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Abstract

We propose a Bayesian evidence framework to facilitate

transfer learning from pre-trained deep convolutional neu-

ral networks (CNNs). Our framework is formulated on top

of a least squares SVM (LS-SVM) classifier, which is simple

and fast in both training and testing, and achieves compet-

itive performance in practice. The regularization param-

eters in LS-SVM is estimated automatically without grid

search and cross-validation by maximizing evidence, which

is a useful measure to select the best performing CNN out

of multiple candidates for transfer learning; the evidence

is optimized efficiently by employing Aitken’s delta-squared

process, which accelerates convergence of fixed point up-

date. The proposed Bayesian evidence framework also pro-

vides a good solution to identify the best ensemble of hetero-

geneous CNNs through a greedy algorithm. Our Bayesian

evidence framework for transfer learning is tested on 12 vi-

sual recognition datasets and illustrates the state-of-the-art

performance consistently in terms of prediction accuracy

and modeling efficiency.

1. Introduction

Image representations from deep CNN models trained

for specific image classification tasks turn out to be pow-

erful even for general purposes [2, 6, 7, 21, 23] and use-

ful for transfer learning or domain adaptation. There-

fore, CNNs trained on specific problems or datasets are

often fine-tuned to facilitate training for new tasks or do-

mains [2, 6, 13, 17, 19, 36], and an even simpler approach—

application of off-the-shelf classification algorithms such as

SVM to the representations from deep CNNs [7]—is getting

more attractive in many computer vision problems. How-

ever, fine-tuning of an entire deep network still requires a

lot of efforts and resources, and SVM-based methods also

∗This work was done when Y. Kim and T. Jang were with POSTECH.

Figure 1. We address a problem to select the best CNN out of

multiple candidates as shown in this figure. Additionally, our al-

gorithm is capable of identifying the best ensemble of multiple

CNNs to further improve performance.

involve time consuming grid search and cross validation to

identify good regularization parameters. In addition, when

multiple pre-trained deep CNN models are available, it is

unclear which pre-trained models are appropriate for tar-

get tasks and which classifiers would maximize accuracy

and efficiency. Unfortunately, most existing techniques for

transfer learning or domain adaptation are limited to empir-

ical analysis or ad-hoc application specific approaches.

We propose a simple but effective algorithm for transfer

learning from pre-trained deep CNNs based on Bayesian

least squares SVM (LS-SVM), which is formulated with

Bayesian evidence framework [16, 29] and LS-SVM [26].

This approach automatically determines regularization pa-

rameters in a principled way, and shows comparable perfor-

mance to the standard SVMs based on hinge loss or squared

hinge loss. More importantly, Bayesian LS-SVM provides

an effective solution to select the best CNN out of multiple
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candidates and identify a good ensemble of heterogeneous

CNNs for performance improvement. Figure 1 illustrates

our approach. We also propose a fast Bayesian LS-SVM,

which maximizes the evidence more efficiently based on

Aitken’s delta-squared process [1].

One may argue against the use of LS-SVM for clas-

sification because the least squares loss function in LS-

SVM tends to penalize well-classified examples. How-

ever, least squares loss is often used for training multi-

layer perceptron [4] and shows comparable performance to

SVMs [28, 37]. In addition, Bayesian LS-SVM provides

a technically sound formulation with outstanding perfor-

mance in terms of speed and accuracy for transfer learning

with deep representations. We also propose a fast Bayesian

LS-SVM, which maximizes the evidence more efficiently

based on Aitkens delta-squared process [1]. Considering

simplicity and accuracy, we claim that our fast Bayesian

LS-SVM is a reasonable choice for transfer learning with

deep learning representation in visual recognition prob-

lems. Based on this approach, we achieved promising re-

sults compared to the state-of-the-art techniques on 12 vi-

sual recognition tasks.

The rest of this paper is organized as follows. Section 2

describes examples of transfer learning or domain adapta-

tion based on pre-trained CNNs for visual recognition prob-

lems. Then, we discuss Bayesian evidence framework ap-

plicable to the same problem in Section 3 and its accelera-

tion technique using Aitken’s delta-squared process in Sec-

tion 4. The performance of our algorithm in various appli-

cations is demonstrated in Section 5.

2. Related Work

Since AlexNet [15] demonstrated impressive perfor-

mance in the ImageNet large scale visual recognition chal-

lenge (LSVRC) 2012, a few deep CNNs with different ar-

chitectures, e.g., VGG [25] and GoogLeNet [27], have been

proposed in the subsequent events. Instead of training deep

CNNs from scratch, some people have attempted to refine

pre-trained networks for new tasks or datasets by updating

the weights of all neurons or have adopted the intermediate

outputs of existing deep networks as generic visual feature

descriptors. These strategies can be interpreted as transfer

learning or domain adaptation.

Refining a pre-trained CNN is called fine-tuning, where

the architecture of the network may be preserved while

weights are updated based on new training data. Fine-

tuning is generally useful to improve performance [2, 6,

13, 36] but requires careful implementation to avoid over-

fitting. The second approach regards the pre-trained CNNs

as feature extraction machines and combines the deep rep-

resentations with the off-the-shelf classifiers such as linear

SVM [7, 34], logistic regression [7, 34], and multi-layer

neural network [21]. The techniques in this category have

been successful in many visual recognition tasks [2, 23, 24].

When combining a classification algorithm with image

representations from pre-trained deep CNNs, we often face

a critical issue. Although several deep CNN models trained

on large scale image repositories are publicly available,

there is no principled way to select a CNN out of multi-

ple candidates and find the best ensemble of multiple CNNs

for performance optimization. Existing algorithms typically

rely on ad-hoc methods for model selection and fail to pro-

vide clear evidence for superior performance [2].

3. Bayesian LS-SVM for Model Selection

This section discusses a Bayesian evidence framework to

select the best CNN model(s) in the presence of transferable

multiple candidates and identify a reasonable regularization

parameter for LS-SVM classifier automatically.

3.1. Problem Definition and Formulation

Suppose that we have a set of pre-trained deep CNN

models denoted by {CNNm|m = 1 . . .M}. Our goal is

to identify the best performing deep CNN model among the

M networks for transfer learning. A naı̈ve approach is to

perform fine tuning of network for target task, which re-

quires substantial efforts for training. Another option is to

replace some of fully connected layers in a CNN with an

off-the-shelf classifier such as SVM and check the perfor-

mance of target task through parameter tuning for each net-

work, which would also be computationally expensive.

We adopt a Bayesian evidence framework based on LS-

SVM to achieve the goal in a principled way, where the

evidence of each network is maximized iteratively and the

maximum evidences are used to select a reasonable model.

During the evidence maximization procedure, the regular-

ization parameter of LS-SVM is identified automatically

without time consuming grid search and cross-validation.

In addition, the Bayesian evidence framework is also ap-

plied to the construction of an ensemble of multiple CNNs

to accomplish further performance improvement.

3.2. LS­SVM

We deal with multi-label or multi-class classification

problem, where the number of categories is K. Let D =

{(xn, y
(k)
n ), k = 1 . . .K}n=1...N be a training set, where

xn ∈ R
D is a feature vector and y

(k)
n is a binary variable

that is set to 1 if label k is given to xn and 0 otherwise.

Then, for each class k, we minimize a least squares loss

with L2 regularization penalty as follows:

min
w(k)∈RD

‖y(k) −X⊤w(k)‖2 + λ(k)‖w(k)‖2, (1)

where X = [x1, . . . ,xn] ∈ R
D×N and y(k) =

[y
(k)
1 , . . . , y

(k)
N ]⊤ ∈ R

N . The optimal solution of the prob-
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lem in (1) is given by

w(k) = (XX⊤ + λ(k)I)−1Xy(k),

= U(S + λ(k)I)−1U⊤Xy(k), (2)

where USU⊤ is the eigen-decomposition of XX⊤ and

I is an identity matrix. This regularized least squares ap-

proach has clear benefit that it requires only one eigen-

decomposition of XX⊤ to obtain the solution in (2) for

all combinations of λ(k) and y(k).

3.3. Bayesian Evidence Framework

The optimization of the regularized least squares formu-

lation presented in (1) is equivalent to the maximization of

the posterior with fixed hyperparamters α and β denoted by

p(w|y,X, α, β), where λ = α/β. The posterior can be

decomposed into two terms by Bayesian theorem as

p(w|y,X, α, β) ∝ p(y|X,w, β)p(w|α), (3)

where p(y|X,w, β) corresponds to Gaussian observation

noise model given by

p(y|X,w, β) =

N
∏

n=1

N (yn|x
⊤
nw, β−1) (4)

and p(w|α) denotes a zero-mean isotropic Gaussian prior

as

p(w|α) = N (w|0, α−1I). (5)

Note that we dropped superscript (k) for notational simplic-

ity from the equations in this subsection.

In the Bayesian evidence framework [16, 29], the evi-

dence, also known as marginal likelihood, is a function of

hyperparameters α and β as

p(y|X, α, β) =

∫

p(y|X,w, β)p(w|α)dw. (6)

Under the probabilistic model assumptions corresponding

to (4) and (5), the log evidence L(α, β) is given by

L(α, β) ≡ log p(y|X, α, β) (7)

=
D

2
logα+

N

2
log β −

1

2
log |A|

−
β

2
‖y −X⊤m‖2 −

α

2
m⊤m−

N

2
log 2π,

where the precision matrix and mean vector of the posterior

p(w|y,X, α, β) = N (w|m,A−1) are given respectively

by

A = αI + βXX⊤ and m = βA−1Xy.

The log evidence L(α, β) is maximized by repeatedly

alternating the following fixed point update rules

α =
γ

m⊤m
and β =

N − γ

‖y −X⊤m‖2
, (8)

which involves the derivation of γ as

γ =

D
∑

d=1

βsd
α+ βsd

=

D
∑

d=1

sd
λ+ sd

, (9)

where {sd}
D
d=1 are eigenvalues of XX⊤. Note that m and

γ should be re-estimated after each update of α and β.

Another pair of update rules of α and β are derived by

an expectation-maximization (EM) technique as

α =
D

m⊤m+ Tr(A−1)
and (10)

β =
N

‖y −X⊤m‖2 + Tr(A−1XX⊤)
, (11)

but these procedures are substantially slower than the fixed

point update rules in (8).

Through the optimization procedures described above,

we determine the regularization parameter λ = α/β. Al-

though the estimated parameters are not optimal, they may

still be reasonable solutions since they are obtained by max-

imizing marginal likelihood in (6).

3.4. Model Selection using Evidence

The evidence computed in the previous subsection is for

a single class, and the overall evidence for entire classes, de-

noted by L∗, is obtained by the summation of the evidences

from individual classes, which is given by

L∗ =

K
∑

k=1

L(α(k), β(k)). (12)

We compute the overall evidence corresponding to each

deep CNN model, and choose the model with the maximum

evidence for transfer learning. We expect that the selected

model performs best among all candidates, which will be

verified in our experiment.

In addition, when an ensemble of deep CNNs needs to be

constructed for a target task, our approach selects a subset

of good pre-trained CNNs in a greedy manner. Specifically,

we add a network with the largest evidence in each stage and

test whether the augmented network improves the evidence

or not. The network is accepted if the evidence increases, or

rejected otherwise. After the last candidate is tested, we ob-

tain the final network combination and its associated model

learned with the concatenated feature descriptors from ac-

cepted networks.
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4. Fast Bayesian LS-SVM

Bayesian evidence framework discussed in Section 3 is

useful to identify a good CNN for transfer learning and a

reasonable regularization parameter. To make this frame-

work even more practical, we present a faster algorithm to

accomplish the same goal and a new theory that guarantees

the converges of the algorithm.

4.1. Reformulation of Evidence

We are going to reduce L(α, β) to a function with only

one parameter that directly corresponds to the regularization

parameter λ = α/β. To this end, we re-write L(α, β) by

using the eigen-decomposition XX⊤ = USU⊤ as

L(α, β) =
D

2
logα+

N

2
log β −

1

2

D
∑

d=1

log(α+ βsd)

−
β

2
y⊤y +

β2

2

D
∑

d=1

h2
d

α+ βsd
−

N

2
log 2π, (13)

where sd is the d-th diagonal element in S and hd denotes

the d-th element in h = U⊤Xy. Then, we re-parameterize

L(α, β) into F(λ, β) as

F(λ, β) =
D

2
log λ+

N

2
log β −

1

2

D
∑

d=1

log(λ+ sd)

−
β

2

(

y⊤y −
D
∑

d=1

h2
d

λ+ sd

)

−
N

2
log 2π. (14)

The derivative of F(λ, β) with respect to β is given by

∂F

∂β
=

N

2β
−

1

2

(

y⊤y −
D
∑

d=1

h2
d

λ+ sd

)

,

and we obtain the following equation by setting this deriva-

tive to zero,

β =
N

y⊤y −
∑D

d=1
h2
d

λ+sd

. (15)

Finally, we obtain a one-dimensional function of the log ev-

idence by plugging (15) into (14), which is given by

F(λ) =
1

2

D
∑

d=1

log
λ

λ+ sd
+

N

2
logN −

N

2
−

N

2
log 2π

−
N

2
log

(

y⊤y −
D
∑

d=1

h2
d

λ+ sd

)

. (16)

Figure 2 illustrates the curvature of this log evidence func-

tion with respect to log λ.

−10 0 10 20

−6000

−4000

−2000

0

2000

log λ

F
(λ

)

Figure 2. Plot of the log evidence F(λ) with respect to log λ. Note

that F(λ) is neither convex nor concave.

4.2. New Fixed­point Update Rule

We now derive a new fixed point update rule and present

the sufficient condition for the existence of a fixed point.

The stationary points in (16) with respect to λ satisfy

1

2

D
∑

d=1

sd
λ(λ+ sd)

−
N

2

∑D
d=1

h2
d

(λ+sd)2

y⊤y −
∑D

d=1
h2
d

λ+sd

= 0, (17)

and we update the fixed-point by maximizing (16) as

λ =

∑D
d=1

sd
λ+sd

(

N
y⊤y−

∑
D

d=1 h2
d
/(λ+sd)

)(

∑D
d=1

h2
d

(λ+sd)2

) . (18)

As illustrated in Figure 2,F(λ) in (16) is neither convex nor

concave as illustrated in the supplementary file. However,

we can show the sufficient condition of the existence of the

fixed point using the following theorem.

Theorem 1. Denote the update rule in (18) by f(λ). If y is

a binary variable and xn is an L2 normalized nonnegative

vector, then f(λ) has a fixed point.

Proof. We first show that f(λ) is asymptotically linear in λ
as

lim
λ→∞

f(λ)

λ
= lim

λ→∞

(

y⊤y −
∑

d=1
h2
d

λ+sd

)

∑D
d=1

sd
λ+sd

λN
∑D

d=1
h2
d

(λ+sd)2

=
y⊤y

∑D
d=1 sd

N
∑D

d=1 h
2
d

=
‖y‖2‖X‖2F
N‖Xy‖2

.

Since y is binary and xn is L2 normalized and nonnegative,

we can derive the following two relations,

‖y‖2‖X‖2F = PN and (19)

‖Xy‖2 =

(

∑

n:yn=1

xn

)2

>
∑

n:yn=1

x2
n = P, (20)
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Figure 3. Aitken’s delta-squared process. The fixed point update

function f(λ) is approximated by green dashed line and its inter-

section with y = λ becomes the next update point.

Algorithm 1 Fast Bayesian Least Squares

Input: X ∈ R
N×D and y ∈ R

N .

Output: Optimal solutions (w, λ).
Initialize λ // e.g., λ = 1
(U ,S)← eigen-decomposition(XX⊤)
s← diag(S), h← U⊤Xy

repeat

λ0 ← λ
λ1 ← UPDATE (λ0, s,h, N,y⊤y)
λ2 ← UPDATE (λ1, s,h, N,y⊤y)

λ← λ0 −
(λ1−λ0)

2

(λ2−λ1)−(λ1−λ0)

if λ < 0 or λ = ±∞ then

λ← λ2

end if

until |λ− λ0| < ǫ // e.g., ǫ = 10−5

w ← U(S + λI)−1h

where P =
∑N

n=1 yn. From (19) and (20), it is shown that

‖y‖2‖X‖2F < N‖Xy‖2.

Obviously, f(0) > 0 and there exists a λ+ such that

f(λ+) < λ+. The intermediate value theorem implies the

existence of λ∗ such that f(λ∗) = λ∗, where 0 < λ∗ < λ+

as illustrated in Figure 3.

The fixed point is unique if f(λ) is concave. Although it

is always concave according to our observation, we have no

proof yet and leave it as a future work

4.3. Speed Up Algorithm

We accelerate the fixed point update rule in (18) by us-

ing Aitken’s delta-squared process [1]. Figure 3 illustrates

the Aitken’s delta-squared process. Let’s focus on the two

points (λ0, f(λ0)) and (λ1, f(λ1)), and line going through

Algorithm 2 λ = UPDATE(λ, s,h, N,y⊤y)

γ ←
∑D

d=1
sd

λ+sd

β ← N/(y⊤y −
∑D

d=1
h2
d

λ+sd
)

m⊤m←
∑D

d=1
h2
d

(λ+sd)2

λ← γ
β m⊤m

return λ
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Figure 4. Two failure cases of Aitken’s delta-squared process.

(left) The first case arises if initial λ0 is far from the fixed point

λ⋆, which results in λ < 0. (right) The second case occurs when

approximating line (dashed green) is parallel to y = λ, where

λ = ±∞.

these two points. The equation of this line is

y = λ1 + (λ− λ0)
λ2 − λ1

λ1 − λ0
, (21)

where f(λ0) and f(λ1) are replaced by λ1 and λ2, respec-

tively. The idea behind Aitken’s method is to approximate

fixed point λ∗ using the intersection of the line in (21) with

line y = λ, which is given by

λ = λ0 −
(λ1 − λ0)

2

(λ2 − λ1)− (λ1 − λ0)
. (22)

Our fast Bayesian learning algorithm for the regularized

least squares problem in (1) is summarized in Algorithm 1.

In our algorithm, we first compute the eigen-decomposition

of XX⊤. This is the most time consuming part but needs

to be performed only once since the result can be reused for

every label in y. After that, we obtain the regularization

parameter λ through an iterative procedure.

When we apply the Aitken’s delta-squared process, we

have two potential failure cases as in Figure 4(a) and 4(b).

The first case often arises if the initial λ0 is far from the

fixed point λ∗, and the second case occurs when the approx-

imating line in (21) is parallel to y = λ. Fortunately, these

failures rarely happen in practice and can be handled easily

by skipping the procedure in (22) and updating λ with λ2.

Figure 5 demonstrates the relative convergence rates of

three different techniques—Aitken’s delta-squared process

in Algorithm 1, fixed point update rules in (8), and EM up-

date method, where the Aitken’s delta-squared process is

significantly faster than others for convergence.
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Figure 5. Comparison between Aitken’s delta-squared process,

fixed point update rules, and EM update rules on PASCAL VOC

2012 dataset (class = aeroplane). Aitken’s delta-squared process

significantly faster than other methods.

5. Experiments

We present the details of our experiment setting and the

performance of our algorithm compared to the state-of-the-

art techniques in 12 visual recognition benchmark datasets.

5.1. Datasets and Image Representation

The benchmark datasets involve various visual recog-

nition tasks such as object recognition, photo annotation,

scene recognition, fine grained recognition, visual attribute

detection, and action recognition. Table 1 presents the char-

acteristics of the datasets. In our experiment, we followed

the given train and test split and evaluation measure of each

dataset. For the datasets with bounding box annotations

such as CUB200-2011, UIUC object attribute, Human at-

tribute, and Stanford 40 actions, we enlarged the bounding

boxes by 150% to consider neighborhood context as sug-

gested in [23, 2].

For deep learning representations, we selected 4 pre-

trained CNNs from the Caffe Model Zoo: GoogLeNet [31],

VGG19 [25], and AlexNet [7] trained on ImageNet, and

GoogLeNet trained on Places [31]. As generic image repre-

sentations, we used the 4096 dimensional activations of the

first fully connected layer in VGG19 and AlexNet and the

1024 dimensional vector obtained from the global average

pooling layer located right before the final softmax layer in

GoogLeNet.

Our implementation is in Matlab2011a, and all exper-

iments were conducted on a quad-core Intel(R) core(TM)

i7-3820 @ 3.60GHz processor.

5.2. Bayesian LS­SVM vs. SVM

We first compare the performance of our Bayesian LS-

SVM with the standard SVM when they are applied to deep

CNN features for visual recognition problems. We used

only a single image scale 256× 256 in this experiment. LI-

BLINEAR [10] package is used for SVM training and the

regularization parameters are selected by grid search with

cross validations.

Table 2 presents the complete results of our experiment.

Bayesian LS-SVM is competitive to SVM in terms of pre-

diction accuracy even with significantly reduced training

time. Training SVM is getting slower than Bayesian LS-

SVM as the number of classes increases so it is particularly

slow in Caltech 256 and SUN 397 datasets.

Another notable observation in Table 2 is that the order

of prediction accuracy is highly correlated to the evidence.

This means that the selected model by Bayesian LS-SVM

produces reliable testing accuracy and a proper deep learn-

ing image representation is obtained without time consum-

ing grid search and cross validation. Note that cross valida-

tions in LS-SVM and SVM play the same role, but are less

reliable and slower than our Bayesian evidence framework.

The capability to select the appropriate CNN model and the

corresponding regularization parameter is one of the most

important properties of our algorithm.

5.3. Comparison with Other Methods

We now show that our Bayesian LS-SVM identifies a

combination of multiple CNNs to improve accuracy with-

out grid search and cross validation. For each task, we se-

lect a subset of 4 pre-trained CNNs in a greedy manner;

we add CNNs to our selection, one by one, until the evi-

dence does not increase. Our algorithm is compared with

DeCAF [7], Zeiler [34], INRIA [21], KTH-S [23], KTH-

FT [2], VGG [25], Zhang [35, 36], and TUBFI [3]. In ad-

dition, our ensembles identified by greedy evidence maxi-

mization are compared with the oracle combinations—the

ones with the highest accuracy in test set found by exhaus-

tive search—and the best combinations found by exhaustive

evidence maximization.

Table 3 presents that our ensembles approach achieves

the best performance in most of the 12 tasks. The identi-

fied ensembles by the greedy approach are consistent with

the selections by exhaustive evidence maximization and

even oracle selections1 made by testing accuracy maxi-

mization. Note that our network selections are natural

and reasonable; GoogLeNet-ImageNet and VGG19 are se-

lected frequently while GoogLeNet-Place is preferred to

GoogLeNet-ImageNet in MIT Indoor and SUN-397 since

the datasets are constructed for scene recognition. It turns

out that the proposed algorithm tends to choose the net-

works with higher accuracies in the target task even though

it makes selections based only on the evidence in a greedy

manner. An interesting observation is that our result is less

1This option is practically impossible since it requires evaluation with

test dataset using all available models for model selection.
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Table 1. Characteristics of the 12 datasets. N1: number of training data, N2: number of test data, K: number of classes, L: average number

of labels per image, AP: average precision, Acc.: accuracy, AUC: area under the ROC curve.

Dataset Task N1 N2 K L Box Measure

PASCAL VOC 2007 [8] object recognition 5011 4952 20 1.5 mean AP

PASCAL VOC 2012 [9] object recognition 5717 5823 20 1.5 mean AP

Caltech 101 [12] object recognition 3060 6086 102 1 mean Acc.

Caltech 256 [14] object recognition 15420 15187 257 1 mean Acc.

ImageCLEF 2011 [20] photo annotation 8000 10000 99 11.9 mean AP

MIT Indoor Scene [22] scene recognition 5360 1340 67 1 mean Acc.

SUN 397 Scene [32] scene recognition 19850 19850 397 1 mean Acc.

CUB 200-2011 [30] fine-grained recognition 5994 5794 200 1
√

mean Acc.

Oxford Flowers [18] fine-grained recognition 2040 6149 200 1 mean Acc.

UIUC object attributes [11] attribute detection 6340 8999 64 7.1
√

mean AUC

Human attributes [5] attribute detection 4013 4022 9 1.8
√

mean AP

Stanford 40 actions [33] action recognition 4000 5532 40 1
√

mean AP

Table 2. Comparisons between Bayesian LS-SVM and SVM. Without time consuming cross validation procedure, Bayesian LS-SVM

achieves prediction accuracy competitive to SVM. In addition, Bayesian LS-SVM selects the proper CNN for each task by using the

evidence, which is denoted by bold-faced numbers. Best accuracy in LS-SVM and SVM denotes the maximum achievable accuracy in test

dataset using all available learned models. Note that the selected model by Bayesian evidence framework or cross validation may not be

the best one in testing. The following sets of regularization parameters are tested for cross validation in LS-SVM and SVM, respectively:

{2−10, 2−9, . . . , 1, . . . , 29, 210} and {0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10}. (GI: GoogLeNet-ImageNet, Gp: GoogLeNet-Place, V: VGG19, and

A: AlexNet)

LS-SVM SVM LS-SVM SVM

Bayesian CV (5 folds) CV (5 folds) Bayesian CV (5 folds) CV (5 folds)

CNN Best Acc. Evidence Time Acc. Time Best Acc. Time Best Acc. Evidence Time Acc. Time Best Acc. Time

PASCAL VOC 2007 [8] SUN-397 [32]

GI 85.3 85.2 46.9 ×103 1.1 85.2 8.4 85.0 84.7 122.4 48.1 47.0 12.8 ×106 3.1 48.1 36.5 54.2 54.2 8739.6

GP 74.1 73.8 38.6 ×103 1.0 74.0 8.1 74.1 73.9 144.3 61.1 60.1 13.2 ×10
6 2.9 61.1 34.4 63.3 63.3 8589.4

V 85.9 85.8 48.0 ×10
3 41.9 85.8 172.2 85.9 85.8 257.5 55.0 53.7 12.9 ×106 57.4 54.9 419.8 57.1 57.1 20254.0

A 75.2 75.0 32.5 ×103 41.7 75.0 160.4 75.3 75.2 211.1 45.4 44.9 12.7 ×106 50.8 45.4 419.0 48.6 48.6 10781.8

PASCAL VOC 2012 [9] CUB-200 [30]

GI 84.4 84.3 51.3 ×103 1.2 84.3 8.6 83.9 83.7 140.8 65.2 64.3 15.6 ×105 1.3 64.1 11.0 67.6 56.5 1201.9

GP 73.2 72.9 40.6 ×103 1.1 73.1 8.4 73.2 73.1 170.7 16.4 13.6 14.9 ×105 1.5 15.0 11.1 16.8 11.1 1664.6

V 85.2 85.1 52.9 ×10
3 42.7 85.2 161.5 85.6 85.4 295.9 69.2 68.6 15.8 ×10

5 44.1 61.5 259.2 71.1 59.4 2776.2

A 74.1 73.9 34.3 ×103 42.7 74.0 161.8 74.4 74.3 160.7 59.0 58.5 15.5 ×105 45.3 46.6 257.9 61.4 51.6 1645.5

Caltech 101 [12] Oxford Flowers [18]

GI 90.6 90.0 37.8 ×104 1.0 89.6 6.0 91.4 85.1 325.0 85.5 84.7 21.8 ×104 0.9 82.0 5.5 87.4 72.0 198.8

GP 57.0 54.3 30.6 ×104 0.9 55.1 5.9 57.2 41.8 390.3 55.6 51.7 19.4 ×104 0.9 51.8 5.5 57.1 32.8 234.7

V 92.2 92.1 40.9 ×10
4 31.5 88.8 142.7 92.2 86.8 729.4 87.5 87.1 22.5 ×104 26.9 82.1 142.2 87.6 73.4 520.9

A 89.3 89.2 37.3 ×104 32.0 83.4 146.9 90.0 83.5 595.3 87.6 87.6 22.9 ×10
4 27.3 81.8 146.7 88.3 77.1 271.3

Caltech 256 [14] UIUC Attributes [11]

GI 77.8 77.2 59.9 ×105 2.3 77.8 21.8 81.2 81.2 4060.4 91.5 90.3 13.5 ×104 1.4 90.9 8.0 91.3 90.6 605.5

GP 44.9 42.6 55.9 ×105 2.2 44.9 21.2 48.6 48.6 4991.8 87.8 86.6 10.5 ×104 1.3 87.1 7.4 88.0 87.6 726.0

V 82.0 81.1 62.3 ×10
5 52.5 81.7 339.7 82.7 82.7 9653.1 92.5 91.1 14.4 ×10

4 43.8 92.0 186.3 92.2 91.7 1285.4

A 69.7 68.9 58.6 ×105 52.9 69.7 336.9 72.3 72.3 5348.6 91.4 89.9 12.9 ×104 44.1 91.0 191.2 90.8 90.5 683.7

ImageCLEF [20] Human Attributes [5]

GI 49.1 48.9 20.5 ×104 1.5 48.8 37.0 47.7 47.4 1218.6 76.0 75.8 -74.8 ×10
2 1.0 75.8 5.0 74.2 74.1 70.6

GP 47.5 47.1 20.8 ×104 1.4 47.1 36.9 47.1 46.7 1410.5 58.7 58.4 -103.1 ×102 1.0 58.0 4.8 56.9 56.5 85.5

V 50.7 50.3 21.3 ×10
4 45.9 50.4 248.5 50.4 50.1 2531.2 75.4 75.1 -76.0 ×102 40.3 75.2 124.2 73.1 72.8 131.9

A 44.8 44.6 18.7 ×104 46.1 44.6 245.9 44.4 44.1 2140.0 71.9 71.3 -84.4 ×102 40.7 71.7 121.2 70.0 69.9 63.3

MIT Indoor [22] Stanford 40 Action [33]

GI 66.7 66.0 30.1 ×104 1.2 66.7 5.8 69.4 69.2 400.9 70.2 69.8 100.4 ×103 1.0 69.6 11.6 69.8 69.6 211.7

GP 80.0 79.9 35.2 ×10
4 1.1 80.0 5.8 81.1 80.4 402.5 48.3 47.6 86.5 ×103 1.1 47.9 11.4 48.2 47.7 246.2

V 73.2 73.1 31.1 ×104 42.6 73.2 186.8 74.7 74.7 895.5 75.4 75.2 109.3 ×10
3 41.1 75.1 142.9 75.8 75.3 418.7

A 62.0 61.1 28.6 ×104 42.2 60.5 187.4 63.1 63.1 460.9 58.0 57.7 89.6 ×103 41.5 57.5 156.5 57.4 57.1 206.8

consistent with the selections by oracle and exhaustive evi-

dence maximization in Stanford 40 Actions dataset, where

GoogLeNet-Place seems to provide complementary infor-

mation even with its low accuracy and is helpful to improve

recognition performance. It is probably because actions are

frequently performed at typical places, e.g., a fair portion of
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Table 3. Comparison to existing methods in the 12 benchmark datasets. The best ensembles identified by maximizing evidence through

exhaustive search mostly coincide with the oracle combinations—the ones with the highest accuracy in test set, which is also found by

exhaustive search. The ensembles identified by our greedy search are very similar to the ones by these exhaustive search methods, and our

algorithm consequently performs best in many tested datasets. We used three scales {256, 384, 512} as done in [25], where we simply

averaged the prediction scores from three scales.

Method VOC07 VOC12 CAL101 CAL256 CLEF MIT SUN Birds Flowers UIUC Human Action

DeCAF - - 86.9 - - - 38.0 65.0 - - - -

Zeiler - 79.0 86.5 74.2 - - - - - - - -

INRIA 77.7 82.8 - - - - - - - - - -

KTH-S 71.8 - - - - 64.9 49.6 62.8 90.5 90.6 73.8 58.9

KTH-FT 80.7 - – - 71.3 56.0 67.1 91.3 91.5 74.6 66.4

VGG 89.7 89.3 92.7 86.2 - - - - - - - -

Zhang - - - - - - - 76.4 - - 79.0 -

TUBFI - - - - 44.3 - - - - - - -

GI 87.5 86.2 90.5 77.7 50.3 71.3 48.3 64.7 88.1 91.1 78.4 71.0

GP 75.7 74.9 53.8 42.1 48.1 80.8 59.8 14.9 57.8 87.3 59.7 48.4

V 88.4 87.8 93.3 83.3 52.4 77.8 56.1 69.9 91.5 91.8 79.1 77.0

A 75.0 73.9 88.3 69.7 52.3 77.5 42.4 60.7 86.7 89.9 71.3 57.7

Oracle GIGPV GIGPV GIVA GIGPVA GIGPVA GPVA GIGPVA GIVA GIGPVA GIVA GIVA GIGPV

(exhaustive) 90.0 89.4 95.3 86.1 55.7 84.9 67.5 77.3 94.7 92.0 80.8 78.6

Max evid. GIGPV GIGPV GIVA GIGPVA GIGPV GPV GPV GIVA GIVA GIGPVA GIVA GIGPV

(exhaustive) 90.0 89.4 95.3 86.1 55.5 84.7 67.5 77.3 94.5 92.0 80.8 78.6

Ours GIGPV GIGPV GIVA GIGPVA GIGPV GPV GPV GIVA GIVA GIGPVA GIVA GIVA

(greedy) 90.0 89.4 95.3 86.1 55.5 84.7 67.5 77.3 94.5 92.0 80.8 77.8

images in brushing teeth class are taken from bathrooms.

6. Conclusion

We described a simple and efficient technique to trans-

fer deep CNN models pre-trained on specific image clas-

sification tasks to another tasks. Our approach is based

on Bayesian LS-SVM, which combines Bayesian evidence

framework and SVM with a least squares loss. In addi-

tion, we presented a faster fixed point update rule for ev-

idence maximization through Aitken’s delta-squared pro-

cess. Our fast Bayesian LS-SVM demonstrated competitive

results compared to the standard SVM by selecting a deep

CNN model in 12 popular visual recognition problems. We

also achieved the state-of-the-art performance by identify-

ing a good ensemble of the candidate models through our

Bayesian LS-SVM framework.
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