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Abstract

Patch-based image synthesis has been enriched with

global optimization on the image pyramid. Successively,

the gradient-based synthesis has improved structural co-

herence and details. However, the gradient operator is di-

rectional and inconsistent and requires computing multiple

operators. It also introduces a significantly heavy com-

putational burden to solve the Poisson equation that of-

ten accompanies artifacts in non-integrable gradient fields.

In this paper, we propose a patch-based synthesis using a

Laplacian pyramid to improve searching correspondence

with enhanced awareness of edge structures. Contrary

to the gradient operators, the Laplacian pyramid has the

advantage of being isotropic in detecting changes to pro-

vide more consistent performance in decomposing the base

structure and the detailed localization. Furthermore, it does

not require heavy computation as it employs approximation

by the differences of Gaussians. We examine the potentials

of the Laplacian pyramid for enhanced edge-aware corre-

spondence search. We demonstrate the effectiveness of the

Laplacian-based approach over the state-of-the-art patch-

based image synthesis methods.

1. Introduction

In digital photography, we often confront a situation

where certain causes, such as blocks by uninvited objects,

occlusions, failures in transmission, and holes produced by

different perspectives in binocular stereo, corrupt a portion

of images. Accordingly we may wish to fix these cor-

ruptions with plausible contents. To address these situa-

tions, image inpainting [6], which refers to filling in a cor-

rupted area, has received attention during the past decade.

Although image inpainting has been commonly used even

with novice users, there is no completely versatile inpaint-

ing algorithm that gives robust results under any conditions.

The image gradients are employed in classical inpaint-

ing methods [10] for detecting and copying image struc-
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ture from the boundary to the interior such that the image

gradients, the first derivatives of image intensity, measure

directional changes of intensity around edges. The image

pyramid, which denotes an image representation based on

multiscale signals, has been widely used as a typical prac-

tice for enhancing structural coherence when completing

missing regions in patch-based synthesis [29]. Recently, the

image gradients in each level of the image pyramid are used

for enhancing edge structure in addition to coherent patch-

based synthesis [11]. Even though the latest approach of

combining gradients and the image pyramid has improved

the structural coherence and details in inpainting, the gradi-

ent operator is directional and thus requires twofold greater

computation of multiple operators, and it introduces a sig-

nificantly heavy computational burden to solve the Poisson

equation. Furthermore, it presents inconsistency often with

artifacts in non-integrable gradient fields.

The Laplacian operator, which is the divergence of gra-

dients of image intensity, takes advantage of being isotropic

and invariant to rotation (Figure 1c). In addition, coordi-

nates of the Laplacian correspond to those of the edges,

being well aligned to represent the image structure over

edges. The Laplacian pyramid allows us to decompose the

base and detail structure of an image into different spatial

frequency components that can preserve structure upon de-

composition. This representation has been used in many

applications such as image blend/fusion, enhancement, and

denoising. However, to the best of our knowledge, the po-

tentials of the Laplacian pyramid has not been intensively

exploited in previous coherent patch-based image synthe-

sis. The proposed method is the first work that combines the

Laplacian with patch-based synthesis of global coherence.

In this paper, we examine the properties of the Laplacian

pyramid for image completion and describe our edge-aware

patch-based synthesis using a Laplacian pyramid.

2. Related Work

Proposed first by Bertalmio et al. [6], inpainting refers to

the task of filling in or completing holes, or missing or cor-

rupted regions in images. Inpainting is classified into two

categories: diffusion-based and exemplar-based methods.
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Diffusion-Based. Methods that belong to this category

complete missing areas by propagating the geometric struc-

tures of the neighboring areas. This is accompanied with the

smoothness constraints that enforce the connectivity of lo-

cal structures. Diffusion can be performed locally by solv-

ing a partial different equation (PDE) [22, 26, 27] and there

is also a global optimization approach that minimizes the to-

tal variation [23] of the inpainted area [2, 24, 17]. Diffusion-

based inpainting is shown to be very effective in recon-

structing line, curves, and small holes, but it suffers from

blurring artifacts when completing large holes.

Exemplar-Based. To extend the coverage of diffusion-

based inpainting, exemplar-based approaches have been

proposed. Within the unknown hole area this approach first

determines the order, in which target patches are filled in,

and then it searches similar candidate patches from known

areas. Finally it composites the candidate patches on the lo-

cation of the target. Subsequent to the approaches proposed

by Criminisi et al. [10] and Drori et al. [12], and then suc-

ceeded by the global optimization of Wexler et al. [29], vari-

ants of these works have been resorted. Sun et al. [25] prop-

agated the structures along with user-provided-guidance.

Buyssens et al. [8] addressed the filling order using a tensor-

based data term. The candidate patches, being represented

by the nearest neighbor field (NNF), were searched follow-

ing the nonlocal denoising algorithm [7]. This part was

accelerated by introducing versatile data structures such as

kd-trees [5] and vp-trees [31]. Barnes et el. [4] proposed

a randomized search method that made computation much

more tractable, thus it has been broadly adopted to search

correspondence. In addition, Komodakis and Tziritas [16]

proposed priority belief propagation to address patch com-

position via discrete global optimization. He and Sun [13]

showed that exploiting the statistics of patch offsets is ef-

fective when searching the candidate patches, and Huang et

al. [14] attempted to use planar structure guidance in order

to take the perspective projection into account. Addition-

ally, there have been efforts to adopt the patch sparsity [30],

or to take the image super-resolution algorithm [19].

Further Coherence. Traditional patch-based inpainting

algorithms, originally proposed by Wexler et al. [29, 3, 4],

which compute similarity according to colors on the im-

age pyramid, generated visually plausible results. How-

ever, some results have an inconsistent structure due to a

lack of spatial coherence. Recently, the image gradients

in each level of the image pyramid have been used for en-

hancing structural coherence [11]. However, Darabi et al.

inherited the natural limitation of the image gradient oper-

ators. Since the gradient operator is directional, they com-

pute horizontal and vertical changes of intensity, and the

gradients must be solved by the Poisson equation for inte-

gration. Furthermore, this PDE-based solution often intro-

duces artifacts in non-integrable gradient fields. In addition,

Kalantari et al. [15] enhanced the patch-based searching al-

gorithm with additional masks that account for foreground

and background, resolving typical artifacts that occurs by

the traditional patch-based synthesis.

Even though both patch-based synthesis and the Lapla-

cian pyramid have been practiced extensively for recent

decades, only a few works have examined the combined ap-

plication of these two approaches. To the best of our knowl-

edge, only Drori et al. [12] and Padmavathi and Soman [20]

utilized the Laplacian approach to solve the inpainting prob-

lem. However, the both methods take the classic heuris-

tic inpainting approach, originally proposed by Criminisi et

al. [10]. Different from Criminisi, Drori et al. [12] use the

Gaussian pyramid for coarse-to-fine refinement and adap-

tive patch size depending on texture complexity in addition

to the usage of the Laplacian pyramid to naturally blend

the target and source patch. Padmavathi and Soman [20]

fundamentally follow Criminisi’s heuristic approach. Even

though they utilize the Gaussian and the Laplacian pyramid

to separate the texture and the structure, they merely trans-

fer the upsampled detail of low frequency to the high fre-

quency layer without reconstructing details in the Laplacian

domain. These two methods do not fully exploit the advan-

tages of the Laplacian pyramid with the benefit of patch-

based global optimization [29] and also inherit the limita-

tions of the heuristic approach [10]. Furthermore, they suf-

fer from global inconsistency, resulting in a coherent local

decision around image structures. In contrast, our Lapla-

cian approach is built on the state-of-the-art work of global

energy optimization proposed by Wexler et al. [29] to over-

come the incoherence problem and it enhances the struc-

tural coherence by taking advantages of the Laplacian rep-

resentation.

3. Laplacian Patch-Based Image Synthesis

Our inpainting leverages a Laplacian pyramid to improve

structural coherence in image synthesis. Our nearest neigh-

bor search on a Laplacian pyramid is more invariant to ro-

tation with propagated structural information and therefore

we can improve the accuracy of the correspondence search

compared with the state-of-the-art methods [29, 3, 11] do.

Also, by making use of the upsampled Gaussian and Lapla-

cian images, we obtain more robust performance against the

noise and the change of parameters. This section provides

the details of proposed edge-aware image synthesis strategy.

3.1. Laplacian Coherent Spaces

Gaussian, Gradient and Laplacian. The image pyra-

mid offers a multi-resolution representation of an image [1]

and has been practiced in many applications. Creating a

pyramid consists of two steps: filtering and sampling. As
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Figure 1. (a)–(c) Comparison of the Gaussian function hσ , one of

gradients ∇hσ and Laplacian ∇2hσ . (d)–(f) two different Gaus-

sians with σ1 and σ2 and a difference of the Gaussians.

shown in Figure 1, the Gaussian function (a), the gradients

of the Gaussian (b) and the divergence of gradients, Lapla-

cian (c) have been commonly used for filtering. Since con-

volutional filtering is a linear operation, the Laplacian of a

Gaussian-filtered image ∇2 [hσ ⊗ f ] is identical to the im-

age filtered with the Laplacian kernel
[

∇2hσ

]

⊗ f . Down-

sampling the signals subsequent to the filtering builds an

image pyramid.

In particular, the gradients ∇x,y and the Laplacian ∇2

have been commonly used to detect edge structures in im-

ages. The gradients are calculated from the first partial

derivatives of x and y: ∇hσ =
{

∂
∂x

hσ,
∂
∂y

hσ

}

. At least

two operators are required to detect the changes of local

structures in images. See Figure 1. The gradients are di-

rectional edge detectors that require multiple operators for

each direction; therefore, the gradient magnitude is used al-

ternatively for detecting edges. Unlike the gradients, the

Laplacian operator ∇ · ∇hσ = ∇2hσ =
(

∂2hσ

∂2x2 + ∂2hσ

∂2y2

)

is an isotropic edge detector which is invariant to rotation

of the function in images. The Laplacian pyramid (Fig-

ure 2a) stores the bandpassed structural information of each

frequency band. The pyramid has been used broadly for

various edge-aware image processing [21].

Computing the Laplacians. Since convolution with

large weighting functions is an expensive computation, the

Laplacian of a Gaussian (LoG) can be approximated by sim-

ply taking a difference of two Gaussians (DoG) at different

scales. See Figures 1(d)—(f). When the image scale of

level (l+1) reduces in a half scale of level l in the Gaussian

pyramid, the DoG can approximate the LoG with high ac-

curacy. Figures 1(c) and 1(f) compare the similarity of the

LoG and the DoG. The backward computation of the gra-

dients is notoriously expensive due to solving the Poisson

equation, which may also introduce undesirable artifacts

caused by non-integrable gradient fields. In contrast, the

forward and backward computation of the Laplacian pyra-

mid using the DoG is very efficient as they are virtually the

operations of subtraction and summation, so the Laplacian

pyramid has excellent potentials for patch-based image syn-

thesis. In this paper, we employ the DoG-based approxima-

tion to compute the LoG efficiently. Note that for this rea-

son, unlike other gradient-based methods such as Darabi et

al. [11], our method requires no more additional computa-

tional cost, such as solving the Poisson equation, computed

with traditional patch-based synthesis methods [29, 3].

3.2. Patch­Based Synthesis on a Laplacian Pyramid

The choice of the pyramid kernel operator is critical with

respect to which information we derive from images. The

Gaussian operator is effective in determining the base struc-

tures at each level of frequency. This operator is adopted in

many image completion algorithms to achieve spatial co-

herence in searching correspondence and aggregating simi-

larity, proposed by Wexler et al. [29] and Barnes et al. [3].

Contrary to the Gaussian, the gradient and the Laplacian

operator are capable of searching edge structures of each

level in images. The pyramid elements of derivatives are

preserved to local regions in the spatial domain of the gra-

dients or the Laplacian. The derivative image pyramids de-

compose edge localization at each level of frequency.

Recently, Darabi et al. [11] introduced a correspondence

search that examines not only color but also gradients in

the image pyramid. They presented that examining the

first derivatives is clearly beneficial in searching correspon-

dences of structural coherence in image completion. We

were motivated to improve the seminal idea of leveraging

derivatives with the Laplacian. Our edge-aware search of

correspondence resembles the work of Darabi et al. with

two main differences of aggregated correspondence and ro-

tation invariance as follows.

Building a Laplacian Pyramid. The input of exemplar-

based image completion is a color image I and a mask im-

age M , which segregates an image into source region S and

target region T . The goal of exemplar-based image comple-

tion is to complete the target region T of image I with con-

tents from the source region S. To use a Laplacian pyramid

in image inpainting, we first build a Gaussian pyramid G

for image I following [21]:

G0 = I,

Gi+1 = downsample(Gi) (i < n),
(1)

where Gi is the i-th scale in the Gaussian pyramid G, and

the total number of scales is n + 1, and downsample() is

an operator that subsamples a filtered scale. The finest level

of the Gaussian pyramid G0 is the original image I . The

i-th Gaussian scale Gi+1 is a subsampled scale from the

Gaussian-filtered one of the previous scale Gi.

2729



0

 5.6E+3

 > 2.2E+4

2
G

  
∇G

2  
L

2
} ,

patch color distance of the source patches to the red target 

0
G

  
G

1
(U

0
)

  
G

2
(U

1
)

  
G

3
(U

2
)

  
G

4
(U

3
)

0
L

1
L

2
L

3
L

 
G

i  
L

i

(a) Laplacian 
      pyramid 

(b) Gaussian & Laplacian profiles (c) Our nearest neighbor search  (e) Gaussian (d) Gradients 

NNF search 

combined search 

input 
(original) 

  
{ U

2

 ∇y

 
∇

2

  
U

i
= upsample(G

i+1
)

Figure 2. Comparison of correspondence search on the Gaussian, the gradients, and the Laplacian pyramid. (a) shows a Gaussian and

a Laplacian pyramid of a circular function. (b) indicates 1D profiles of each level. (c), (d) and (e) show patch searches on level 2: the

upsampled Gaussian U , the Laplacian L, gradients ∇G and the traditional Gaussian G, respectively. The top row of (c), (d), and (e)

presents the 3D visualization of image structures. The middle row offers close-up images in the level. The bottom row visualizes an

example of the source patch distances to the red target patch (4×4) over the rounded edge. Contrary to (d) and (e), our NNF search

(c) compares the patch distances in U and L simultaneously, where the aggregated correspondences (indicated by red arrows) of both

low-frequency base and high-frequency detail structures spread smoothly, giving assistance to random correspondence searches.

We then compute differences of the Gaussians to derive

a Laplacian pyramid L:

Ui = upsample(Gi+1),

Li = Gi − Ui (i < n),

Ln = Gn,

(2)

where upsample() is an upsampling operator. To sim-

plify our algorithm, we define an upsampled Gaussian pyra-

mid U . The i-th Laplacian image Li is the detailed struc-

tures between Gi and Gi+1. Since the number of levels

in the Gaussian pyramid is finite, the coarsest level of the

Laplacian pyramid Ln is the coarsest of the Gaussian pyra-

mid Gn, called the residual, which corresponds to a tiny

version of the image.

Our DoG-based Laplacian pyramid includes two image

pyramids of the Gaussians and the Laplacians, shown in

Figures 2(a) and (b). The frequency of the base structure

is decomposed as intensity at each level in the Gaussian

pyramid, while the frequency of the edge structure is lo-

calized as the Laplacians at each level of frequency in the

Laplacian pyramid. Figure 2 offers an overview of our

edge-aware correspondence search on the Laplacian pyra-

mid, compared with a gradient-based search [11] (d) and a

traditional Gaussian-based search (e) [29, 3]. We construct

pyramids with a 5-by-5 blur kernel.

Aggregated Correspondence. Our main intuition on

the selection of these two pyramids is the aggregated corre-

spondence of the base and the edge structures. The bottom

row in Figure 2(c) shows an example of the patch color dis-

tances of all the source patches to the target patch at the

top-left round corner of a circular function at scales of U2
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Figure 3. Overview of our implementation of Laplacian patch-

based image synthesis.

and L2. The area pointed by the red arrows indicates aggre-

gated information of the base and the detailed structures in

the both pyramids. Since the random search algorithm grad-

ually steps forward to minimize the patch color distance in

Equation (3), the aggregated edges of the base and the de-

tail structures become significantly helpful clues for search-

ing the correspondences of structural similarity due to the

nature of the random search algorithm [11]. (The brighter

colors in the figure indicate more similar patch color dis-

tances.) In contrast, the distance metrics on both the gradi-

ent magnitude ||∇||2 (d) and the Gaussian scale (e) weight

only a few number of patches outstandingly high. Conse-

quently most of the patches’ structures are ignored by the

weight when calculating the weighted sum of colors for vote

(see Equation (4)). These two image pyramids of the gradi-

ents and the Gaussians are used by Darabi et al. [11] for the

energy function of patch distance.

Based on this observation, our objective strategy of
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searching for correspondence not only minimizes the dis-

tances of low-frequency base structures but also preserves

the distances of high-frequency detailed structures.

Our energy function resembles the iterative Expectation-

Maximization (EM) algorithm following Wexler et al. [29]

but with the main difference of using two image pyramids

of the upsampled Gaussians and the Laplacians. In the ex-

pectation step, we find similar source patches (blue square

in Figure 2c) for all target patches (red square). We use

the random correspondence search algorithm, proposed by

Barnes et al. [3], to approximate the nearest-neighbor fields

of target patches with our distance metric as follows:

Ei(T, S) =
∑

q∈T

min
p∈S

(αD (Ui,p, Ui,q) + βD (Li,p, Li,q)),

(3)

where i is the current level, p and q are pixel locations of

target region T and source region S respectively, Ui,p and

Li,p denote a patch of pyramid U and L at level i at posi-

tion p respectively, D is the sum of square distances (SSD)

between the CIELAB [9] colors of two patches, and finally

α and β determine the ratio of low-frequency base scale U

and high-frequency detailed scale L subject to α+ β = 1.

Rotation Invariance. As shown in Figure 2(d), image

gradients ∇xG and ∇yG can detect only certain struc-

tural changes along the horizontal and the vertical direction

since they are directional operators (Section 3.1). Unlike

the gradient-based approach, we suggest using an isotropic

edge operator of the Laplacian, which has the important ad-

vantage of being invariant to rotation [18]. The Laplacian

responds equally to structure changes over edges in any di-

rection in scales, detecting detailed structure more robustly.

This isotropic characteristics of the Laplacians also avoid

having to use multiple operators for the gradients to calcu-

late the robust correspondence of local structures, allowing

for computational efficiency.

Combined Vote. We update target patches of an upsam-

pled Gaussian and a Laplacian image by blending nearest-

neighbor source patches to maximize the similarity of

target patches and source patches after searching corre-

spondences. To accelerate the convergence, we perform

weighted blending of scales. Patches of close color dis-

tances and patches close to the completion boundary are

highly weighted. More details are provided in Section 4.

Laplacian Structure Reconstruction. Once the con-

vergence of EM optimization is finished at level i, we are

ready to propagate the current completion of Li and U i to

the finer level i − 1. Consequently these completions at

level i can be used as the initial completion of level i − 1.

As shown in Figure 3 and Algorithm 1, the finer scales of

the completed Gaussians Gi at level i can be obtained by

summing the upsampled Gaussians U i and Laplacians Li at

Algorithm 1 Laplacian-based image completion

Input: image I and mask image M

Output: result image G0

1: G,U,L← CONSTRUCTPYRAMID(I)
2: initialize U,L

3: for scale i = n− 1 to 0 do

4: for iteration j = 0 to m do

5: N i ← SEARCH(U i, Li, Ui, Li)
6: {U i, Li} ← VOTE(U i, Li, Ui, Li, N i)
7: end for

8: Gi ← U i + Li

9: if i > 0 then

10: U i−1 ← UPSAMPLE(Gi)
11: Li−1 ← LAPLACIANRECONSTRUCTION(N i, Li−1)
12: end if

13: end for

level i using Equation (2). The reconstructed Gaussians Gi

is then upsampled to completed Gaussians U i−1 in conse-

quence. However, the finer scales of the Laplacians Li−1 at

level i−1 cannot be reconstructed by this manner. Since the

Laplacian scale Li−1 is supposed to hold high-frequency

details, we fill in the target region of the Laplacian scales

Li−1 with information of the source regions at level i − 1
by utilizing the NNF correspondence of the search patches

N i obtained at level i. In this way, we can complete the

base and the detailed structures in these two image pyramid

from the coarse to the finest level.

4. Implementation Detail

Vote. For the color voting stage, we inherit one from

Wexler et al. [29]. Here we briefly describe our voting im-

plementation to help readers understand the entire work-

flow. We first compute the similarity of a target patch at

pixel q and its corresponding source patch at pixel p at level

l as Ψ(p, q, l) = e−
D(p,q,l)

2σ2 , where σ determines the sen-

sitivity of detecting similarity. In addition to similarity Ψ,

we calculate confidence weights Λ(q) at target pixel q that

avoids boundary errors by assigning a higher confidence

value to target points when they are closer to the comple-

tion boundary. This voting process assumes that the image

inside the target region should be located outside the tar-

get region in the image. We combine these two metrics of

similarity and confidence as a weight wq = Ψ(p, q, l)Λ(q)
at target pixel q. For every target pixel q, we compute a

weighted average cq of the overlapping colors of q̃ ∈ Q

from its NNFs N q̃ using weight wq̃:

cq =

∑

q̃∈Q wq̃N q̃(q − q̃)
∑

q̃∈Q wq̃

, (4)

where Q indicates the overlapping patches over the target

pixel q.

2731



(a) Input (b) Wexler et al. 2007  (c) Darabi et al. 2012 (d) Ours 

Figure 4. (a) Input images, where red region is to be completed, (b) Wexler et al. [29], (c) Darabi et al. [11], and (d) our method.

Figure 4 Wexler et al. Darabi et al. Ours

1st row 105.35 367.65 112.40

2nd row 56.00 314.54 59.27

3rd row 127.45 732.96 138.31

4th row 171.19 314.82 171.68

5th row 76.67 314.17 76.44

Average 107.33 408.83 111.62

Table 1. Performance of three patch-based methods: Wexler,

Darabi and ours with images shown in Figure 4 (unit: second).

5. Results

We implemented our Laplacian image synthesis in C++

on a machine with a 3.4GHz Intel i7-3770 CPU. Our unop-

timized implementation runs in a genuinely single-threaded

CPU-based manner. We compare our method with the

current state-of-the-art inpainting methods, including other

Laplacian-based inpainting approaches. We also evaluate

the influence of the parameters, such as the patch size and

β in Equation (3), in addition to the upsampled/naı̈ve Gaus-

sian pyramid structure in searching correspondence.

Figure 4 compares our method to the state-of-the-art

methods, Wexler et al. [29] and Darabi et al. [11]. Our in-

painting method synthesizes coherent base structures more

robustly than other methods. In particular, the third-row re-

sults clearly show that our Laplacian patch-based method

outperforms the gradient-based approach in terms of struc-

ture and detail. Our method effectively reconstructs the base

structure of low spatial frequencies, e.g. the textures of rices

and water in Figure 4, as our method leverages the informa-
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(a) Input  (b) Padmavathi & Soman 

(c) Drori et al. (d) Ours 

Figure 5. Comparison with other Laplacian-based methods. Both

Padmavathi and Soman (b) and Drori et al. (c) contain seam ar-

tifacts due to collision of different local propagation while our

method preserves global coherence in (d).

tion of the multiple frequency through the Laplacian pyra-

mid.

Table 1 presents the performance of the three methods

in computing results in Figure 4. We used our C++ im-

plementation for Wexler et al. and the original code for

Darabi et al.. Our method is implemented in C++. Wexler

took 107.33 seconds per image in average, and Darabi took

408.83 seconds per image in average, while our method

took 111.62 seconds per image in average. Our method is

3.66 times faster than the gradient-based method [11]. In

detail, the step for Poisson reconstruction in Darabi took

aver. 34.26 seconds per image, whereas our reconstruction

step of the Laplacian pyramid took only aver. 0.02 seconds,

revealing the computational efficiency of our method with-

out sacrificing structural coherence in image synthesis.

Figure 5 shows the inpainted images of previous

Laplacian-based approaches. While Padmavathi and So-

man [20] (b) and Drori et al. [12] (c) utilize the Laplacian

pyramid, they inherit the limitation of the heuristic search

approach of Criminisi et al. In contrast, our method pre-

serves global coherence (d) without suffering from the typ-

ical seam artifacts due to collision of different local propa-

gation. See supplemental material for more results.

Varying Parameters. Figure 6 shows the consistency

of our method under varying patch size. For this bungee

example, the size of a patch is critical to detect and prop-

agate a roof structure. The naı̈ve Gaussian method with

large patches misses to propagate the low-level edge struc-

5-by-5 7-by-7 9-by-9 

(a) (b) (c) 

(d) (e) (f) 

Figure 6. Bungee results of a Gaussian pyramid (d), (e) and (f)

and a upscaled Gaussian pyramid (a), (b) and (c). As the patch

size increases, the naı̈ve Gaussian method fails to propagate low-

level edge information. However, the upscaled Gaussian method

maintain low-level structure as (b) shows.

(a) (b) 

Figure 7. The completed results with/without the Laplacian term.

Our method with the non-zero Laplacian term preserves high fre-

quency structures as shown in (b). However, without the Laplacian

term, our method fails to keep high details in a region directed by

blue arrows in (a).

ture (Figures 6(a), (b), and (c)). Thanks to the nature of

the upsampled Gaussian pyramid, Figures 6(d), (e) and (f)

implies that our method is able to consistently reconstructs

low-edge structures with the diverse patch sizes.

We investigated the influence of the parameter β in

Equation (3). See Figure 7. When β is zero, only the up-

sampled Gaussian term remains in Equation (3) and it re-

sults in over-smoothed results for high frequency textures

as shown in (a). We found that β in the range between 0.1

and 0.5 produces plausible results.

Upsampled Gaussian vs. Gaussian. As shown in

Figure 3, the summation of a Laplacian Li and a upsam-

pled Gaussian layer Ui in a Laplacian pyramid results in

a Gaussian layer Gi, which is sharper than the upsampled
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(a) Input (b) Photoshop (c) Kalantari et al. (d) Ours 

Figure 8. Comparison with Photoshop’s contents-aware fill (b) and Kalantari et al. (c). Contents-aware fill often suffers from imperfect

stitching, while our method maintains global coherence. However, our method inherits the limitation of single-layer patch-based synthesis,

shown in the second row, while Kalantari’s multi-layer approach outperforms ours with foreground and background patches.

(a) (b) (c) (d) (e) (f) 

Figure 9. We compare the Gaussian-domain search (b) and (e) and our upsampled Gaussian-domain search (c) and (f). We set parameters

the same for both methods and the patch size is 9 × 9 for (b) and (c) and 5 × 5 for (e) and (f). Under the same patch size, (c) and (f)

captures global structures, while (b) and (e) misses the image structure.

Gaussian Ui. When we compute the correspondence of the

base and the edge structure, we have a domain option to

use either Ui and Gi for searching the base structure. We

compare them to verify the improvement on the global co-

herence. Figure 9 shows the results of this comparison. The

Gaussian-domain search fails to capture edge structure in

regions directed by blue arrows in (b) and (e) because of

small patch size. Conversely, as shown in (c) and (f) our up-

sampled Gaussian-domain search successfully reconstructs

global structures even using the same patch size. It demon-

strates that adopting the upsampled Gaussian pyramid en-

ables us to better preserve the low-level edge structure than

using the naı̈ve Gaussian pyramid does.

6. Conclusion and Future Work

We have presented an edge-aware patch-based image

synthesis method based on the Laplacian pyramid. While

the proposed method overcomes the shortcomings of the

gradient-based synthesis such as directionality and heavy

computational burden, the proposed method takes the ad-

vantages of the Laplacian pyramid properties such as ag-

gregated correspondence and isotropic feature detection in

order to improve searching correspondence with enhanced

awareness of edge structures. To validate this proposed

method, we demonstrate the effectiveness of this Laplacian-

based approach over the state-of-the-art techniques with va-

riety of experimental results.

Since our method stems from the single-layer patch syn-

thesis approach [28], our approach is incapable of identifing

foreground and background structure in the synthesized im-

age. Compared to Photoshop’s contents-aware fill, our re-

sults preserve global structure as coherent as possible shown

in Figure 8(d). Yet, our method could often suffer from

patch incoherence in the mixed situation of the foreground

and background objects. Recently, Kalantari et al. [15] at-

tempted to solve this problem by masking incoherent parts

of patches, as shown in Figure 8(c).

Our method is based on a Laplacian pyramid. Thus, our

method inevitably inherits natural drawbacks of a Laplacian

pyramid. One of the drawbacks is that a Laplacian pyramid

is not scalable compared to gradients. It makes our search

space restricted into two degrees of freedom: rotations and

translations without scales.
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