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Abstract

Optimal transport distances, otherwise known as

Wasserstein distances, have recently drawn ample atten-

tion in computer vision and machine learning as powerful

discrepancy measures for probability distributions. The re-

cent developments on alternative formulations of the opti-

mal transport have allowed for faster solutions to the prob-

lem and have revamped their practical applications in ma-

chine learning. In this paper, we exploit the widely used

kernel methods and provide a family of provably positive

definite kernels based on the Sliced Wasserstein distance

and demonstrate the benefits of these kernels in a variety of

learning tasks. Our work provides a new perspective on the

application of optimal transport flavored distances through

kernel methods in machine learning tasks.

1. Introduction

Many computer vision algorithms rely on characterizing

images or image features as probability distributions which

are often high-dimensional. This is for instance the case

for histogram-based methods like the Bag-of-Words (BoW)

[21], feature matching [17], co-occurence matrices in tex-

ture analysis [15], action recognition [43], and many more.

Having an adequate measure of similarity (or equivalently

discrepancy) between distributions becomes crucial in these

applications. The classic distances or divergences for prob-

ability densities include Kullback-Leibler divergence, Kol-

mogorov distance, Bhattacharyya distance (also known as

the Hellinger distance), etc. More recently, however, the

optimal transportation framework and the Wasserstein dis-

tance [41] also known as the Earth Mover Distance (EMD)

[34] have attracted ample interest in the computer vision

[39], machine learning [11], and biomedical image analy-

sis [3] communities. The Wasserstein distance computes

the optimal warping to map a given input probability mea-

sure µ to a second one ν. The optimality corresponds to a

cost function which measures the expected value of the dis-

placement in a warping. Informally, thinking about µ and ν

as piles of dirt (or sand), the Wasserstein distance measures

a notion of displacement of each sand particle in µ times its

mass to warp µ into ν.

The Wasserstein distance has been shown to provide a

useful tool to quantify the geometric discrepancy between

two distributions. Specifically, they’ve been used as dis-

tances in content-based image image retrieval [34], mod-

eling and visualization of modes of variation of image in-

tensity values [3, 45, 37, 6], estimate the mean of a fam-

ily of probability measures (i.e. barycenters of distribu-

tions) [2, 32], cancer detection [30, 40], super-resolution

[23], amongst other applications. Recent advances utiliz-

ing variational minimization [16, 9], particle approximation

[44], multi-scale schemes [27, 29], and entropy regulariza-

tion [11, 39, 4], have enabled transport metrics to be ef-

ficiently applied to machine learning and computer vision

problems. In addition, Wang et al. [45] described a method

for computing a transport distance (denoted as linear opti-

mal transport) between all image pairs of a dataset of N

images that requires only N transport minimization prob-

lems. Rabin et al. [32] and Bonneel et al. [7] proposed

to leverage the fact that these problems are easy to solve

for one-dimensional distributions, and introduced an alter-

native distance called the Sliced Wasserstein distance. Fi-

nally, recent work [31, 22, 24] has shown that the transport

framework can be used as an invertible signal/image trans-

formation framework that can render signal/image classes

more linearly separable, thus facilitating a variety of pattern

recognition tasks.

Due to the benefits of using the transport distances out-

lined above, and given the flexibility and power of kernel-

based methods [18], several methods using transport-related

distances in constructing kernel matrices have been de-

scribed with applications in computer vision, and EEG data

classification [47, 12]. Since positive definite RBF ker-

nels require the metric space induced by the distance to be

‘flat’ (zero curvature) [13], and because the majority of the

transport-related distances mentioned above, in particular

distances for distributions of dimension higher than one uti-

lizing the L2 cost, do not satisfy this requirement, few op-

tions for provably positive definite transport-based kernels

have emerged. Cuturi [10] for example, suggested utilizing
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the permanent of the transport polytope, thus guaranteeing

the positivity of the derived kernels. More recently, Gard-

ner et al. [14] have shown that certain types of earth mover’s

distances (e.g. with the 0-1 cost function) can yield kernels

which are positive definite.

Here we expand upon these sets of ideas and show that

the Sliced Wasserstein distance satisfies the basic require-

ments for being used as a positive definite kernel[18] in a

variety of regression-based pattern recognition tasks, and

have concrete theoretical and practical advantages. Based

on the recent works on kernel methods [19, 20, 13], we ex-

ploit the connection between the optimal transport frame-

work and the kernel methods and introduce a family of

provably positive definite kernels which we denote as Sliced

Wasserstein kernels. We derive mathematical results en-

abling the application of the Sliced Wasserstein metric in

the kernel framework and, in contrast to other work, we de-

scribe the explicit form for the embedding of the kernel,

which is analytically invertible. Finally, we demonstrate ex-

perimentally advantages of the Sliced Wasserstein kernels

over the commonly used kernels such as the radial basis

function (RBF) and the polynomial kernels for a variety of

regression.

Paper organization. We first review the preliminaries

and formally present the p-Wasserstein distance, the Sliced

Wasserstein distance, and review some of the theorems in

the literature on positive definiteness of kernels in Section

2. The main theorems of the paper on the Sliced Wasser-

stein kernels are stated in Section 3. In Section 4 we review

some of the kernel-based algorithms including the kernel

k-means clustering, the kernel PCA, and the kernel SVM.

Section 5 demonstrates the benefits of the Sliced Wasser-

stein kernel over the commonly used kernels in a variety of

pattern recognition tasks. Finally we conclude our work in

Section 6 and lay out future directions for research in the

area.

2. Background

2.1. The pWasserstein distance

Let σ and µ be two probability measures on measur-

able spaces X and Y and their corresponding probabil-

ity density functions I0 and I1, dσ(x) = I0(x)dx and

dµ(y) = I1(y)dy. In computer vision and image processing

applications one often deals with compact d-dimensional

Euclidean spaces, hence X = Y = [0, 1]d.

Definition 1. The p-Wasserstein distance for p ∈ [1,∞) is

defined as,

Wp(σ, µ) := (infπ∈Π(σ,µ)

∫

X×Y

(x− y)pdπ(x, y))
1

p (1)

where Π(σ, µ) is the set of all transportation plans, and π ∈

Π(σ, µ), that satisfies the following,

π(A× Y ) = σ(A) for any Borel subset A ⊆ X

π(X ×B) = µ(B) for any Borel subset B ⊆ Y
(2)

Due to Brenier’s theorem [8], for absolutely continuous

probability measures σ and µ (with respect to Lebesgue

measure) the p-Wasserstein distance can be equivalently ob-

tained from,

Wp(σ, µ) = (inff∈MP (σ,µ)

∫

X

(f(x)− x)pdσ(x))
1

p (3)

where, MP (σ, µ) = {f : X → Y | f#σ = µ} and f#σ

represents the pushforward of measure σ and is character-

ized as,

∫

f−1(A)

dσ =

∫

A

dµ for any Borel subset A ⊆ Y

In the one-dimensional case, the 2-Wasserstein distance

has a closed form solution as the mass preserving (MP)

transport map, f ∈ MP , is unique. We will show this in

the following theorem.

Theorem 1. Let σ and µ be absolutely continuous proba-

bility measures on R with corresponding positive density

functions I0 and I1, and corresponding cumulative dis-

tribution functions Fσ(x) := σ((−∞, x]) and Fµ(x) :=
µ((−∞, x]). Then, there only exists one monotonically

increasing transport map f : R → R such that f ∈
MP (σ, µ) and it is defined as,

f(x) := min{t ∈ R : Fµ(t) ≥ Fσ(x)} (4)

or equivalently f(x) = F−1
µ (Fσ(x)). The 2-Wasserstein

distance is then obtained from,

W2(σ, µ) = (

∫

X

(f(x)− x)2I0(x)dx)
1

2 . (5)

Note that throughout the paper we use W2(σ, µ) and

W2(I0, I1) interchangeably.

Proof. Assume there exist more than one transport maps,

say f and g, such that f, g ∈MP (σ, µ), then we can write,

∫ f(x)

−∞

I1(τ)dτ =

∫ x

−∞

I0(τ)dτ =

∫ g(x)

−∞

I1(τ)dτ

Above is equivalent to Fµ(f(x)) = Fµ(g(x)), but I1 is

positive everywhere, hence the CDF is monotonically in-

creasing, therefore Fµ(f(x)) = Fµ(g(x)) implies that

f(x) = g(x). Therefore the transport map in one dimen-

sion is unique.
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The closed-form solution of the Wasserstein distance in

one dimension is an attractive property, as it alleviates the

need for often computationally intensive optimizations. Re-

cently there has been some work on utilizing this property

of the Wasserstein distance to higher dimensional problems

[32, 7, 22] (i.e. images). We review such distances in the

following section.

2.2. The Sliced Wasserstein distance

The idea behind the Sliced Wasserstein distance is to

first obtain a family of one-dimensional representations for

a higher-dimensional probability distribution through pro-

jections/slicing, and then calculate the distance between

two input distributions as a functional on the Wasser-

stein distance of their one-dimensional representations. In

this sense, the distance is obtained by solving several

one-dimensional optimal transport problems, which have

closed-form solutions.

Definition 2. The d-dimensional Radon transform R maps

a function I ∈ L1(Rd) where L1(Rd) := {I : R
d →

R|
∫

Rd |I(x)|dx ≤ ∞} into the set of its integrals over the

hyperplanes of Rn and is defined as,

RI(t, θ) :=

∫

R

I(tθ + γθ⊥)dγ (6)

here θ⊥ is the subspace or unit vector orthogonal to θ. Note

that R : L1(Rd) → L1(R × S
d−1), where S

d−1 is the unit

sphere in R
d.

We note that the Radon transform is an invertible, linear

transform and we denote its inverse as R−1. For brevity

we do not define the inverse Radon transform here, but the

details can be found in [28]. Next, following [32, 7, 22] we

define the Sliced Wasserstein distance.

Definition 3. Let µ and σ be two continuous probabil-

ity measures on R
d with corresponding positive probability

density functions I1 and I0. The Sliced Wasserstein dis-

tance between µ and σ is defined as,

SW (µ, σ) := (

∫

Sd−1

W 2
2 (RI1(., θ),RI0(., θ))dθ)

1

2

= (

∫

Sd−1

∫

R

(fθ(t)− t)2RI0(t, θ)dtdθ)
1

2

(7)

where fθ is the MP map between RI0(., θ) and RI1(., θ)
such that,
∫ fθ(t)

−∞

RI1(τ, θ)dτ =

∫ t

−∞

RI0(τ, θ)dτ, ∀θ ∈ S
d−1 (8)

or equivalently in the differential form,

∂fθ(t)

∂t
RI1(fθ(t), θ) = RI0(t, θ), ∀θ ∈ S

d−1. (9)

The Sliced Wasserstein distance as defined above is sym-

metric, and it satisfies subadditivity and coincidence ax-

ioms, and hence it is a true metric (See [22] for proof).

2.3. The Gaussian RBF Kernel on Metric Spaces

The kernel methods and specifically the Gaussian RBF

kernel have shown to be very powerful tools in a plethora of

applications. The Gaussian RBF kernel was initially de-

signed for Euclidean spaces, however, recently there has

been several work extending the Gaussian RBF kernel to

other metric spaces. Jayasumana et al. [20], for instance,

developed an approach to exploit the Gaussian RBF kernel

method on Riemannian manifolds. In another interesting

work, Feragen et al. [13] considered the Gaussian RBF ker-

nel on general geodesic metric spaces and showed that the

geodesic Gaussian kernel is only positive definite when the

underlying Riemannian manifold is flat or in other words

it is isometric to a Euclidean space. Here we review some

definitions and theorems that will be used in the rest of the

paper.

Definition 4. A positive definite (PD) (resp. conditional

negative definite) kernel on a set M is a symmetric function

k : M ×M → R, k(Ii, Ij) = k(Ij , Ii) for all Ii, Ij ∈ M ,

such that for any n ∈ N , any elements I1, ..., In ∈ X , and

numbers c1, ..., cn ∈ R, we have

n
∑

i=1

n
∑

j=1

cicjk(Ii, Ij) ≥ 0 (resp. ≤ 0) (10)

with the additional constraint of
∑n

i=1 ci = 0 for the con-

ditionally negative definiteness.

Above definition is used in the following important the-

orem due to Isaac J. Schoenberg [35],

Theorem 2. LetM be a nonempty set and f : (M×M) →
R be a function. Then kernel k(Ii, Ij) = exp(−γf(Ii, Ij))
for all Ii, Ij ∈ M is positive definite for all γ > 0 if and

only if f(., .) is conditionally negative definite.

The detailed proof of above theorem can be found in

Chapter 3, Theorem 2.2 of [5].

Following the work by Jayasumana et al. [20], here we

state the theorem (Theorem 6.1 in [20]) which provides the

necessary and sufficient conditions for obtaining a positive

definite Gaussian kernel from a given distance function de-

fined on a generic metric space.

Theorem 3. Let (M,d) be a metric space and define k :
M × M → R by k(Ii, Ij) := exp(−γd2(Ii, Ij)) for all

Ii, Ij ∈ M . Then k(., .) is a positive definite kernel for all

γ > 0 if and only if there exists an inner product space V
and a function ψ : M → V such that d(Ii, Ij) = ‖ψ(Ii) −
ψ(Ij)‖V .
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Proof. The detailed proof is presented in [20]. The gist of

the proof, however, follows from Theorem 2 which states

that positive definiteness of k(., .) for all γ > 0 and condi-

tionally negative definiteness of d2(., .) are equivalent con-

ditions. Hence, for d(Ii, Ij) = ‖ψ(Ii) − ψ(Ij)‖V it is

straightforward to show that d2(., .) is conditionally neg-

ative definite and therefore k(., .) is positive definite. On

the other hand, if k(., .) is positive definite then d2(., .) is

conditionally negative definite, and since d(Ii, Ii) = 0 for

all Ii ∈ M a vector space V exists for which d(Ii, Ij) =
‖ψ(Ii)− ψ(Ij)‖V for some ψ :M → V [20, 5].

3. Sliced Wasserstein Kernels

In this section we present our main theorems. We first

demonstrate that the Sliced Wasserstein Gaussian kernel of

probability measures is a positive definite kernel. We pro-

ceed our argument by showing that there is an explicit for-

mulation for the nonlinear mapping to the kernel space (aka

feature space) and define a family of kernels based on this

mapping.

We start by proving that for one-dimensional probabil-

ity density functions the 2-Wasserstein Gaussian kernel is a

positive definite kernel.

Theorem 4. LetM be the set of absolutely continuous one-

dimensional positive probability density functions and de-

fine k :M×M → R to be k(Ii, Ij) := exp(−γW 2
2 (Ii, Ij))

then k(., .) is a positive definite kernel for all γ > 0.

Proof. In order to be able to show this, we first show that for

absolutely continuous one-dimensional positive probability

density functions there exists an inner product space V and

a function ψ : M → V such that W2(Ii, Ij) = ‖ψ(Ii) −
ψ(Ij)‖V .

Let σ, µ, and ν be probability measures on R with cor-

responding absolutely continuous positive density functions

I0, I1, and I2. Let f, g, h : R → R be transport maps such

that f#σ = µ, g#σ = ν, and h#µ = ν. In the differen-

tial form this is equivalent to f ′I1(f) = g′I2(g) = I0 and

h′I2(h) = I1 where I1(f) represents I1 ◦ f . Then we have,

W 2
2 (I1, I0) =

∫

R

(f(x)− x)2I0(x)dx,

W 2
2 (I2, I0) =

∫

R

(g(x)− x)2I0(x)dx,

W 2
2 (I2, I1) =

∫

R

(h(x)− x)2I1(x)dx.

We follow the work of Wang et al. [45] and Park et al. [31]

and define a nonlinear map with respect to a fixed probabil-

ity measure, σ with corresponding density I0, that maps an

input probability density to a linear functional on the cor-

responding transport map. More precisely, ψσ(I1(.)) :=
(f(.) − id(.))

√

I0(.) where id(.) is the identity map and

f ′I1(f) = I0. Notice that such ψσ maps the fixed probabil-

ity density I0 to zero, ψσ(I0(.)) = (id(.)− id(.))
√

I0(.) =
0 and it satisfies,

W2(I1, I0) = ‖ψσ(I1)‖2

W2(I2, I0) = ‖ψσ(I2)‖2.

More importantly, we demonstrate that W2(I2, I1) =
‖ψσ(I1)− ψσ(I2)‖2. To show this, we can write,

W 2
2 (I2, I1) =

∫

R

(h(x)− x)2I1(x)dx

=

∫

R

(h(f(τ))− f(τ))2f ′(τ)I1(f(τ))dτ

=

∫

R

(g(τ)− f(τ))2I0(τ)dτ

=

∫

R

((g(τ)− τ)− (f(τ)− τ))2I0(τ)dτ

= ‖ψσ(I1)− ψσ(I2)‖
2
2

where in the second line we used the change of variable

f(τ) = x. In the third line, we used the fact that com-

position of transport maps is also a transport map, in other

words, since f#σ = µ and h#µ = ν then (h ◦ f)#σ = ν.

Finally, from Theorem 1 we have that the one-dimensional

transport maps are unique, therefore if (h ◦ f)#σ = ν and

g#σ = ν then h ◦ f = g.

We showed that there exists a nonlinear map ψσ : M →
V for whichW2(Ii, Ij) = ‖ψσ(Ii)−ψσ(Ij)‖2 and therefore

according to Theorem 3, k(Ii, Ij) := exp(−γW 2
2 (Ii, Ij))

is a positive definite kernel.

Combining the results in Theorems 4 and 2 will lead to

the following corollary.

Corollary 1. The squared 2-Wasserstein distance for con-

tinuous one-dimensional positive probability density func-

tions, W 2
2 (., .), is a conditionally negative definite function.

Moreover, following the work of Feragen et al. [13],

Theorem 4 also states that the Wasserstein space in one

dimension (the space of one-dimensional absolutely con-

tinuous positive probability densities endowed with the 2-

Wasserstein metric) is a flat space (it has zero curvature), in

the sense that it is isometric to the Euclidean space.

3.1. The Sliced Wasserstein Gaussian kernel

Now we are ready to show that the Sliced Wasserstein

Gaussian kernel is a positive definite kernel.

Theorem 5. LetM be the set of absolutely continuous pos-

itive probability density functions and define k :M ×M →
R to be k(Ii, Ij) := exp(−γSW 2(Ii, Ij)) then k(., .) is a

positive definite kernel for all γ > 0.
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Proof. First note that for an absolutely continuous positive

probability density function, I ∈ M , each hyperplane inte-

gral, RI(., θ), ∀θ ∈ S
d−1 is a one dimensional absolutely

continuous positive probability density function. Therefore,

following Corollary 1 for I1, ..., IN ∈M we have,

N
∑

i=1

N
∑

j=1

cicjW
2
2 (RIi(., θ),RIj(., θ)) ≤ 0, ∀θ ∈ S

d−1 (11)

where
∑N

i=1 ci = 0. Integrating the left hand side of above

inequality over θ leads to,

∫

Sd−1

(

N
∑

i=1

N
∑

j=1

cicjW
2
2 (RIi(., θ),RIj(., θ))dθ) ≤ 0 ⇒

N
∑

i=1

N
∑

j=1

cicj(

∫

Sd−1

W 2
2 (RIi(., θ),RIj(., θ))dθ) ≤ 0 ⇒

N
∑

i=1

N
∑

j=1

cicjSW
2(Ii, Ij) ≤ 0 (12)

Therefore SW 2(., .) is conditionally negative definite,

and hence from Theorem 2 we have that k(Ii, Ij) :=
exp(−γSW 2(Ii, Ij)) is a positive definite kernel for γ >

0.

The following corollary follows from Theorems 3 and 5.

Corollary 2. Let M be the set of absolutely continuous

positive probability density functions and let SW (., .) be

the sliced Wasserstein distance, then there exists an inner

product space V and a function φ : M → V such that

SW (Ii, Ij) = ‖φ(Ii)− φ(Ij)‖V , for ∀Ii, Ij ∈M .

In fact, using a similar argument as the one we provided

in the proof of Theorem 4 it can be seen that for a fixed

absolutely continuous measure, σ, with positive probability

density function I0, we can define,

φσ(Ii) := (fi(t, θ)− t)
√

RI0(t, θ) (13)

where fi satisfies
∂fi(t,θ)

∂t
RIi(fi(t, θ), θ) = RI0(t, θ). It

is straightforward to show that such φσ also satisfies the

following,

SW (Ii, I0) = ‖φσ(Ii)‖2 (14)

SW (Ii, Ij) = ‖φσ(Ii)− φσ(Ij)‖2 (15)

for a detailed derivation and proof of the equations above

please refer to [22]. More importantly, such nonlinear trans-

formation φσ :M → V is invertible.

3.2. The Sliced Wasserstein polynomial kernel

In this section, using Corollary 2 we define a polynomial

Kernel based on the Sliced Wasserstein distance and show

that this kernel is positive definite.

Theorem 6. LetM be the set of absolutely continuous pos-

itive probability density functions and let σ be a template

probability measure with corresponding probability density

function I0 ∈ M . Let φσ : M → V be defined as in Equa-

tion (13). Define a kernel function k : M × M → R to

be k(Ii, Ij) := (〈φσ(Ii), φσ(Ij)〉)
d for d ∈ {1, 2, ...} then

k(., .) is a positive definite kernel.

Proof. Given I1, ..., IN ∈M and for d = 1 we have,

N
∑

i=1

N
∑

j=1

cicj〈φσ(Ii), φσ(Ij)〉 =

〈

N
∑

i=1

ciφσ(Ii),

N
∑

j=1

cjφσ(Ij)〉 = ‖

N
∑

i=1

ciφσ(Ii)‖
2
2 ≥ 0

(16)

and since k(Ii, Ij) = 〈φσ(Ii), φσ(Ij)〉 is a positive def-

inite kernel and from Mercer’s kernel properties it fol-

lows that k(Ii, Ij) = (〈φσ(Ii), φσ(Ij)〉)
d and k(Ii, Ij) =

(〈φσ(Ii), φσ(Ij)〉 + 1)d are also positive definite ker-

nels.

4. The Sliced Wasserstein Kernel-based algo-

rithms

4.1. Sliced Wasserstein Kernel kmeans

Considering clustering problems for data with the form

of probability distributions, we propose the Sliced Wasser-

stein k-means. For a set of input data I1, ..., IN ∈ M ,

the Sliced Wasserstein k-means with kernel k(Ii, Ij) =
〈φσ(Ii), φσ(Ij)〉 transforms the input data to the kernel

space via φσ : M → V and perform k-means in this

space. Note that since ‖φσ(Ii) − φσ(Ij)‖2 = SW (Ii, Ij),
performing k-means in V is equivalent to performing k-

means with Sliced Wasserstein distance in M . The kernel

k-means with the Sliced Wasserstein distance, essentially

provides k barycenters for the input distributions. In addi-

tion, the Gaussian and polynomial Sliced Wasserstein ker-

nel k-means are obtained by performing Gaussian and poly-

nomial kernel k-means in V .

4.2. Sliced Wasserstein Kernel PCA

Now we consider the key concepts of the kernel PCA.

The Kernel-PCA [36] is a non-linear dimensionality re-

duction method that can be interpreted as applying the

PCA in the kernel-space (or feature-space), V . Perform-

ing standard PCA on φσ(I1), ..., φσ(IN ) ∈ V provides
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the Sliced Wasserstein kernel PCA. In addition, applying

Gaussian and polynomial Sliced Wasserstein kernel PCA to

I1, ..., IN ∈ M is also equivalent to applying Gaussian and

polynomial kernel PCA on φσ(I1), ..., φσ(IN ) ∈ V . We

utilize the cumulative percent variance (CPV) as a quality

measure for how well the principal components are captur-

ing the variation of the dataset in M and similarly in V .

4.3. Sliced Wasserstein Kernel SVM

For a binary classifier, given a set of training examples

{Ii, yi}
N
i=1 where Ii ∈M and yi ∈ {−1, 1}, support vector

machine (SVM) searches for a hyperplane in M that sepa-

rates training classes while maximizing the separation mar-

gin where separation is measured with the Euclidean dis-

tance. A kernel-SVM , on the other hand, searches for a

hyperplane in V which provides maximum margin separa-

tion between φσ(Ii)s which is equivalent to finding a non-

linear classifier in M that maximizes the separation margin

according to the Sliced Wasserstein distance. Note that the

kernel SVM with the Sliced Wasserstein Gaussian and poly-

nomial kernels are essentially equivalent to applying ker-

nel SVM, with the same kernels in the transformed Sliced

Wasserstein space V . It is worthwhile to mention that, since

φσ is invertible, the Sliced Wasserstein kernel SVM learned

from kernel k(Ii, Ij) = 〈φσ(Ii), φσ(Ij)〉 can be sampled

along side the orthogonal direction to the discriminating hy-

perplane in V and then inverted through φ−1
σ to directly get

the discriminating features in the space of the probability

densities, M . Finally, for multiclass classification prob-

lems, the problem can be turned into several binary clas-

sification tasks using pairwise coupling as suggested by Wu

et al. [46] or a one versus all approach.

5. Experimental Results

For our experiments we utilized two image datasets,

namely the University of Illinois Urbana Champaign

(UIUC) texture dataset [25] and the LHI animal face dataset

[38]. The texture dataset contains 25 classes of texture im-

ages with 40 images per class, which includes a wide range

of variations. The animal face dataset contains 21 classes of

animal faces with the average number of images per class

being 114. Figures 1 (a) and 2 (a) show sample images from

image classes for the texture and the LHI dataset, respec-

tively. For the texture dataset we extracted the gray-level

co-occurence matrices for texture images and normalized

them to obtain empirical joint probability density functions

of co-occuring gray levels (See Figure 1 (b)). On the other

hand, for the animal face dataset, we used the normalized

HOGgles images [42] as probability distribution represen-

tations of RGB animal face images (See Figure 2 (b)). We

acknowledge that the HOGgles are not designed for feature

extraction but rather for visualization of the extracted HoG

features [42], but our goal here is to show that for any ex-

tracted probability density features from images the Sliced

Wasserstein kernels often outperform commonly used ker-

nels.

Regarding the implementation, the fixed density I0 for

each dataset is chosen to be the average distribution over

the entire dataset. The Radon transform was used to

slice the probability distributions at discrete angles θ ∈
{0, 1, ..., 179}. For each slice, RIi(., θk), the transport

map fi that satisfies Equation (9) is calculated using Equa-

tion (4). Finally, the kernel representations φσ(Ii) for

the extracted probability distributions were calculated us-

ing Equation (13). The calculated representations, φσ(Ii),
are shown in Figures 1 (c) and 2 (c). The Matlab code

[26] and detailed description of our implementation can be

found in [1]. The computational complexity of calculating

the transport map for a pair of one-dimensional probabil-

ity density functions (PDFs), presented as vectors of length

N , is O(NlogN). On the other hand, the computational

complexity of calculating M slices (projections) of a d-

dimensional PDF, which is presented as a N ×N × ...×N

tensor, is O(MNd). Therefore, the overall computational

complexity of calculating the explicit mapping φσ(.) is

dominated by computational complexity of calculating the

M projections of the distribution and is equal to O(MNd).
It should be mentioned that, for higher dimensional PDFs,

more projections (larger M) is required to capture the un-

derlying variations of the distributions.

First, the PCA of the input data, I1, ..., IN ∈M (i.e. the

co-occurence matrices for the texture images and the HOG-

gles images for the LHI dataset) as well as the kernel-PCA

of the data with the Sliced Wasserstein kernel, RBF ker-

nel, and the Sliced Wasserstein Gaussian kernel were cal-

culated for both datasets. Figure 3 shows the cumulative

percent variance (CPV) of the dataset captured by different

kernels for both datasets. It can be seen that the variations

in the datasets are captured more efficiently in the Sliced

Wasserstein kernel space. We note that the CPV generally

depends on the choice of the kernel parameters (e.g. radius

of the RBF), however, for the Sliced Wasserstein kernel,

k(Ii, Ij) = 〈φσ(Ii), φσ(Ij)〉, there are no parameters and

the comparison between PCA and Sliced Wasserstein ker-

nel PCA is parameter free.

Next, we performed classification tasks on the texture

and animal face datasets. Linear SVM, RBF kernel SVM,

Sliced Wasserstein Gaussian kernel SVM, and the Sliced

Wasserstein polynomial kernel were utilized for classifi-

cation accuracy comparison. A five fold cross validation

scheme was used, in which 20% of each class was held out

for testing and the rest was used for training and parameter

estimation. The hyperparameters of the kernels are calcu-

lated through grid search. The classification experiments

were repeated 100 times and the means and standard devi-

ations of the classification accuracies for both datasets are
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Figure 1. The UIUC texture dataset with 25 classes (a), the corresponding calculated co-occurence matrices (b), and the kernel representa-

tion (i.e. φσ) of the co-occurence matrices (c).

Figure 2. The LHI animal face dataset with 21 classes (a), the corresponding calculated HOGgles representation (b), and the kernel

representation (i.e. φσ) of the HOGgles images (c).

reported in Figure 4.

Finally, we performed clustering on the UIUC texture

and the LHI animal face dataset. We utilized the k-means

algorithm and the spectral clustering method on the nor-

malized co-occurence matrices and the HOGgles images,

I ∈ M , and their corresponding representations in the ker-

nel space, φσ(I) ∈ V (i.e. kernel k-means). We note that,

since the mapping φσ() is known, any clustering algorithm

can be performed in the Sliced Wasserstein kernel space.

We repeated the k-means experiment 100 times and mea-
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Figure 3. Percentage variations captured by eigenvectors calcu-

lated from PCA, RBF kernel-PCA, Sliced Wasserstein kernel

PCA, and Sliced Wasserstein Gaussian kernel (SW-RBF) PCA for

the texture dataset (a) and for the animal face dataset (b).

Figure 4. Kernel SVM classification accuracy with linear ker-

nel, radial basis function kernel (RBF), Sliced Wasserstein Gaus-

sian Kernel (SW-RBF), and Sliced Wasserstein Polynomial Kernel

(SW-Polynomial).

sured the V-measure [33], which is a conditional entropy-

based external cluster evaluation measure, at each iteration

for both datasets. In addition, we performed spectral clus-

tering in the kernel space φσ(I) ∈ V and measured the V-

measure. Figure 5 shows the mean and standard deviation

of the V-measure for k-means, Sliced Wasserstein kernel k-

means, spectral clustering, and Sliced Wasserstein spectral

Figure 5. Cluster evaluation for k-means, Sliced Wasserstein ker-

nel k-means, spectral clustering, and spectral clustering k-means

using the V-measure.

clustering. It can be seen that for both methods, the Sliced

Wasserstein kernel provides better clusters which match the

texture and animal face classes better, as it leads to higher

V-measure values.

6. Discussion

In this paper, we have introduced a family of provably

positive definite kernels for probability distributions based

on the mathematics of the optimal transport and more pre-

cisely the Sliced Wasserstein distance. We denoted our pro-

posed family of kernels as the Sliced Wasserstein kernels.

Following the work of [31, 22], we provided an explicit

nonlinear and invertible formulation for mapping probabil-

ity distributions to the kernel space (aka feature space). Our

experiments demonstrated the benefits of the Sliced Wasser-

stein kernels over the commonly used RBF and Polynomial

kernels in a variety of pattern recognition tasks on probabil-

ity densities.

More specifically, we showed that utilizing a dimension-

ality reduction scheme like PCA with the Sliced Wasser-

stein kernel leads to capturing more of the variations of the

datasets with fewer parameters. Similarly, clustering meth-

ods can benefit from the Sliced Wasserstein kernel as the

clusters have higher values of V-measure and lower value

of inertia. Finally, we demonstrated that the classification

accuracy for a kernel classifier like the kernel SVM can also

benefit from the Sliced Wasserstein kernels.

Finally, the experiments in this paper were focused

on two-dimensional distributions. However, the proposed

framework can be extended to higher-dimensional probabil-

ity densities. We therefore intend to investigate the applica-

tion of the Sliced Wasserstein kernel to higher-dimensional

probability densities such as volumetric MRI/CT brain data.
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[32] J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasser-

stein barycenter and its application to texture mixing.

In Scale Space and Variational Methods in Computer

Vision, pages 435–446. Springer, 2012. 1, 3

[33] A. Rosenberg and J. Hirschberg. V-Measure: A condi-

tional entropy-based external cluster evaluation mea-

sure. In EMNLP-CoNLL, volume 7, pages 410–420,

2007. 8

[34] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth

Mover’s distance as a metric for image retrieval. In-

ternational journal of computer vision, 40(2):99–121,

2000. 1

[35] I. J. Schoenberg. Metric spaces and completely mono-

tone functions. Annals of Mathematics, pages 811–

841, 1938. 3

[36] B. Schölkopf, A. Smola, and K.-R. Müller. Kernel

principal component analysis. In Artificial Neural

Networks-ICANN’97, pages 583–588. Springer, 1997.

5

[37] V. Seguy and M. Cuturi. Principal geodesic analysis

for probability measures under the optimal transport

metric. 1

[38] Z. Si and S.-C. Zhu. Learning hybrid image tem-

plates (HIT) by information projection. Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on,

34(7):1354–1367, 2012. 6

[39] J. Solomon, F. de Goes, P. A. Studios, G. Peyré,
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