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Abstract

Recently, there have been many progresses for the prob-

lem of non-rigid structure reconstruction based on 2D tra-

jectories, but it is still challenging to deal with complex

deformations or restricted view ranges. Promising alter-

natives are the piecewise reconstruction approaches, which

divide trajectories into several local parts and stitch their

individual reconstructions to produce an entire 3D struc-

ture. These methods show the state-of-the-art performance,

however, most of them are specialized for relatively smooth

surfaces and some are quite complicated. Meanwhile, it

has been reported numerously in the field of pattern recog-

nition that obtaining consensus from many weak hypothe-

ses can give a strong, powerful result. Inspired by these

reports, in this paper, we push the concept of part-based re-

construction to the limit: Instead of considering the parts

as explicitly-divided local patches, we draw a large num-

ber of small random trajectory sets. From their individual

reconstructions, we pull out a statistic of each 3D point to

retrieve a strong reconstruction, of which the procedure can

be expressed as a sparse l1-norm minimization problem. In

order to resolve the reflection ambiguity between weak (and

possibly bad) reconstructions, we propose a novel optimiza-

tion framework which only involves a single eigenvalue de-

composition. The proposed method can be applied to any

type of data and outperforms the existing methods for the

benchmark sequences, even though it is composed of a few,

simple steps. Furthermore, it is easily parallelizable, which

is another advantage.

1. Introduction

There have been many remarkable advances in non-rigid

structure from motion (NRSfM), a problem to reconstruct

3D structures from a set of 2D trajectories, during the last

decade. The ambiguity in global rotations, pointed out by

Xiao et al. [30], was proven to be resolvable with the rank-3

*Authors contributed equally.

constraint [4]. An algorithm to find an approximate rank-3

solution followed in [10], combined with an efficient struc-

ture reconstruction algorithm which is concisely expressed

by a convex rank-minimization problem. On the other hand,

there have been many attempts to incorporate the temporal

dependence prior in the reconstruction process [5, 17], one

of which [17] already showed good performances for the

popular benchmark data sets. The difficulty of deciding the

number of shape bases has been resolved by the Procrustean

distributions [20,21], which are shape distributions without

global rigid transformations, and online reconstruction be-

came possible by processing data sequentially based on the

continuum mechanics [1, 2]. Finally, most recent proposals

on dense structure recovery [13, 15] have made the practi-

cality of NRSfM convincing.

Even with all these progresses, however, non-rigid struc-

ture recovery is still a difficult problem when there are com-

plex deformations or when the range of viewpoint is re-

stricted. Existing methods are usually based on linear or

Gaussian shape models, which are not strong enough to

handle complicated shape changes. The situation is worse

for the restricted view range cases, i.e., the reconstruction

itself becomes completely impossible for this case because

these methods rely on global rigid transformations. Re-

garding this, some of the state-of-the-art results achieved

by the existing methods for benchmark data sets are mainly

attributed by the artificially added rotations. For example,

the benchmark sets proposed in [4] contain unrealistic ar-

tificial rotations, of which the total amount is about 1500

– 5500 degrees depending on the data. This problem can

be confirmed in the experiments of Section 4, where the

performances of the existing methods degrade severely for

realistic view ranges.

A possible alternative to these problems is the piecewise

reconstruction approach [11, 12, 24]. This approach tries to

divide trajectories into several parts, which are local patches

of the entire structure. Fayad et al. [11] used the quadratic

deformation model to reconstruct overlapping patches and

connected them based on a smoothness assumption, and its

heuristic patch assignment was later replaced by a graph-
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cut formulation in [24]. In [12], a rigid segment assump-

tion was used instead of the smooth surface assumption to

handle articulated data. However, most of these assume a

smooth surface for the object of interest, which restricts the

range of applications. Although [12] does not assume a

smooth surface, but the rigid segment assumption also re-

stricts the possible uses. A more important drawback of

these methods is that most of them have to iterate between

part assignment and part reconstruction, which can be a

heavy procedure. This can also be detrimental for paral-

lelization, even though it could be a strong point for part-

based reconstruction.

Nevertheless, the part-based approach can still be

promising for the aforementioned issues due to the follow-

ing reasons: Obviously, a part may have simpler deforma-

tions than the global shape, as argued in [11, 12, 24]. The

second reason, which was not seriously taken by other work

but we claim to be more important, is that a part may have

more rigid changes than the global one, because many of

deformations can be seen as rigid motions of local parts. A

most obvious (and extreme) example is an articulated ob-

ject, say, a human body. Note that the movements of arms

and legs will be considered as deformations in a holistic

view, but if we divide the body into a part for each bone,

then these movements can now be seen as the motions of

rigid objects. Even for an object that is not articulated, we

can expect to have similar effects.

To maximize these expectations, in this paper, we take

a different view on the part-based reconstruction strat-

egy. There have been many successful examples in pat-

tern recognition that the consensus of many weak hypothe-

ses gives a strong result, such as boosting techniques [28],

random forests [9], and Hough voting [14]. In these ap-

proaches, an individual hypothesis does not have much dis-

criminative power and often gives bad answers to the prob-

lem, although their combination gives a high recognition

rate. In this spirit, we consider the part-based reconstruc-

tion problem as deriving consensus from numerous ‘weak’

reconstructions. A large amount of random trajectory sets,

each of which contains only a few trajectories, are sampled

from the data, and their 3D structures are reconstructed in-

dividually by a weak reconstructor. In this process, we do

not care about how correctly the parts are assigned or how

accurate their reconstructions are, but only how efficiently

they can be reconstructed. After that, we derive a statis-

tic of each trajectory from the weak results to generate a

strong reconstruction. Since there can be some bad recon-

structions or outliers in the weak reconstructions, median is

chosen for the statistic, which can be elegantly expressed

by an l1-norm minimization problem. Since there are re-

flection ambiguities between different weak (and possibly

bad) reconstructions, we resolve them before obtaining the

consensus, by a novel optimization problem which is essen-

tially a Rayleigh quotient [19].

The difference between the proposed method and the

other part-based schemes is apparent in that the others can

be viewed as stitching problems, and they try to find good

part assignments by using many assumptions, e.g., the min-

imum description length principle or strictly connected,

overlapping segments. On the other hand, the proposed

method can be considered as a bagging or bootstrap ag-

gregation [8] approach because it generates a large num-

ber of small, random reconstructions and processes them

afterwards, which is much simpler and more flexible. The

proposed method is composed of a few, very simple steps

and yet, it shows the state-of-the-art performance for the

benchmark data sets. An advantage of the proposed algo-

rithm is that the types of data and weak reconstructor are

not restricted. Furthermore, it is easy to parallelize because

the proposed method mainly consists of a large number of

small reconstructions, which are performed only once for

each trajectory group and are not repeated again for the en-

tire process. A parallelized version can be actually very

beneficial, because the weak reconstruction step is the most

time-consuming part of the proposed method.

The remainder of this paper is organized as follows: We

present random sampling and weak reconstruction proce-

dures in Section 2. The details of obtaining consensus is

explained in Section 3. The experimental results follow in

Section 4 and finally, we conclude the paper in Section 5.

2. Weak reconstructions

In this section, we explain the sampling and weak recon-

struction procedures for trajectory groups. Before that, we

define some basic notations: Di ∈ R
2×p, 1 ≤ i ≤ f , is

the input 2D points of the ith frame observed by an ortho-

graphic camera. The coordinates of Di are assumed to be

translated so that the centroid is at the origin. G = {gk}
is a set of random trajectory groups, and the jth trajectory,

1 ≤ j ≤ p, is included in the kth group if j ∈ gk. zik
is a p-dimensional row vector, which is the reconstructed z
coordinates of the ith frame for the points in the kth group.

We assume that the centroid of zik for the points in gk is at

the origin and the elements of all the other points, which are

not included in gk, are zero, without loss of generality. For

a matrix A with p columns, A|gk denotes a submatrix of A

that is composed of the columns indexed by gk, throughout

this paper. Similarly, the jth column vector of A will be

denoted as A|j and the columns from j to j’ as A|j:j′ . ‖ · ‖
on matrices indicates the Frobenius norm in this paper.

2.1. Sampling trajectory sets

The purposes of part-based reconstruction are to reduce

the complexity of deformations and to increase the range of

view angles. To meet these purposes, it is better to sample

a trajectory group so that the points are close to each other
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and share similar movements. A natural way is to make the

trajectories in a group follow a Gaussian distribution:

P (Vk) ∝
∏

j∈gk

exp

(

−
λ

2

∑

i

‖Di|j −mi‖
2

)

,

mi ,
1

ng

∑

j∈gk

Di|j ,

(1)

where Vk = {Di|gk|0 ≤ i ≤ f}, ng is the number of

trajectories in a single group1 and λ is a pre-defined param-

eter. However, evaluating this probability for every possi-

ble combination is not realistic. Instead, we can manipulate

log(P (Vk)) as

−
λ

2ng

∑

j,j′∈gk

∑

i

‖Di|j −Di|j′‖
2

(2)

up to a normalization constant. This makes us easy to sam-

ple a trajectory group: If we have already chosen some tra-

jectories for gk and want to pick another one, then we can

perform a weighted sampling based on the weights

wj =

®

exp
Ä

− λ
2ng

∑

j′∈gk
ljj′
ä

if j /∈ gk,

0 otherwise,

ljj′ ,
∑

i

‖Di|j −Di|j′‖
2
.

(3)

The only exception is the first trajectory, which is selected

based on a uniform distribution. The pairwise distance ljj′

can be pre-computed to speed up the process.

This procedure is much simpler than the part-assignment

schemes in other part-based reconstruction methods. It does

not require any constraints but simply selects similar trajec-

tories for a group. Of course, one can put some prior knowl-

edge on the parts to improve the procedure but, nonetheless,

this simple version was good enough to achieve the state-

of-the-art performance for the benchmark sets. Note that

this procedure compares trajectories but it has nothing to do

with the trajectory-basis methods [5], because they are not

enforced to be represented by low-frequency bases. Thus,

shuffling the order of frames will not affect the outcome.

A trajectory can be included in multiple groups, and for

the purpose of the proposed method, we must have a lot of

groups that share the same point. Hence, we repeat the sam-

pling process until all the points are included in at least mg

groups. In practice, we found out that normalizing the 2D

coordinates beforehand for each frame so that their covari-

ance becomes isotropic, i.e., an identity matrix, can improve

the performance of the final reconstruction.

1We assume that all groups have the same number of samples.

2.2. Design of weak reconstructor

Like any other part-based methods, the proposed method

can use most of the reconstruction schemes as a weak recon-

structor. The criteria for choosing the weak reconstructor in

this work are two-fold: (i) It has to be simple and concise,

although (ii) it is based on well-established theories. The

block matrix method (BMM) proposed in [10] meets these

criteria, hence, we adopt this algorithm as a weak recon-

structor, with some modifications for efficiency.

Here, we briefly review BMM and explain our modi-

fications. As for most of the NRSfM schemes, BMM is

composed of two steps, i.e., calculating 3D rotations and

estimating 3D shapes. The basic system of equations for

shape-basis-based NRSfM is expressed as [10, 17, 30]

D =











D1

D2

...

Df











=











R1

R2

. . .

Rf





















S1

S2

...

Sf











= RS = R(C⊗ I)B , QB,

(4)

where Ri ∈ R
2×3 and Si ∈ R

3×p are the rotation and the

aligned 3D shape, respectively, of the ith frame. Because

there are assumed to be only a few (= K) shape bases, S

is decomposed into two thin matrices as in the above equa-

tion, where B ∈ R
3K×p consists of the shape bases and

C ∈ R
f×K the corresponding coefficients. We can utilize

the singular value decomposition (SVD) to find a 3K-rank

approximation of D , Q′B′ and it is likely that, for some

F ∈ R
3K×3K , they satisfy

Q′F ≈ Q = R(C⊗ I), F−1B′ ≈ B. (5)

From (5), we can find out that Q′F|1:3 ≈ [c11R
T
1 . . .

cf1R
T
f ]

T where cij is the (i, j)th element of C. Each 2× 3
block of Q′F|1:3 is nothing but a scaled orthogonal matrix,

of which the outer product is given as

Q′

iF|1:3F|
T
1:3Q

′T
i = c2i1I, (6)

where Q′

i is the ith pair of consecutive rows in Q′. From

this, we have two linear equations on the rank-3 positive

semidefinite (PSD) matrix M , F|1:3F|
T
1:3 for each i, one

from the off-diagonal elements and the other by comparing

the diagonal elements [30]. M can be solved by minimizing

the squared errors of these linear equations, which can be

expressed as ‖A vec(M)‖2 based on an appropriate matrix

A derived from (6) and a vectorization operator. However,

this is a non-convex problem due to the rank-3 constraint

on M. In [10], to bypass the difficulty of non-convex op-

timization, the rank of M is minimized with the equations

from (6) as constraints to make it close to a rank-3 matrix,

but this method can be quite unstable depending on the data.
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Instead, we follow the approach in [17] which directly

solves the non-convex problem. The reason we adopt this

rotation-calculation scheme is because it does not require

the knowledge of the exact K , in that the rotation problem

is solved repeatedly with increasing K until there is little

improvement on the orthogonality cost. In [17], a general-

purpose optimization tool is applied to a formulation based

on F|1:3, which can be slow. Instead, in this paper, we pro-

vide a proximal gradient [6] formulation for this problem2:

Based on the cost ‖A vec(M)‖2, which is in the form of

linear least squares, the following subproblem is solved in

each iteration:

min
M

‖M−M′‖2 s.t. rank(M) = 3, (7)

where M′ is given as

vec(M′) = vec(M0)−ATA vec(M0)/LA. (8)

Here, M0 is the previous estimate of M and LA is the Lip-

schitz constant, i.e., the largest eigenvalue of ATA. One

thing to note is that, since the original cost function has a

trivial solution, we add another constraint on M about its

scale. The rank-3 solution to the above problem can be eas-

ily found by an eigenvalue decomposition. This eigenvalue

decomposition is not heavy and can be performed in a short

instance, because in this work, the size of M is no more

than 3ng and the size of each group is small. After finding

M, F|1:3 is recovered to find the rotations.

The rotation matrix Ri we have been dealing with so

far is a 2 × 3 Stiefel matrix. The third axis Ŕi ∈ R
1×3

can be found by the cross product of the first and sec-

ond rows of Ri, and we denote the full 3D rotation as

R̆i =
î

RT
i ŔT

i

óT
. Based on the estimated rotations,

BMM retrieves the (aligned) 3D shapes by solving the fol-

lowing convex rank-minimization problem [10]:

min
S

∥

∥

∥S
#
∥

∥

∥

∗

s.t. D = RS. (9)

Here, ‖ · ‖∗ denotes the nuclear norm and S# is the rear-

ranged version of S, i.e., S# =
[

vec(S1) . . . vec(Sf )
]

.

In this work, this process is applied to a small group of tra-

jectories, of which the deformation is possibly simple and

small, thus the ‘mean’ 3D structure will be the dominant

component in S#. Hence, we modify (9) as

min
S

∥

∥

∥S#P
∥

∥

∥

∗

s.t. D = RS. (10)

Here, P is introduced to remove the mean component from

S#. In this paper, P is defined to be an orthogonal projec-

tion with 1, a vector of ones, being its only null space. For

example, in the above problem, P is
(

I− 11T /f
)

.

2The convergence of a nonconvex proximal algorithm has been exten-

sively studied [7]: In summary, the projection onto a fixed-rank matrix can

be casted into a semi-algebraic cost function, satisfying the KL property,

and so our proximal algorithm always converges to a critical point.

A continuation method has been used in [10] to solve

the above equality-constrained problem, which is very slow.

Instead, in this paper, we use the augmented Lagrangian

method (ALM) [22] to solve (10). By an introduction of an

auxiliary variable S̃ = S#P, we can solve this problem by

alternatingly updating S̃ and S according to the alternating

directional method of multipliers (ADMM) [22], which can

be thought as a non-inner-loop version of ALM. Updates of

S̃ and S can be obtained by performing the singular value

thresholding [22] and by solving a linear least squares prob-

lem, respectively. Since this problem is a convex optimiza-

tion, ADMM guarantees a global optimal solution. The size

of this problem is also small for our case, thus the SVD op-

eration required for the singular value thresholding does not

cost much computation.

We are using this modified version of BMM to recon-

struct each trajectory group gk, hence, Di|gk is actually

used instead of Di for the weak reconstructor. After find-

ing the solution Ŝi of the aligned 3D shapes, zik is set to

zik|gk = ŔiŜiP and all the elements not in gk to zeros3.

3. Obtaining consensus

In this section, we explain the procedure of obtaining

consensus from weak reconstructions. Some additional no-

tations are used in this section: Let z̄i ∈ R
1×p be the z-

coordinates of the strong reconstruction for the ith frame.

ek is a p-dimensional row vector of which the element is

one if its index is in gk and zero otherwise. Wk ∈ R
p×p is

defined based on ek as

Wk = diag(ek)−
1

ng

eTk ek, (11)

where diag(x) is a diagonal matrix of which the diagonal

elements are the elements of a vector x. The role of Wk

is to retrieve the gk part of a p-dimensional vector with re-

moving the translation component, i.e., x′Wk = x′|gkP
where x′ is a p-dimensional row vector and P here is ng-

dimensional. Some relations hold for ek, Wk, and zik, i.e.,

1TWk = 0T , ekWk = 0T , zike
T
k = 0,

zikWk = zik, zik1 = 0, W2
k = Wk,

(12)

where 0 is a column vector of zeros.

3.1. Resolving reflection ambiguities

Before explaining the procedure of calculating the strong

reconstruction, we have to resolve an important issue in the

weak reconstructions, which arises due to the nature of or-

thographic NRSfM [4]: R̆i may have some reflection am-

biguities for the signs of Ri and Ŕi, which can later lead to

those of the reconstructed z-coordinates.

3Note that P here is p-dimensional.
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There can be several ways to resolve this issue, but in this

paper, we take the advantage of our previously-mentioned

intuition that the aligned 3D shapes have a dominant mean

component. If Bl, the lth basis shape, is the dominant com-

ponent, then the coefficients cil associating with this basis

should have the same sign. In practice, we solve the follow-

ing optimization to resolve the sign differences in Ri:

min
qi,B́

∑

i

∥

∥

∥B́− qiR
T
i Di

∥

∥

∥

2

s.t. qi ∈ {−1, 1}. (13)

This problem can be solved alternatingly for B́ and qi. B́

is updated simply to the average of qiR
T
i Di, and qi is up-

dated to sign
Ä¨

B́,RT
i Di

∂ä

4, in each iteration. This pro-

cedure converges within a few step in practice, and Ri can

be updated afterwards as Ri ← q̂iRi based on the solution

q̂i. If the sign differences between Ri’s are resolved, those

for Ŕi’s can be easily resolved by enforcing R̆i to be in the

special orthogonal group, i.e., det(R̆i) = 1. In fact, set-

ting Ŕi to the cross product of the first and second rows of

Ri already makes det(R̆i) = 1. Note that this procedure

should be performed before the computation of S, because

the mean removal term added in (10) assumes that the di-

rections of all Si’s coincide.

Care should be taken in understanding this procedure,

because this only resolves the relative differences between

the signs and not the entire reflection ambiguity. There-

fore, the entire (weak) reconstruction may have the cor-

rect z-coordinates, or all of them might be inverted. This

means that the reconstructions of different trajectory groups

might have different directions for the z-coordinates, as in

the other part-based reconstruction schemes.

A possible approach for resolving these sign differences

is to compare the Euclidean distance between two groups

and correct the sign of one group for another one by one, as

in [11]. However, this is not a good idea for two reasons:

(i) This approach gives a greedy solution to an overall non-

convex sign problem, and (ii) the weak reconstructions are

supposed to be rough solutions and there might be many bad

ones or outliers. Therefore, correcting patches one by one

might not give a good estimate and even cumulate errors,

which corresponds with our empirical experiences. This

necessitates a method to handle the sign problem based on

global information, rather than local information.

The overall sign problem can be given as follows: Let us

define mi as a rough estimate of z̄i, and M and Zk as f ×p
matrices of which the ith rows are mi and zik , respectively,

then optimizing

min
M,rk

1

2

∑

k

‖MWk − rkZk‖
2 s.t. rk ∈ {−1, 1} (14)

4In this paper, the signum function is a right-continuous function.

can give the solution of the relative sign rk of a group. As

mentioned earlier, this is a non-convex problem and there

can be bad local optimums.5 In order to resolve this issue,

we can substitute rk with an estimate that could make the

problem easier to solve. If we assume that most of Zk’s are

moderately accurate, then they must be similar to MWk’s

up to sign changes. Therefore, we choose

tr(MWkZ
T
k )

‖Zk‖2
=

tr(MZT
k )

‖Zk‖2
≈ rk (15)

for the estimate of rk. Then, (14) is changed to

min
M

1

2

∑

k

∥

∥

∥

∥

MWk −
tr(MZT

k )

‖Zk‖2
Zk

∥

∥

∥

∥

2

, (16)

which can be also expressed as

min
M

vec(M)T (W ⊗ I−VTV) vec(M), (17)

where W ,
∑

Wk and

V =
[

vec(Z1)/‖Z1‖ vec(Z2)/‖Z2‖ · · ·
]T

. (18)

We can verify that the Hessian of (17) is PSD:

Proposition 1. H , W ⊗ I − VTV is PSD, i.e., 0 �
H � m̄gI where m̄g is the maximum number of groups that

a trajectory belongs to.

The proof can be found in the supplementary material.

The solution of M can be trivial, so we introduce a scale

constraint on M as

min
M

vec(M)TH vec(M) s.t. ‖M‖2 = 1, (19)

which is basically a Rayleigh quotient [19].6 The solution

to a Rayleigh quotient can be easily found by an eigen-

value decomposition, which makes the problem very sim-

ple. However, there is still an issue here: the size of H is

pf × pf , which can be pretty large, so this might ruin the

efficiency of the proposed method.

This issue can be bypassed by finding only a single

eigenvector that is necessary. First, we alter the form of

(19) to a maximization problem:

max
M

vec(M)T (m̄gI−H) vec(M) s.t. ‖M‖2 = 1. (20)

5In fact, this is equivalent to the problem in (13). For (13), solving the

non-convex problem directly gives a good solution (and is much more effi-

cient actually), because our dominant-mean assumption fits the real situa-

tion very well. However, for different groups, the non-convex formulation

did not work well because of the outlying weak reconstructions.
6This version also gives a trivial solution, i.e., M =

1

p
1, and there

should be another constraint M1 = 0. We do not deal with this fact

explicitly for the sake of simplicity. Nevertheless, it can be verified that the

proposed method yields a solution that satisfies this additional constraint.
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Here, m̄gI has been added to the cost function to make

the Hessian PSD without changing the solution, based on

Proposition 1. Since the Hessian is PSD, we can apply a

power iteration to find the eigenvector of the largest eigen-

value, which is the only thing we need. Exploiting the fact

that H is composed of sparse and low-rank matrices, A

time-efficient procedure for updating M can be given as

M′ ← m̄gM−MW,

vec(M′)← vec(M′) +VT (V vec(M)),

M←M′/‖M′‖.

(21)

Note that vec(M) is initialized to the right singular vector

of the largest singular value of the fat matrix V beforehand.

In fact, this is the least time-consuming step except the

sampling step, thanks to this efficient formulation. After

finding M, the relative sign of each group can be found as

rk = sign(tr(MZT
k )), according to (15).

3.2. Finding a strong reconstruction

Now, since we have resolved the reflection ambiguity

between different groups, consensus can be obtained from

them. Our approach is to derive a statistic from the groups

and the choice of the statistic is median, because there can

be some bad reconstructions or outliers among the groups.

It is well-known that median can be expressed as the solu-

tion of a convex problem as

med({xi}) = argmin
x

∑

|x− xi|, (22)

which is related to the l1-norm. We might try to minimize

the l1-error between zik of each group and z̄i|gk to find

the strong reconstruction. However, there is a translation

ambiguity in zik , hence we have to compare them to z̄iWk

instead. Thus, our problem can be described as

min
z̄i

∑

k

‖zik − z̄iWk‖1, (23)

Note that this problem can be solved independently for each

i, i.e., we can solve this problem for each frame separately.

The above problem can be equivalently express as

min
z̄i,tik

∑

k

‖(zik + tik1
T − z̄i)⊙ ek‖1 (24)

with additional variables tik’s (∈ R). Here, ⊙ denotes the

Hadamard product. In reality, we solve the latter formula-

tion because this can reduce the complexity of the optimiza-

tion, which will be explained later.

The cost function of (24) is the same as

∑

k

‖zik|gk + tik1
T − z̄i|gk‖1. (25)

Let us assume

yi ,
[

zi1|g1 zi2|g2 . . .
]T

,

ti ,
[

ti1 ti2 . . .
]T

, E ,
[

ET
1 ET

2 . . .
]T

,
(26)

where Ek is a submatrix of diag(ek) that includes all the

nonzero rows. Then, (25) can be expressed as

min
z̄i,ti

∥

∥

∥

∥

yi −
[

E −1⊗ I
]

ï

z̄Ti
ti

ò
∥

∥

∥

∥

1

. (27)

To eliminate the translation ambiguity in z̄i, we enforce the

centroid of z̄i to be at the origin by altering the problem as

min
z̄i,ti

∥

∥

∥

∥

ï

yi

0

ò

−

ï

E −1⊗ I

1T 0T

ò ï

z̄Ti
ti

ò
∥

∥

∥

∥

1

, ‖y′

i −E′z̄′i‖1 .

(28)

The above problem can be efficiently solved by ADMM, by

introducing an auxiliary variable ui = y′

i − E′z̄′i. In each

iteration, z̄′i and ui can be updated by solving a linear least

squares and by performing a soft thresholding [6], respec-

tively. Note that E′ is a sparse matrix with ones and zeros,

and each row contains only two ones except the last row.

We can take advantage of this fact in solving the linear least

squares to speed up the computation, which was the reason

for choosing (24). In fact, this step takes much less time

than the weak reconstruction step.

4. Experimental Results

We have compared the performance of the proposed

method with other existing methods, such as EM-PPCA

[27], MP [23], CSF2 [17], EM-PND [20], and BMM [10].

Note that the performances of the part-based reconstruction

methods in [11] and [24] were also quoted from the papers

for comparison. We have tested various data sets including

the popular benchmark sets [5, 16, 27], as well as the dense

sequences from [29], the real data sets from [25], and the

optical flow results [3]7 of the human back video [24].

Note that, however, the benchmark sets used in [5]

(drink, pickup, stretch, and yoga) contains synthetic camera

rotations, five degrees per frame, of which the total amounts

are from about 1500 to 5500 degrees. These camera mo-

tions can be considered very fast and unrealistic, which was

added to the data artificially because it was quite hard in

the early stages of NRSfM research to achieve good perfor-

mance on realistic data. This, however, should be overcome

for an NRSfM scheme in order to be practical. Therefore,

we have altered these benchmark sets as follows: We have

removed these synthetic rotations from the data sets and

added smaller ones, starting from the one-fourth position

of the entire frames and ending at the half position of the

7We would like to thank Dr. Antonio Agudo for providing this data.
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Table 1. Average reconstruction errors for the benchmark data sets [16, 27].

data set EM-PPCA MP CSF2 EM-PND BMM
proposed

[24] [11]
mean std. max min # groups

dance 0.2096 0.3968 0.1370 0.1834 0.1454 0.0759 0.0020 0.0803 0.0724 478.2 – –

capoeira 0.4476 0.4118 0.3005 0.3312 0.2465 0.1725 0.0010 0.1745 0.1699 271.6 – –

walking 0.1248 0.2488 0.0709 0.0465 0.0862 0.0396 0.0003 0.0403 0.0389 356.6 – –

face 0.0209 0.0320 0.0209 0.0165 0.0233 0.0248 0.0003 0.0255 0.0241 296.8 – –

shark 0.0366 0.0874 0.0551 0.0134 0.1669 0.0832 0.0000 0.0832 0.0831 563.9 – –

flag 0.1325 0.1761 0.1609 0.1313 0.1741 0.0387 0.0007 0.0396 0.0378 3088.3 0.0325 0.0159

pace 0.0892 0.1399 0.0882 0.0736 0.0892 0.0648 0.0004 0.0653 0.0643 8053.0 – –

Table 2. Average reconstruction errors for the data sets in [5] with realistic rotations.
data set

EM-PPCA MP CSF2 EM-PND BMM
proposed

total rotation sequence mean std. max min # groups

60◦

drink 0.1934 0.1744 0.0993 0.0952 0.0411 0.0431 0.0003 0.0438 0.0424 265.0

pickup 2.3232 1.8799 0.2821 0.5371 0.1580 0.1281 0.0017 0.1339 0.1252 269.9

stretch 1.2543 1.7585 0.1277 0.1356 0.0971 0.0939 0.0016 0.0973 0.0899 289.0

yoga 0.4905 0.4939 0.2909 0.4063 0.2463 0.1845 0.0036 0.1946 0.1777 264.4

90◦

drink 0.2108 0.1952 0.0712 0.0371 0.0919 0.0353 0.0001 0.0357 0.0350 263.3

pickup 0.5140 0.7674 0.1825 0.2650 0.1011 0.0918 0.0023 0.0981 0.0882 271.0

stretch 0.2657 0.2725 0.1523 0.1098 0.0773 0.0797 0.0013 0.0827 0.0771 273.9

yoga 0.6949 0.5445 0.2221 0.3020 0.1686 0.1190 0.0026 0.1243 0.1118 285.8

120◦

drink 0.2261 0.3026 0.0649 0.0753 0.0424 0.0304 0.0001 0.0306 0.0301 261.4

pickup 0.6891 0.6996 0.2838 0.3635 0.1104 0.0964 0.0012 0.0991 0.0940 273.1

stretch 0.4655 0.3326 0.1576 0.2858 0.0930 0.0846 0.0012 0.0883 0.0826 289.4

yoga 0.4756 0.4359 0.1785 0.3497 0.1309 0.1115 0.0024 0.1180 0.1056 261.8

frames. This means that there were standing-still periods

at the beginning and the ending of the data sets. The total

amount of rotations were set to various values; 60, 90 and

120 degrees. These camera motions are much more prac-

tical and reflect real situations. The rotations were made

around the y-axis, as like the original synthetic rotations.

The parameters of the proposed method were set as fol-

lows; ng = 10, mg = 50, and λ = 0.1.8 The parameters

of the other methods were set as in their papers. The num-

ber of bases K for CSF2 and BMM were tuned to achieve

the best performance, unless there were corresponding ex-

periments in their paper. Since the proposed method relies

on random sampling, we repeated the experiment 50 times

for each data sets, except the flag and pace sequences [29]

because of the increased processing time due to the large

data size. One thing to note is that the rotation calcu-

lation scheme (so-called “rectification” algorithm) in the

shape-basis approach can be unstable for co-planar struc-

tures, which is not an exception for the proposed weak re-

constructor. Hence, we have modified the rotation calcu-

lation step for the cloth-like objects (flag [29], two-cloths,

and tear [25]): The Tomasi-Kanade factorization [26] was

applied to a trajectory group to find a rigid 3D approxima-

tion and a closest two-dimensional plane was calculated by

SVD. Then, this plane was rotated for each frame minimiz-

ing the reprojection error to find the rotation estimates.

The measure of performance was the (normalized) re-

construction error, i.e., e3D =
∑

i ‖Xi − X̂i‖/‖X̂i‖ where

Xi and X̂i are the 3D coordinates of the reconstructed and

8More experiments on different parameters can be found in the supple-

mentary material.

the ground truth shapes, respectively, in the ith frame. Note

that there can be reflection ambiguities, and especially for

most of the existing schemes, all the frames may have dif-

ferent reflections. Therefore, the errors have been measured

also on the inverted shapes for each frame and the smaller

ones were picked. Note that, only for the flag sequence,

the errors were evaluated after aligning the reconstructed

shapes to the ground truth based on the Procrustes align-

ment [18], as in the practice in [11, 24].

Table 1 shows the performance for the benchmark sets

from [16, 27] and the dense sets, flag and pace, from [29].

Here, the performance for many data sets was not denoted

for the other part-based schemes [11, 24], because they are

specialized for smooth surfaces. Note that, in this table,

the proposed method gives the best performance for the

dance, capoeira, walking, and pace sequences. These data

sets all have either complex, large deformations or restricted

view points, which confirms the effectiveness of the pro-

posed algorithm to the aforementioned issues of NRSfM.

Especially, the dance and capoeira sequences have been the

difficult ones for many NRSfM schemes, and the proposed

method achieves dramatic improvements for them. On the

other hand, the face and shark sequences have very simple

deformations with enough view angles, hence in this case,

all-trajectory-based schemes can give better results than our

method that relies on randomly sampled parts. Neverthe-

less, the performance of the proposed algorithm is compa-

rable, which is good enough for practical uses. The flag

sequence is basically a cloth floating in the wind, and the

other methods specialized for smooth surfaces give better

performance. Yet, the proposed method shows a competi-

tive result even though its procedure is much simpler. The
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Figure 1. Reconstruction examples of the flag sequence. (a) and

(b) are ground truth shapes, while (c) and (d) are their reconstruc-

tions. Procrustes alignment was not applied for this visualization.
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Figure 2. Reconstruction examples of the back sequence.

reconstruction examples of the flag sequence are shown in

Fig. 1, which confirm the reasonable performance of the

proposed method. A good thing about the proposed algo-

rithm is that its performance has low standard deviations,

which attests its reliability.

Table 2 shows the performance for the benchmarks sets

from [5] with realistic rigid motions. In this table, we can

see that the proposed method achieves the best performance

for most of the cases. The performance of the other methods

often gets severely bad with the realistic rigid motions, even

though the deformations in these data sets are not much

complicated. This verifies the bias in the existing algo-

rithms towards the well-conditioned examples with large

rigid motions. On the other hand, the proposed method

shows steady performance for all of the cases.

Finally, we have conducted experiments for the real data

sets [3, 25].9 The reconstructed results are shown in Figs.

2, 3 and 4. These figures show that the proposed algorithm

is capable of reconstructing real scenes with no problem.

An important aspect of the proposed method can be seen

in the tear sequence, where a piece of paper is teared apart

into two pieces. Even though the object is dividing into two

parts, the proposed algorithm can handle the reconstruction

because of its part-based nature. This gives a possibility

of bypassing object or part segmentation problem arises in

NRSfM [13], which is not the main scope of this paper.

9We could not evaluated the quantitative performance for these data

because there were no ground truths. The videos of reconstructed results

are provided in the supplementary material.
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Figure 3. Reconstruction examples of the tear sequence.
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Figure 4. Reconstruction examples of the two cloths sequence.

5. Conclusion

In this paper, we proposed a novel part-based NRSfM

framework, which considers the parts as weak reconstruc-

tions and obtains consensus from them. The proposed

method is composed of four steps; sampling, weak recon-

structions, reflection correction, and calculation of statis-

tics. It does not have any strong assumption about the sam-

pled parts, which makes the sampling method very simple.

BMM has been adopted and modified for the weak recon-

structions, and a single run of the eigenvalue decomposi-

tion can resolve the reflection ambiguities. The final step

of the algorithm can be formulated as l1-norm minimiza-

tion, which can be efficiently solved by ADMM. The most

time-consuming step, weak reconstructions, can be easily

parallelized, which is a useful advantage. The proposed

method does not have an assumption on the type of data

and gives the state-of-the-art results for the benchmark sets.

The proposed framework is very simple and flexible, and

there are good chances that many other important issues in

NRSfM could be efficiently dealt with; e.g., simultaneous

object segmentation and reconstruction, handling missing

points, sequential reconstruction, and so on, which will be

addressed in future work.
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