
Eye Tracking for Everyone

Kyle Krafka∗† Aditya Khosla∗‡ Petr Kellnhofer‡⋆ Harini Kannan‡

Suchendra Bhandarkar† Wojciech Matusik‡ Antonio Torralba‡
†University of Georgia ‡Massachusetts Institute of Technology ⋆MPI Informatik

{krafka, suchi}@cs.uga.edu {khosla, pkellnho, hkannan, wojciech, torralba}@csail.mit.edu

Abstract

From scientific research to commercial applications, eye

tracking is an important tool across many domains. Despite

its range of applications, eye tracking has yet to become a

pervasive technology. We believe that we can put the power

of eye tracking in everyone’s palm by building eye tracking

software that works on commodity hardware such as mobile

phones and tablets, without the need for additional sensors

or devices. We tackle this problem by introducing GazeCap-

ture, the first large-scale dataset for eye tracking, contain-

ing data from over 1450 people consisting of almost 2.5M
frames. Using GazeCapture, we train iTracker, a convolu-

tional neural network for eye tracking, which achieves a sig-

nificant reduction in error over previous approaches while

running in real time (10–15fps) on a modern mobile de-

vice. Our model achieves a prediction error of 1.71cm and

2.53cm without calibration on mobile phones and tablets

respectively. With calibration, this is reduced to 1.34cm and

2.12cm. Further, we demonstrate that the features learned

by iTracker generalize well to other datasets, achieving

state-of-the-art results. The code, data, and models are

available at http://gazecapture.csail.mit.edu.

1. Introduction

From human–computer interaction techniques [16, 23,

26] to medical diagnoses [12] to psychological studies [27]

to computer vision [3, 18], eye tracking has applications in

many areas [6]. Gaze is the externally-observable indica-

tor of human visual attention, and many have attempted to

record it, dating back to the late eighteenth century [14]. To-

day, a variety of solutions exist (many of them commercial)

but all suffer from one or more of the following: high cost

(e.g., Tobii X2-60), custom or invasive hardware (e.g., Eye

Tribe, Tobii EyeX) or inaccuracy under real-world condi-

∗ indicates equal contribution

Corresponding author: Aditya Khosla (khosla@csail.mit.edu)

G
az
e
C
ap

tu
re

iT
ra
ck
e
r

Figure 1: In this work, we develop GazeCapture, the first

large-scale eye tracking dataset captured via crowdsourc-

ing. Using GazeCapture, we train iTracker, a convolutional

neural network for robust gaze prediction.

tions (e.g. [25, 34, 43]). These factors prevent eye tracking

from becoming a pervasive technology that should be avail-

able to anyone with a reasonable camera (e.g., a smartphone

or a webcam). In this work, our goal is to overcome these

challenges to bring eye tracking to everyone.

We believe that this goal can be achieved by develop-

ing systems that work reliably on mobile devices such as

smartphones and tablets, without the need for any external

attachments (Fig. 1). Mobile devices offer several benefits

over other platforms: (1) widespread use—more than a third

of the world’s population is estimated to have smartphones

by 2019 [32], far exceeding the number of desktop/laptop

users; (2) high adoption rate of technology upgrades—a

large proportion of people have the latest hardware allow-

ing for the use of computationally expensive methods, such

as convolutional neural networks (CNNs), in real-time; (3)

the heavy usage of cameras on mobile devices has lead to

rapid development and deployment of camera technology,

and (4) the fixed position of the camera relative to the screen

reduces the number of unknown parameters, potentially al-

12176

http://gazecapture.csail.mit.edu
mailto:khosla@csail.mit.edu

lowing for the development of high-accuracy calibration-

free tracking.

The recent success of deep learning has been apparent in

a variety of domains in computer vision [20, 7, 36, 28, 19],

but its impact on improving the performance of eye tracking

has been rather limited [43]. We believe that this is due to

the lack of availability of large-scale data, with the largest

datasets having ∼50 subjects [13, 34]. In this work, us-

ing crowdsourcing, we build GazeCapture, a mobile-based

eye tracking dataset containing almost 1500 subjects from a

wide variety of backgrounds, recorded under variable light-

ing conditions and unconstrained head motion.

Using GazeCapture, we train iTracker, a convolutional

neural network (CNN) learned end-to-end for gaze predic-

tion. iTracker does not rely on any preexisting systems for

head pose estimation or other manually-engineered features

for prediction. Training the network with just crops of both

eyes and the face, we outperform existing eye tracking ap-

proaches in this domain by a significant margin. While our

network achieves state-of-the-art performance in terms of

accuracy, the size of the inputs and number of parameters

make it difficult to use in real-time on a mobile device. To

address this we apply ideas from the work on dark knowl-

edge by Hinton et al. [11] to train a smaller and faster net-

work that achieves real-time performance on mobile devices

with a minimal loss in accuracy.

Overall, we take a significant step towards putting the

power of eye tracking in everyone’s palm.

2. Related Work

There has been a plethora of work on predicting gaze.

Here, we give a brief overview of some of the existing gaze

estimation methods and urge the reader to look at this ex-

cellent survey paper [8] for a more complete picture. We

also discuss the differences between GazeCapture and other

popular gaze estimation datasets.

Gaze estimation: Gaze estimation methods can be di-

vided into model-based or appearance-based [8]. Model-

based approaches use a geometric model of an eye and

can be subdivided into corneal-reflection-based and shape-

based methods. Corneal-reflection-based methods [42, 45,

46, 10] rely on external light sources to detect eye features.

On the other hand, shape-based methods [15, 4, 39, 9] in-

fer gaze direction from observed eye shapes, such as pupil

centers and iris edges. These approaches tend to suffer with

low image quality and variable lighting conditions, as in our

scenario. Appearance-based methods [37, 30, 22, 21, 38, 2]

directly use eyes as input and can potentially work on

low-resolution images. Appearance-based methods are be-

lieved [43] to require larger amounts of user-specific train-

ing data as compared to model-based methods. However,

we show that our model is able to generalize well to novel

faces without needing user-specific data. While calibration

People Poses Targets Illum. Images

[24] 20 1 16 1 videos

[40] 20 19 2–9 1 1,236

[31] 56 5 21 1 5,880

[25] 16 cont. cont. 2 videos

[34] 50 8+synth. 160 1 64,000

[43] 15 cont. cont. cont. 213,659

[13] 51 cont. 35 cont. videos

Ours 1474 cont. 13+cont. cont. 2,445,504

Table 1: Comparison of our GazeCapture dataset with pop-

ular publicly available datasets. GazeCapture has approx-

imately 30 times as many participants and 10 times as

many frames as the largest datasets and contains a signif-

icant amount of variation in pose and illumination, as it was

recorded using crowdsourcing. We use the following abbre-

viations: cont. for continuous, illum. for illumination, and

synth. for synthesized.

is helpful, its impact is not as significant as in other ap-

proaches given our model’s inherent generalization ability

achieved through the use of deep learning and large-scale

data. Thus, our model does not have to rely on visual

saliency maps [5, 33] or key presses [35] to achieve accurate

calibration-free gaze estimation. Overall, iTracker is a data-

driven appearance-based model learned end-to-end without

using any hand-engineered features such as head pose or

eye center location. We also demonstrate that our trained

networks can produce excellent features for gaze predic-

tion (that outperform hand-engineered features) on other

datasets despite not having been trained on them.

Gaze datasets: There are a number of publicly available

gaze datasets in the community [24, 40, 31, 25, 34, 43, 13].

We summarize the distinctions from these datasets in Tbl. 1.

Many of the earlier datasets [24, 40, 31] do not contain sig-

nificant variation in head pose or have a coarse gaze point

sampling density. We overcome this by encouraging par-

ticipants to move their head while recording and generating

a random distribution of gaze points for each participant.

While some of the modern datasets follow a similar ap-

proach [34, 25, 43, 13], their scale—especially in the num-

ber of participants—is rather limited. We overcome this

through the use of crowdsourcing, allowing us to build a

dataset with ∼30 times as many participants as the current

largest dataset. Further, unlike [43], given our recording

permissions, we can release the complete images without

post-processing. We believe that GazeCapture will serve as

an invaluable resource for future work in this domain.

3. GazeCapture: A Large-Scale Dataset

In this section, we describe how we achieve our goal of

scaling up the collection of eye tracking data. We find that

2177

most existing eye tracking datasets have been collected by

researchers inviting participants to the lab, a process that

leads to a lack of variation in the data and is costly and inef-

ficient to scale up. We overcome these limitations through

the use of crowdsourcing, a popular approach for collecting

large-scale datasets [29, 19, 44, 28]. In Sec. 3.1, we describe

the process of obtaining reliable data via crowdsourcing and

in Sec. 3.2, we compare the characteristics of GazeCapture

with existing datasets.

3.1. Collecting Eye Tracking Data

Our goal here is to develop an approach for collecting

eye tracking data on mobile devices that is (1) scalable, (2)

reliable, and (3) produces large variability. Below, we de-

scribe, in detail, how we achieve each of these three goals.

Scalability: In order for our approach to be scalable,

we must design an automated mechanism for gathering

data and reaching participants. Crowdsourcing is a popular

technique researchers use to achieve scalability. The pri-

mary difficulty with this approach is that most crowdsourc-

ing platforms are designed to be used on laptops/desktops

and provide limited flexibility required to design the de-

sired user experience. Thus, we decided to use a hybrid

approach, combining the scalable workforce of crowdsourc-

ing platforms together with the design freedom provided by

building custom mobile applications. Specifically, we built

an iOS application, also named GazeCapture1, capable of

recording and uploading gaze tracking data, and used Ama-

zon Mechanical Turk (AMT) as a platform for recruiting

people to use our application. On AMT, the workers were

provided detailed instructions on how to download the ap-

plication from Apple’s App Store and complete the task.

We chose to build the GazeCapture application for Ap-

ple’s iOS because of the large-scale adoption of latest Ap-

ple devices, and the ease of deployment across multiple de-

vice types such as iPhones and iPads using a common code

base. Further, the lack of fragmentation in the versions of

the operating system (as compared to other platforms) sig-

nificantly simplified the development process. Additionally,

we released the application publicly to the App Store (as op-

posed to a beta release with limited reach) simplifying in-

stallation of our application, thereby further aiding the scal-

ability of our approach.

Reliability: The simplest rendition of our GazeCapture

application could involve showing workers dots on a screen

at random locations and recording their gaze using the front-

facing camera. While this approach may work well when

calling individual participants to the lab, it is not likely to

produce reliable results without human supervision. Thus,

we must design an automatic mechanism that ensures work-

ers are paying attention and fixating directly on the dots

shown on the screen.

1http://apple.co/1q1Ozsg

Display Dot Start Recording Display Letter Hide Dot, Wait for Response

0.5s 1.5s

“Tap left or

 right side”

Figure 2: The timeline of the display of an individual dot.

Dotted gray lines indicate how the dot changes size over

time to keep attention.

First, to avoid distraction from notifications, we ensure

that the worker uses Airplane Mode with no network con-

nection throughout the task, until the task is complete and

ready to be uploaded. Second, instead of showing a plain

dot, we show a pulsating red circle around the dot, as shown

in Fig. 2, that directs the fixation of the eye to lie in the

middle of that circle. This pulsating dot is shown for ap-

proximately 2s and we start the recording 0.5sec. after the

dot moves to a new location to allow enough time for the

worker to fixate at the dot location. Third, towards the end

of the 2sec. window, a small letter, L or R is displayed for

0.05sec.—based on this letter, the worker is required to tap

either the left (L) or right (R) side of the screen. This serves

as a means to monitor the worker’s attention and provide en-

gagement with the application. If the worker taps the wrong

side, they are warned and must repeat the dot again. Last,

we use the real-time face detector built into iOS to ensure

that the worker’s face is visible in a large proportion of the

recorded frames. This is critical as we cannot hope to track

where someone is looking without a picture of their eyes.

Variability: In order to learn a robust eye tracking

model, significant variability in the data is important. We

believe that this variability is critical to achieving high-

accuracy calibration-free eye tracking. Thus, we designed

our setup to explicitly encourage high variability.

First, given our use of crowdsourcing, we expect to have

a large variability in pose, appearance, and illumination.

Second, to encourage further variability in pose, we tell the

workers to continuously move their head and the distance of

the phone relative to them by showing them an instructional

video with a person doing the same. Last, we force workers

to change the orientation of their mobile device after every

60 dots. This change can be detected using the built-in sen-

sors on the device. This changes the relative position of the

camera and the screen providing further variability.

Implementation details: Here, we provide some imple-

mentation details that may be helpful for other researchers

conducting similar studies. In order to associate each mo-

bile device with an AMT task, we provided each worker

with a unique code in AMT that they subsequently typed

into their mobile application. The dot locations were both

random and from 13 fixed locations (same locations as Fig.

3 of [41])—we use the fixed locations to study the effect

2178

http://apple.co/1q1Ozsg

