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Abstract

Feature matching is a fundamental process in a variety of

computer vision tasks. Beyond the standard L2 metric, var-

ious methods to measure similarity between features have

been proposed mainly on the assumption that the features

are defined in a histogram form. On the other hand, in a

field of image quality assessment, SSIM [27] produces ef-

fective similarity between images, taking the place of L2

metric. In this paper, we propose a feature similarity mea-

surement method based on the SSIM. Unlike the previous

methods, the proposed method is built on not a histogram

form but a tensor structure of a feature array extracted such

as on spatial grids, in order to construct effective SSIM-

based similarity measure of high robustness which is a key

requirement in feature matching. In addition, we provide the

explicit feature map such that the proposed similarity met-

ric is embedded as a dot product. It contributes to signifi-

cant speedup in similarity measurement as well as to feature

transformation toward an effective vector form to which lin-

ear classifiers are directly applicable. In the experiments on

various tasks, the proposed method exhibits favorable per-

formance in both feature matching and classification.

1. Introduction

It is a fundamental and primary process in computer vi-

sion tasks to match/compare features extracted from images

and videos. Its application covers keypoint matching [8], re-

trieval [7] and classification based on exemplars such as by

k-NN, while in recent years, feature matching is also found

in scene parsing or flow estimation by SIFT flow [14]. The

features are matched based on similarities between them,

and along with the development of feature extraction meth-

ods, the similarity measurement methods are attracting keen

attention.

The most standard (dis)similarity measure is L2 metric.

It is regarded as a natural choice on the basis that feature

vectors are embedded in the Euclidean space. Depending on

feature extraction methods, however, the feature vectors are

not distributed throughout the Euclidean space but restricted

in a subspace with a constraint inherently imposed by the

extraction method. For example, in the computer vision

community, image features are enthusiastically developed

in a form of histogram comprising non-negative values.

By exploiting the intrinsic characteristics of features, the

(dis)similarity measurement methods are proposed beyond

the L2 metric. χ2 distance [2] is a commonly used distance

measure for histogram-based features derived from statisti-

cal χ2 test, being also applied to a kernel function [31]. In

the other approach, the Earth Mover’s distance (EMD) [21]

is proposed by applying an optimization problem of trans-

portation to effectively measure dissimilarity between his-

togram features. The EMD, however, requires huge com-

putational cost, which motivates to propose faster variants

of EMD such as in [17, 16], and it is specialized to SIFT

features as SiftDist [16]. The EMD takes into account the

relationships between the histogram bins while L2 and χ2

metrics are composed solely of differences in corresponding

bins. Such cross-bin distance is also employed in diffusion

distance [13] based on the structure of histogram features

other than a simple vector. Such feature structure is intro-

duced into the proposed method as described in the later.

In the other literature than the feature matching, an im-

age quality assessment requires such similarity metric be-

tween images that are close to human perception. In that

field, it is widely known that L2 metric is not compatible

with the human perception and thus unsuitable for image

similarity measure. According to the human visual system,

structural similarity (SSIM) index [26, 27] was proposed.

The method measures a similarity between a reference im-

age and its distorted one by exploiting the structural charac-

teristics in the image (patch) as in the human visual process.

The structural information extracted by the SSIM is similar

to the cross-bin distance mentioned above; we show the de-

tailed form in Sec. 2. The SSIM has taken the place of L2

metric in image quality assessment since it thoroughly de-

feats L2 in a variety of experiments, and some variants of

SSIM have also been proposed [28, 29, 3].

In this paper, based on the SSIM measure, we propose
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a novel similarity metric of the features that have struc-

ture beyond one-way array (vector), not limited to a non-

negative histogram form unlike the previous methods. Re-

cent features are frequently defined in a structured array

form [11, 13], though most methods unfold them into a

vector; for example, local primitive features are extracted

on the two-dimensional spatial positions (grids) to form a

three-way tensor as particularly found in local descriptors

such as SIFT [15] and SURF [1]. We effectively incorpo-

rate such feature structure into similarity measurement for

enhancing robustness, which is demanded in feature match-

ing, with retaining discriminative power of SSIM. In ad-

dition, we provide the explicit feature map in which the

proposed similarity is embedded as a dot product. An or-

dinary similarity measurement operates respective pairs of

features, requiring significant computation time. The ex-

plicit mapping enables us to efficiently compute the pro-

posed similarity measure by dot products which result in

matrix multiplication performed in a computationally effi-

cient way such as by the BLAS library. Furthermore, the

explicit feature map is regarded as feature transformation

into an effective vector form to which linear classifiers are

directly applied. Thus, the proposed method works for mea-

suring feature similarity as well as transforming features.

2. SSIM for image quality assessment

We review the formulation of SSIM [27, 26] in image

quality assessment and mention its applicability to (generic)

feature matching. Given a reference image Ix, the target

(distorted) image Iy is assessed in terms of quality by mea-

suring its fidelity to Ix. The SSIM operates on an image

patch pair of x and y ∈ R
D drawn from Ix and Iy to as-

sign the following similarity measure S:

S(x,y)=M(x,y)V(x,y) C(x,y), (1)

M(x,y)=k(u(x), u(y)), V(x,y)=k(q(x), q(y)), (2)

C(x,y)= (x−u(x))⊤(y−u(y))

‖x−u(x)‖2‖y−u(y)‖2
, k(a, b)=

2ab

a2 + b2
, (3)

where u(x) and q(x) are functions to compute mean and

standard deviation of pixel values in patches x and y, re-

spectively, and k(a, b) is a function to measure similarity

between two scalars a and b. A similarity between two im-

ages Ix and Iy is then computed by averaging the above

patch-based SSIM scores S over a whole image.

Three functions M,V and C in (2, 3) measure similar-

ities regarding luminances, contrasts and structures in the

patches, respectively. The structural similarity C(x,y) ex-

tracts pixel relationship, correlation coefficient, as in cross-

bin distance. It, however, is too robust in pixel value

changes to give favorable similarity measure since it always

produces maximum similarity score (i.e., 1) for affine rela-

tionship between pixel values, yi = αxi + β, (α > 0). To

compensate it, the other two types of similarities M and V
are complementarily introduced to capture changes of lu-

minance (bias β) and contrast (scaling α). These measure-

ments are related to a human perceptual system [26].

On the other hand, the dot product, a simple similarity

measure in the Euclidean space, is decomposed into

x
⊤
y = D {q(x)q(y)C(x,y) + u(x)u(y)} , (4)

which is different from, but related to (1). Namely, the lu-

minance and contrast similarities degenerate into the simple

products, u(x)u(y) and q(x)q(y), respectively. Though

the luminance one is separated into an additive form, such

formulation is also found in SSIM variant [3]. Thus, based

on the comparison of (1) and (4), it turns out that the success

of SSIM is largely due to the function k(a, b) = 2ab
a2+b2

.

k(a, b) can be rewritten by using θ = arctan( b
a
) as

k(a, b) = 2ab
a2+b2

= cos{2(θ − π
4 )} which measures a dif-

ference between a and b based on the ratio b
a

. Thereby, the

difference |a− b| contributes to the similarity k(a, b) dif-

ferently according to r=
√
a2 + b2; k(a, b) is vulnerable to

|a−b| on smaller r while it is insensitive on larger r. Even

though such functionality is inspired from the human per-

ceptual process [26], it is also compatible with generic fea-

ture similarity. It is recently shown that feature transform by

squared root [22] and log [10] successfully improves per-

formance via the similar functionality as above, increasing

resolution in smaller feature values while suppressing it in

larger ones; in particular, the log transform is closely re-

lated to the ratio b
a

. Thus, the function k is considered to be

useful for establishing effective feature similarity measure.

3. Structured feature similarity

Based on the above analysis of the SSIM formulation,

we propose a method to measure similarity for matching

features, such as SIFT [15], by leveraging the SSIM mea-

sure. The straightforward way to incorporate SSIM is to

directly feed feature vectors x and y into (1). Such naive

method, however, does not work well, being inferior even

to L2 metric as will be shown in Fig. 3. This is because

the feature matching is different from image quality assess-

ment in terms of robustness, though both of them are built

on similarity measurement. The SSIM has been success-

fully applied to measure degree of distortion in the target

image by effectively characterizing subtle image changes.

In contrast, the feature matching requires to discriminate

the target itself while being highly robust to those distor-

tions. Thus, we propose a similarity measure of features so

as to enhance robustness which SSIM lacks, with retaining

the discriminative power of the SSIM.

While the previous methods [2, 17, 13, 16] assume a

histogram form in the features, our assumption is that the

features are formulated in a structured form, for example,
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three-way tensor. As mentioned in [11], most image fea-

tures extracted on spatial domain are essentially formulated

in a tensor (or matrix) rather than in a simple vector. The

proposed method exploits the intrinsic feature structure and

reconsiders similarity measurement functions for enhancing

robustness.

3.1. Feature structure

For enhancing robustness to feature perturbations, the

whole feature x is represented by an ensemble of n sub-

features x̂l on which the similarity measure is computed

and then summed up as follows:

S̄(x,y) =
n
∑

l=1

wlS(x̂l, ŷl), (5)

where x̂l and ŷl are the l-th sub-features assigned with the

weight wl (
∑n

l=1 wl = 1), and S is a similarity function de-

fined in Sec. 3.2. Most of features extracted from the spatial

domain (image) are intrinsically formulated in a three-way

tensor of I×J ×K, x = {xijk}I,J,Ki=1,j=1,k=1, where I indi-

cates the dimensionality of local primitive feature and J,K

are the number of spatial bins along x, y-axes; for example,

SIFT [15] consists of 8(I)-dimensional gradient orientation

histogram extracted on 4(J)×4(K) spatial grids. Based on

the tensor structure, there are four conceivable ways to de-

fine the form of sub-features as follows (Fig. 1):

1. VECTOR: This is the same as the above-mentioned

naive approach that simply computes SSIM by regarding

the whole feature as only one sub-feature: S̄ = S(x,y).
2. MATRIX: From the viewpoint that the features are ex-

tracted from the spatial domain, the whole feature can be re-

shaped into a two-dimensional matrix of I×JK [11]. In this

structure, we define the sub-features along the respective di-

mensions; x̂i={xijk}J,Kj=1,k=1 ∈ R
JK , x̂jk={xijk}Ii=1 ∈

R
I . The similarity measure is accordingly formulated as

S̄(x,y) =
I

∑

i=1

S(x̂i, ŷi)

2I
+

J,K
∑

j,k=1

S(x̂jk, ŷjk)

2JK
. (6)

Note that each feature element xijk is counted twice in this

similarity measurement.

3. TENSOR: We treat the essential feature structure of

three-way tensor as it is. The sub-features are conse-

quently formulated along the respective three dimensions;

x̂ij = {xijk}Kk=1 ∈ R
K , x̂jk = {xijk}Ii=1 ∈ R

I , x̂ik =
{xijk}Jj=1 ∈ R

J . The feature elements in each sub-feature

are consistent along one dimension. The similarity measure

is given by

S̄(x,y) = (7)

I,J
∑

i,j=1

S(x̂ij , ŷij)

3IJ
+

J,K
∑

j,k=1

S(x̂jk, ŷjk)

3JK
+

I,K
∑

i,k=1

S(x̂ik, ŷik)

3IK
,

x x̂i x̂jk x̂ij x̂jk x̂ik xijk x̂ijk

VECTOR MATRIX TENSOR ELEMENT / CUBE

Figure 1. Structural representation of the sub-features in the pro-

posed method. Each block indicates the sub-feature.

Table 1. Comparison of the sub-feature structures in terms of ro-

bustness, showing the ratio of the sub-features affected by one-

element perturbation. The smaller ratio means higher robustness.

Structure Ratio Robustness rank

VECTOR
1

1
4th

MATRIX
2

I+JK
3rd

TENSOR
3

IJ+JK+KI
2nd

ELEMENT
1

IJK
1st

where each feature element xijk is counted three times.

4. ELEMENT: At the minimum case, we set each feature

element xijk as the sub-feature, resulting in the simple sim-

ilarity measure of

S̄(x,y)=
I,J,K
∑

i,j,k=1

S(xijk, yijk)

IJK
=

I,J,K
∑

i,j,k=1

M(u(xijk), u(yijk))

IJK

=

I,J,K
∑

i,j,k=1

1

IJK

2xijkyijk

x2
ijk + y2ijk

. (8)

where V and C are removed since the sub-feature is a scalar.

This similarity measurement (8) is closely related to χ2

distance
∑

i,j,k
1
2
(xijk−yijk)

2

xijk+yijk
, ignoring cross-bin relation-

ships. And, as in the VECTOR structure, the ELEMENT ap-

proach does not take into account the structure of the feature

at all. It is also possible to extend ELEMENT to CUBE by re-

placing point-wise element with a cube of V×V×V volume;

x̂ijk = {xi′j′k′}i≤i′<i+V, j≤j′<j+V, k≤k′<k+V ∈ R
V 3

. The

similarity measure is formulated in a manner similar to slid-

ing window approach by

S̄(x,y)=

I−V+1,
J−V+1,
K−V+1
∑

i,j,k=1

S(x̂ijk, ŷijk)

(I−V +1)(J−V +1)(K−V +1)
. (9)

Discussion. We can characterize these approaches from the

viewpoint of robustness. Suppose one feature element is

changed such as due to noise. The proposed similarity mea-

sure (5) is based on an ensemble of sub-features. Thus, de-

gree of the effect by the one-element perturbation can be

estimated as the number (ratio) of the sub-feature stained

by it. This is summarized in Table 1. On the assumption

that the local feature dimensionality I is generally larger

than the numbers of spatial bins J and K, the above four

approaches are ranked in terms of the robustness (ratio)
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as VECTOR<MATRIX<TENSOR<ELEMENT. By consid-

ering that the ELEMENT approach (8) lacks structural infor-

mation, the TENSOR one (7) is expected to work better.

3.2. Similarity measure

The original SSIM (1) is defined as the product of the

three types of similarity function regarding mean M, stan-

dard deviation V and correlation C. The joint product is

sensitive to any distortion of these statistics, which is favor-

able for image assessment but lacks robustness in feature

matching. From the perspective of robustness, we have the

following variants of SSIM measurement for S in (5):

Sorg = M×V × C (original) (10)

S+µ = wMM+ wC(V × C) (separating M) (11)

S+σ = wVV + wC(M×C) (separating V) (12)

S+c = wCC + wM(M×V) (separating C) (13)

Sadd = wMM+ wVV + wCC (fully additive), (14)

where we introduce weights to balance the terms of addi-

tive forms. Note that (11) is the same configuration as the

Euclidean one (4) by pushing out the similarity M of mean

into the additive term.

Though the weights might be optimized by MKL [20],

in this study, they are determined based on the value range

of the similarity functions;

M∈
{

[ 0, +1] : non-neg. feat.

[-1,+1] : real feat.
, V ∈ [0,+1], C∈ [−1,+1],

(15)

where M takes a different range according to whether

u(x) ∈ [0,+∞] or [−∞,+∞]. The weights can be set

so as to make the similarity measures consistent in terms

of value range. That is, in the case of non-negative fea-

tures, (wM, wV , wC) = (2, 2, 1), while for real-valued fea-

tures, (wM, wV , wC) = (1, 2, 1)1. Note that those weights

are finally normalized to ensure S(x̂l, x̂l) = 1, resulting in

S̄(x,x)=1 in (5); they are divided by wM + wV + wC .

Discussion. As to the robustness, if the perturbation ap-

pears independently in the three terms M,V and C, the fully

additive form Sadd (14) maximally suppresses the influence

on the final similarity measure based on the similar discus-

sion in Table 1. As a result, we recommend the fully addi-

tive similarity measurement Sadd (14) in the TENSOR struc-

ture (7) which increases robustness by exploiting the addi-

tive formulation. Besides, the additive form has a merit of

reducing dimensionality in explicit feature map (Sec. 3.3).

3.3. Explicit feature map

As in the previous methods [16, 13, 17], the proposed

similarity measurement basically operates on pair-wise fea-

1In real-valued features, M, 2V−1 and C have the identical value rage

of [−1,+1], and the constant bias in 2V − 1 is inessential and removed.

tures {x,y} and, empirically speaking, such pair-wise op-

eration requires significant computation time for plenty of

samples. In contrast, L2 metric can be efficiently computed

by taking advantage of matrix multiplication such as via

BLAS library. Especially for matching features, the fast

computation of similarity measure is highly demanded. To

reduce the computation time, we provide the explicit feature

map g(x)∈R
Dg such that S̄(x,y)≈g(x)⊤g(y) where the

similarity computation results in simple matrix multiplica-

tion which is efficiently performed as in L2 metric.

We first consider to decompose the similarity measure-

ment function S̄ in a functional form.

Theorem 1. For the proposed method of any similarity

measure (10-14) under any structure (6-9), there exists

the explicit functional map g(λ;x) such that S̄(x,y) =
∫∞

−∞
g(λ;x)∗g(λ;y)dλ.

The proposed similarity S̄ (5) of any configuration

(Sec. 3.1, 3.2) is composed of addition and/or multiplica-

tion of M,V and C2. And, C(x,y) (3) is the dot product

of the vectors gC(x) =
x−u(x)

‖x−u(x)‖2

and gC(y) =
y−u(y)

‖y−u(y)‖2

.

Therefore, the only issue for proving Theorem 1 is to prove

that k(a, b) = 2ab
a2+b2

used in M and V has the explicit func-

tional map.

Lemma 2. There exists the explicit functional map

gk(λ; a) = g̃k(λ; a) ⊕ b(a), where b(a) ∈ R, such that

k(a, b) =
∫∞

−∞
g̃k(λ; a)

∗g̃k(λ; b)dλ+ b(a)b(b).

Proof. We show the concrete form of gk by following the

approach [25] of the explicit map for χ2 kernel.

In the case of ab 6= 0,

k(a, b)=
2sgn(ab)
∣

∣

a
b

∣

∣+
∣

∣

b
a

∣

∣

=
2sgn(ab)

e−ω + eω
= sgn(ab)sech(ω), (16)

where ω = log
∣

∣

b
a

∣

∣ and sgn(·) is the sign function. Based

on the Fourier expansion of sech, k is further rewritten as

k(a, b) = sgn(ab)sech(ω) = sgn(ab)

∫ ∞

−∞

e−iωλκ(λ)dλ

=

∫ ∞

−∞

[sgn(a)e−iλ log |a|
√

κ(λ)]∗[sgn(b)e−iλ log |b|
√

κ(λ)]dλ,

(17)

where κ(λ) is the inverse Fourier transform of sech(ω),
κ(λ) = 1

2 sech(πλ2 ). In the case of ab = 0, 2ab
a2+b2

= [[a =
0]][[b = 0]] where [[·]] is the Iverson bracket that equals to 1

if the condition in the brackets is satisfied and 0 otherwise.

2In the explicit mapping, + and × in (5, 10-14) are replaced with ⊕
(direct sum) and ⊗ (direct product), respectively. And note that in the

mapping the square root is applied to the weights wl, wM, wV , wC .
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Therefore, we can obtain

g̃k(λ; a) = sgn(a)e−iλ log |a|

√

1

2
sech

(

πλ

2

)

, (18)

b(a) = [[a = 0]].

By using Lemma 2, we can give the explicit functional

maps of M and V to finally prove Theorem 1. And,

the fixed dimensional explicit feature map g(x) ∈ R
Dg

is obtained through approximating the function gk(λ; a)
in a vector form. According to [25], g̃k(λ; a) is approxi-

mated by means of D̃k basis points in λ, resulting in D̃k-

dimensional vector, of which direct sum with b(a) forms

Dk = D̃k+1-dimensional vector gk(a). The explicit maps

of M and V are thus simply obtained by gk(u(x̂l)) and

gk(q(x̂l)), respectively, and as presented above, C has the

explicit map gC(x̂l) =
x̂l−u(x̂l)

‖x̂l−u(x̂l)‖2

of which dimensional-

ity is the same as that of the sub-feature x̂l. For example,

the dimensionality of the explicit map g(x) of the proposed

similarity, Sadd in TENSOR structure, is 3IJK+2(D̃k+
1)(IJ+JK+KI) where D̃k is the only parameter [25].

The explicit feature map is not only useful for speeding

up similarity measurement but also regarded as a novel fea-

ture transform. Thereby, the proposed method works for

feature matching as well as feature classification using the

feature map g(x); a linear classifier such as by SVM [24] is

applicable to the feature vectors g(x) in which the proposed

similarity measure is embedded.

3.4. Metric property

A metric property inheres in the proposed similarity S̄ .

Theorem 3.
√

1− S̄(x,y) is a metric.

Proof. The proposed method of any configuration is en-

sured to have S̄(x,x) = 1, ∀x. And, we apply Theorem 1

to obtain

1− S̄(x,y) = 1

2
(S̄(x,x) + S̄(y,y)− 2S̄(x,y))

=
1

2

∫ ∞

−∞

g(λ;x)∗g(λ;x)+g(λ;y)∗g(λ;y)−2g(λ;x)∗g(λ;y)dλ

=
1

2
〈g(λ;x)− g(λ;y), g(λ;x)− g(λ;y)〉. (19)

The square root of this measure is a metric.

The property of SSIM regarding a metric is partially

mentioned in [3]. The metric property would be useful for

more efficient data structures and search algorithms.

4. Experiment

The proposed similarity measurement is basically useful

for matching structured features (Sec. 4.1, Sec. 4.2). In ad-

dition, via the explicit feature map in Sec. 3.3, the method

is also applicable to feature classification tasks (Sec. 4.3).

4.1. Keypoint matching

We first test the proposed method on the task of keypoint

matching by means of local descriptors. The local descrip-

tors are generally formulated in a structured tensor form ex-

ploiting local spatial layout, such as 8(I)×4(J)×4(K) for

SIFT [15] and SURF [1]. Performance for the matching is

evaluated on the dataset by Mikolajczyk and Schmid [8] in a

similar protocol. The dataset contains eight image sets each

of which consists of one reference (undistorted) image and

five distorted ones captured at different angle, scale and so

on; in total, there are 40 image pairs for evaluating local de-

scriptor matching. In this evaluation, we extract SIFT [15]

local descriptors x∈R
8×4×4 on the keypoints detected by

a Hessian-based detector. Since we focus only on evalu-

ating (dis)similarity measure, the performance is measured

based on averaged precision (AP), the ratio of the correctly

matched descriptor pairs (of >60% overlap).

Feature structure. We evaluate various types of sub-

feature structure (Sec. 3.1 and Fig. 1) with fixing the simi-

larity measure S=Sorg (10). The performance is compared

on the basis of TENSOR structure which is of our main in-

terest. As shown in Fig. 2, the TENSOR structure is superior

to the other types of structure; in particular, it significantly

outperforms the VECTOR structure. Actually, the VECTOR

structure which simply applies SSIM to feature vectors is

inferior even to the standard L2 metric (Fig. 3). The MA-

TRIX structure performs relatively well, though being still

inferior to the TENSOR one, and both the structures surpass

the VECTOR and ELEMENT ones which do not take into ac-

count the structure of SIFT feature at all. This result demon-

strates effectiveness of incorporating the feature structure

into similarity measurement. Although the CUBE structure

slightly exploits such structure characteristics, it is neces-

sary to form consistent sub-features for similarity measure-

ment; in the TENSOR structure, the sub-features are consis-

tent along respective dimensions, while CUBE one mixes up

all the three dimensions in the sub-features.

To further demonstrate the effectiveness to incorporate

intrinsic SIFT structure, we additionally tested the method

that randomly permutes feature elements in the identical

TENSOR structure. The random permutation of feature el-

ements largely degrades inherent physical meaning of the

SIFT structure, harming consistency in the sub-feature, and

accordingly pollutes the performance as shown in Fig. 2.

This experimental result shows that it is important to deal

with the intrinsic feature structure as it is.

Similarity measure. Next, we go into the similarity mea-

surement S used in the TENSOR structure. Various types

of similarity measurement functions (10-14) are compared

with Sadd of our main interest. Fig. 4 shows that Sadd

is superior to Sorg while producing comparable perfor-

mance with the other methods based on additive forms

(S+µ,S+σ,S+c). Unfolding the original SSIM formulation
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Figure 2. Comparison of the sub-feature structures (Sec. 3.1) in S = Sorg (10). Each point ’o’ indicates the two APs in horizontal and

vertical axes, produced by compared two methods for each image pair. All the vertical axes indicate TENSOR structure.
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Figure 3. Sorg in VECTOR

(naive SSIM) vs. L2.
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Figure 4. Comparison of the similarity measures (Sec. 3.2) in the TENSOR structure. All the vertical axes

indicate Sadd (14).
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Figure 5. Comparison of the ingredient functions (M,V, C) in Sadd (14) controlled by the weights {wM, wV , wC}. All the vertical axes

indicate {wM, wV , wC} = {2, 2, 1}.

Sorg into additive forms improves the performance with in-

creasing the robustness. Among the additive forms (11-14),

Sadd is preferable from the viewpoint of computation effi-

ciency since it produces the smallest dimensionality of the

explicit feature map (Sec. 3.3).

In Sadd, we further investigate the roles of the three

ingredient functions M,V and C through controlling the

weights {wM, wV , wC}, which were set to {2, 2, 1} in the

above experiment as described in Sec. 3.2. As shown

in Fig. 5, any single function poorly works while the

performance is significantly improved by combining two

of them, being comparable to the full combination with

{wM, wV , wC} = {2, 2, 1}. For the computation efficiency,

it is preferable to construct the similarity measurement Sadd

by using less number of ingredients for reducing the di-

mensionality of the explicit feature map (Sec. 3.3). Thus,

we employ simpler configuration of Sadd with wM = 0 or

wV =0; the dimensionality of those explicit feature maps is

3IJK+(D̃k+1)(IJ+JK+KI), and in this case of SIFT

descriptor, it results in 1024-dimensional feature vector by

D̃k = 7. More practically speaking, the method composed

only of V and C is favorable since we can use fixed weights

of {wM, wV , wC} = {0, 2, 1} regardless of feature domain

(non-negative or real-valued).

As a conclusion, from perspectives of performance and

practical use, it is advantageous to employ the proposed

method of Sadd with {wM, wV , wC} = {0, 2, 1} in the

TENSOR structure, which is thus applied in what follows.

4.1.1 Comparison with the other methods

Then, the proposed method is compared to the other meth-

ods of distance (similarity) measurement including the stan-

dard L2 metric, χ2 distance [2], diffusion distance (Dif-

fuseDist) [13], SIFT distance (SiftDist) [16] and fast Earth

Mover’s Distance (fEMD) [17]. The performance results

are shown in Fig. 6 on the basis of the proposed method

which favorably outperforms the others. This result demon-

strates that (1) the feature structure (tensor) in the proposed

method is a favorable standpoint than a histogram form im-

posed on the previous methods except for L2 metric, and (2)
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