small and HeLa-test of the

MLT problem is shown in the first two rows of Fig. 3. It

can be seen that the small problem is solved to optimality,

while the full problem is solved with an optimality gap. Most

separating cuts are morality constraints.

Results. A lineage forest for HeLa-small defined by the

solution of the MLT problem is shown in Fig. 6. This lineage

forest is in exact accordance with the ground truth. Corre-

sponding decompositions of images are shown in Fig. 5. A

lineage forest for HeLa-test defined by the feasible solution

of the MLT problem is shown in Fig. 8(a). A comparison

with ground truth provided in [36] is shown in Tab. 3 in

terms of metrics SEG and TRA as defined in [36].

Technical details. Before constructing a hypothesis

graph we perform the following data pre-processing: We

train a random forest to predict, for every pixel r, the proba-

bility pr of this pixel being foreground (part of a cell). For

every time index t, we consider the set St of pixels r at time

t for which pr > 0.5. A watershed search of the distance

transform of St decomposes the subgraph of the pixel grid

graph induced by St into cell fragments (superpixels) Vt.

For every cell fragment v ∈ Vt, we compute its center of

mass rv ∈ R
2 in the image plane. We train a second random

forest to predict, for every pixel r, the probability p′r of this

pixel showing a cell boundary, i.e. the interface between a

cell and the background or the interface between two cells

that touch.

We then construct a hypothesis graph G = (V,E, τ) as

follows: For every time index t and every pair of distinct cell

fragments v, w ∈ Vt, we introduce the edge {v, w} ∈ Et iff

‖rv − rw‖ < d1, for a maximum distance d1 ∈ R
+. For

every time index t and every pair (v, w) ∈ Vt × Vt+1, we

introduce the edge {v, w} ∈ Et,t+1 iff ‖rv − rw‖ < d2, for

a maximum distance d2 ∈ R
+.

5931



Test Data SEG TRA

MLT (our) public 0.7811 0.9747

KTH-SE [35] undisclosed 0.8932 0.9920
HEID-GE [23] undisclosed 0.8155 0.9871
LEID-NL [19] undisclosed 0.8180 0.9558
HOUS-US [38] undisclosed 0.7701 0.9865
NOTT-UK undisclosed 0.5778 0.7811
IMCB-SG undisclosed 0.3317 0.9327

Table 3: Quantified above is the distance from ground truth of

decompositions (SEG) and lineage forests (TRA) obtained by MLT

and contenders of the second ISBI Tracking Challenge [36]. Evalu-

ation for [36] is performed on undisclosed test data. We evaluate

MLT on test data published on the challenge website.

time

Figure 6: Depicted above is the lineage forest (V, C̄) reconstructed

by solving an instance of the moral lineage tracing problem (Def. 4)

defined w.r.t. the image sequence HeLa-small. Edges connecting a

fragment of one cell to a fragment of a descendant cell (depicted in

black) indicate cell divisions. Edges connecting fragments of the

same cell are depicted in a color representing that cell. Note the

two progenitor cells in the first image, visible here on the l.h.s..

For every time index t and every edge e = {v, w} ∈ Et,

we define the cost

ce = −logit max{||rv − rw||/d1, p
′(rv, rw)} . (9)

Here p′(rv, rw) denotes the maximum of p′ along the Bre-

senham line from rv to rw. For every time index t and every

e = {v, w} ∈ Et,t+1, we define the cost

ce = −logit ||rv − rw||/d2 . (10)

All (dis)appearance costs are constant, c+ = c− = c0 ∈ R
+.

5.2. Flywing Epithelium Data

This dataset contains images that show a developing fly

wing epithelium, c.f . Fig. 7(a). Every pixel is a part of a cell

and no pixels show background. The data is divided into a

training sequence and a test sequence. We have collected

ground truth for both sequences by manually joining water-

shed superpixels. The construction of a priced hypothesis

(a)

(b)

(c)

Figure 7: Depicted above are (a) images of the fly wing test set,

(b) decompositions of these images into cell fragments, and (c)

decompositions of the images defined by a feasible solution of the

moral lineage tracing problem (Def. 4). Diagonally striped cells

divide before the next time point (image).

graph from the raw test sequence is sketched in Fig. 4(b) and

described in more detail below. It consists of 5026 nodes

and 19011 edges.

Optimization. The convergence of the branch-and-cut

algorithm is shown in the third row of Fig. 3. It be seen from

this figure that the problem is solved with an optimality gap

determined by the lower bound.

Results. The lineage forest defined by the feasible solu-

tion of the problem is depicted in Fig. 8(b). Corresponding

decompositions of images are depicted in Fig. 7(c). Decom-

positions and the lineage forests are compared in Tab. 4 to

the ground truth in terms of the metrics SEG and TRA. It

can be seen from this table that these results compare well to

those found by the tracking system biologist use today [2].

Technical details. Data pre-processing consist of train-

ing a random forest classifier for detecting, for every pixel

r, the probability p′′r of showing a cell membrane. For every

time index t, we decompose the image taken at time t into

cell fragments Vt by first applying a watershed transform on

the raw image sequence and then progressively joining adja-

cent superpixels iff both the average image intensity and the

average membrane probability along their shared boundary

are below respective thresholds. We maximize these thresh-

olds w.r.t. the training data subject to the constraint that no

false joins occur at this stage. This leads to 3.09± 1.3 frag-

ments per cell. Also as pre-processing, we estimate dense

optical flow f for the image sequence and compute, for every

cell fragment v, its center of mass rv ∈ R
2.
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(a) (b)

Figure 8: 3D rendered lineage forests for (a) the full HeLa-test data set, and (b) the complete fly wing data set, as obtained by solving the

moral lineage tracing problem. For better visibility, only the traced moral lineages are shown while all cut edges are hidden. Time progresses

from left to right.

We then construct a hypothesis graph G = (V,E, τ) as

follows: For every time index t and every pair of distinct cell

fragments v, w ∈ Vt, we introduce the edge {v, w} ∈ Et

iff v and w are adjacent components of the pixel grid graph

of the image taken at time index t. For every time index t
and every pair (v, w) ∈ Vt × Vt+1, we introduce the edge

{v, w} ∈ Et,t+1 iff ||rv+f(rv)−rw||2 ≤ d, for a maximum

distance d ∈ R
+.

For every time index t and every edge e = {v, w} ∈ Et,

we define the cut-cost

ce = −logit
∑

r∈E(v,w)

p′′(r)/|B(v, w)| (11)

where B(v, w) is the set of pixels in fragment v adjacent to

fragment w and vice versa. For every time index t and every

edge e = {v, w} ∈ Et,t+1, we define the cut-cost ce =
c0 + c1me with me the maximum of p′′ along a geodesic

between pixels rv and rw, and with c0, c1 ∈ R estimated

from training data by logistic regression. All (dis)appearance

costs are constant, c+ = c− = c0 ∈ R
+.

6. Conclusion

Building on recent work in image decomposition and

multi-target tracking, we have proposed a rigorous mathe-

matical abstraction of lineage tracing, a central problem in

biological image analysis. The optimization problem we

propose, a hybrid of the well-known minimum cost multi-

Method SEG TRA

MLT (our) 0.9722 0.9813
PA (on GT seg.) 0.9327 0.9898
PA (auto) 0.7980 0.9206

Table 4: Quantified above is the distance from ground truth of

decompositions (SEG) and traced lineage forests (TRA) obtained

by MLT and, alternatively, the Packing Analyzer [2].

cut problem and the minimum cost k disjoint arborescence

problem, is a joint formulation of image decomposition and

lineage forest reconstruction. Its feasible solutions define,

for every image in a sequence of images, a decomposition

into cells and, across images, a lineage forest of cells. Unlike

previous formulations, it does not constrain the set of decom-

positions. We have studied three instances of this problem

defined by two biologically relevant microscopy data sets.

For all instances, we have obtained feasible solutions with

certified optimality gap. One instance has been solved to

global optimality, yielding a solution in exact accordance

with decompositions and ground truth lineages.
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[48] E. Türetken, F. Benmansour, and P. Fua. Automated

reconstruction of tree structures using path classifiers

and mixed integer programming. In CVPR, 2012. 2
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