
Combining Markov Random Fields and Convolutional Neural Networks for

Image Synthesis

Chuan Li

Mainz University

Germany

chuli@uni-mainz.de

Michael Wand

Mainz University

Germany

wandm@uni-mainz.de

Abstract

This paper studies a combination of generative Markov

random field (MRF) models and discriminatively trained

deep convolutional neural networks (dCNNs) for synthesiz-

ing 2D images. The generative MRF acts on higher-levels

of a dCNN feature pyramid, controling the image layout

at an abstract level. We apply the method to both photo-

graphic and non-photo-realistic (artwork) synthesis tasks.

The MRF regularizer prevents over-excitation artifacts and

reduces implausible feature mixtures common to previous

dCNN inversion approaches, permitting synthezing photo-

graphic content with increased visual plausibility. Unlike

standard MRF-based texture synthesis, the combined sys-

tem can both match and adapt local features with consider-

able variability, yielding results far out of reach of classic

generative MRF methods.

1. Introduction

The problem of synthesizing content by example is a

classic problem in computer vision and graphics. It is of

fundamental importance to many applications, including

creative tools such as high-level interactive photo editing

[1, 2, 12], as well as scientific applications, such as gener-

ating stimuli in psycho-physical experiments [8].

In this paper, we specifically consider the problem of

data-driven image synthesis: Given an example image, we

want to fully automatically create a variant of the exam-

ple image that looks similar but differs in structure. The

intended deviation is controlled by additional constraints

provided by the user, ranging from just changing image di-

mensions to detailed layout specifications. Concretely, we

implement this by splitting up the input into a “style” im-

age and a “content” image [8, 12]. The first describes the

building blocks the image should be made of, the second

constrains their layout. Figure 1 shows an example of style

transferred images, where the input images are shown on

Figure 1: By combining deep convolutional neural network

with MRF prior, our method can transfer both photoreal-

istic and non-photorealistic styles to new images. Images

credited to flickr users mricon (A) and Vidar Schiefloe (B).

the left. Our results are are shown on the right. Notice our

method produces plausible results for both art to photo and

photo to art transfers. In particular, see how meso-structures

in the style images, such as the mouth and eyes, are inten-

tionally reused in the synthesized images.

The classic data-driven approach to generative image

modeling is based on Markov random fields (MRFs): We

assume that the most relevant statistical dependencies in an

image are present at a local level and learn a distribution

over the likelihood of local image patches by considering

all local k × k pixel patches in the example image(s). Usu-

ally, this is done using a simple nearest-neighbor scheme

[6], and inference is performed by approximate MRF infer-

ence [5, 14, 15] or greedy approximations [2, 6, 12, 26].

A critical limitation of MRFs texture synthesis is the

difficulty of learning the distribution of plausible image

patches from example data. Even the space of local

k × k image patches (typically: k ≈ 5...31) is already

way too high-dimensional to be covered with simple sam-

pling and nearest-neighbor estimation. The results are mis-

matched local pieces, which are subsequently stitched [15]

or blended [14] together in order to minimize the percep-

tual impact of the lack of ability to generalize. The missing

ingredient is a strong scheme for interpolating and adapting

images from very sparse example sets of sample patches.

In terms of invariance and ability to generalize, discrim-
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Figure 2: The input image is encoded by the VGG network (pixel colors show a 3D PCA embedding of the high-dimensiontal

feature space). Related image content is mapped to semi-distributed, approximately spatially coherent feature constellations

of increasing invariance [29]. Input image credited to flickr user Emery Way.

inatively trained deep convolutional neural networks have

recently made dramatic impact [13, 24]. They are able

to recognize complex classes of image features, modeling

non-linear deformations and appearance variations far be-

yond the abilities of simple nearest neighbors search.

However, the discriminative design poses a problem:

The corresponding dCNNs compress image information

progressively over multiple pooling layers to a very coarse

representation, which encodes semantically relevant feature

descriptors in a semi-distributed (not spatially localized)

fashion (Figure 2). While an inverse process can be defined

[3, 4, 7, 8, 9, 20, 28, 29], it reamins difficult to control: For

example, simply maximizing the class-excitation of the net-

work leads to hallucinatory patterns [21]. Rather than that,

we need to reproduce the correct statistics for neural encod-

ing in the synthesis images.

Addressing this problem, Gatys et al. [7, 8] have recently

demonstrated remarkable results for transferring styles to

guiding “content” images: Their method uses the filter

pyramid of the VGG network [24] as a higher-level repre-

sentation of images, benefitting from the vast knowledge

acquired through training the dCNN on millions of pho-

tographs. Then, feature layout is simply controlled by pe-

nalizing the difference of the high-level neural encoding

of the newly synthesized image to that of the content im-

age. Further, the process is regularized by matching fea-

ture statistics of the “style” image and the newly synthe-

sized picture by matching the correlations across the vari-

ous filter channels, captured by a Gram matrix. The method

yields very impressive results for applying artistic styles of

paintings to photographs [7]. However, strict local plausi-

bility remains difficult. In particular, using photographs as

styles does not yield plausible results because only per-pixel

feature correlations are captured at different layers and the

spatial layout is constrained too weakly.

Our paper augments their framework by replacing the

bag-of-feature-like statistics of Gram-matrix-matching by

an MRF regularizer that maintains local patterns of the

“style” exemplar: MRFs and dCNNs are a canonical com-

bination — both models crucially rely on the assumption

of locally correlated information and translational invari-

ance. This equips the encoding of features in a dCNN

with approximate Markovian consistency properties: Local

patches have characteristic arrangements of feature activa-

tions to describe objects, and higher-up encoding becomes

more invariant under in-class variation (Figure 2). We there-

fore use the generative MRF model on such higher levels of

the network (relu3 1 and relu4 1 of the 19-layer VGG net-

work1). This prescribes a plausible local layout of objects

and, importantly, tries to ensure a consistent encoding of

these higher-level features. The task of generalizing within

object categories and plausible blending is then performed

by the dCNN’s lower levels via inversion [20].

Technically, we implement the additional MRF prior by

an additional energy term that models Markovian consis-

tency of the upper layers of the dCNN feature pyramid. We

then utilize the EM algorithm of Kwatra et al. [14] for MRF

optimization: It easily integrates in the variational frame-

work. Further, we will show that higher-level neural encod-

ings are more perceptually linear, which matches well with

the linear blending approach of the M-step.

We apply our method to a number of photo-realistic and

non-photo-realistic image synthesis tasks, and show it is

able to generalize among image patches far beyond the abil-

ities of classic MRFs. In style-transfer scenarios, the com-

bined method additionally benefits from the abilities of the

dCNN to match semantically related image portions auto-

matically, without user annotations. In comparison to pre-

vious methods that invert dCNNs, the MRF prior improves

local plausibility of the feature layouts, avoiding hallucina-

tory artifacts and usually providing a more plausible meso-

structure than the statistical approach of Gatys et al. [7].

In particular, we can strongly improve the plausibility of

synthesizing photographs, which was not possible with the

previous methods.

2. Related Work

Image synthesis with neural networks: The success

of dCNNs in discriminative tasks [23] has also raised in-

1Notice that in Figure 2 layer relu5 1 shows the most discriminative

encoding for single pixels. However, in practice we found using 3 × 3

patches at layer relu4 1 produce the best synthesis results. Intuitively, us-

ing patches from a slightly lower layer has similar matching performance,

but permits overlapped MRFs and increased details in synthesis.

2480



terest in generative variants. Zeiler et al. [29] introduce a

deconvolutional network to back-project neuron activations

to pixels. Similarly, Mahendran and Vedaldi [20] recon-

struct images from the neural encoding in intermediate lay-

ers. The work of Gatys et al [7], detailed above, can also

be employed in unguided settings [8], outperforming tradi-

tional parametric texture synthesis which only uses a linear

feature bank and no statistical priors [22].

A further approach is the framework of generative ad-

versarial networks [10]. Here, two networks, one as the

discriminator and other as the generator iteratively improve

each other by playing a minnimax game. In the end the gen-

erator is able to produces more natural images than naive

image synthesis. However, in many cases the output quality

is still rather limited. Gauthier et al. [9] extend this model

by a Laplacian pyramid. This leads to clear improvement

on output quality. Nonetheless, training for large images

remains expensive and the results often still lack structure.

Denton et al. [3] extend the model to a conditional setting,

limited to generating faces. It is also possible to re-train

networks for specific generative tasks, such as image de-

blur [28], super-resolution [4], and class visualization [19].

MRF-based image synthesis: MRFs are the classic

framework for for non-parametric image synthesis [6]. As

explained in the introduction, a key issue is adapting local

patches beyond simple stitching [15] or blending [14], and

our paper focuses on this issue. Aside from this, MRF mod-

els suffer from a second, significant limitation: Local image

statistics is usually not sufficient for capturing complex im-

age layouts at a global scale. While local details appear

plausible, the global arrangement often merely resembles

an unstructured “texture soup”. Multi-resolution synthe-

sis [12, 14, 26] provides some improvement here (and we

adapt this in our method, too), but a principled solution re-

quires additional high-level constraints. These can be either

explicitly provided by the user [1, 2, 5, 7, 12, 16, 27], or

learned from non-local image statistics [11, 18, 30]. Long

range correlations have also been modeled by spatial LTSM

neural networks; results so far are still limited to semi-

regular textures [25]. Our paper opts for the first, simpler

solution of explicit layout constraints through a “content”

image [7, 12] — in principle, learning of global layout con-

straints is mostly orthogonal to our approach.

3. Model

We now discuss our combined MRFs and dCNNs model

for image synthesis. We assume that we are given a style

image, denoted by xs ∈ R
ws×hs , and a content image

xc ∈ R
wc×hc for guidance. The (yet unknown) synthesized

image is denoted by x ∈ R
wc×hc . We transfer the style of

xs into the layout of xc by making the high-level neural en-

coding of x similar to xc, but using local patches similar to

those of xs. The latter is the MRF prior that maintains the

encoding of the style. Formally, x minimizes the following

energy function:

x = arg min
x

Es(Φ(x),Φ(xs)) +

α1Ec(Φ(x),Φ(xc)) + α2Υ(x) (1)

Es denotes the style loss function (MRFs constraint), where

Φ(x) is x’s feature map from some layer in the network.

Ec is the content loss function. It computes the squared dis-

tance between the feature map of the synthesis image and

that of the content guidance image xc. As shown in [7, 20],

minimizing Ec generates an image that is contextually re-

lated to xc. The additional regularizer Υ(x) is a smoothness

prior on the reconstruction. Next, we explain how to define

these terms in details.

MRFs loss function: Let Ψ(Φ(x)) denote the list of all

local patches extracted from Φ(x) – a specified set of fea-

ture maps of x. Each “neural patch” is indexed as Ψi(Φ(x))
and of the size k × k × C, where k is the width and height

of the patch, and C is the number of channels for the layer

where the patch is extracted from. We set the energy func-

tion to

Es(Φ(x),Φ(xs)) =
m
∑

i=1

||Ψi(Φ(x))−ΨNN(i)(Φ(xs))||
2

(2)

Here m is the cardinality of Ψ(Φ(x)). For each patch

Ψi(Φ(x)) we find its best matching patch ΨNN(i)(Φ(xs))
using normalized cross-correlation over all ms example

patches in Ψ(Φ(xs)):

NN(i) := arg min
j=1,...,ms

Ψi(Φ(x)) ·Ψj(Φ(xs))

|Ψi(Φ(x))| · |Ψj(Φ(xs))|
(3)

We use normalized cross-correlation to achieves stronger

invariance. The matching process can be efficiently ex-

ecuted by an additional convolutional layer (explained in

the implement details). Notice although we use normalized

cross-correlation to find the best match, their Euclidean dis-

tance is minimized in Equation 2 for producing an image

that is visually close to the reference style.

Content loss function: Ec guides the content of the syn-

thesized image by minimizing the squared Euclidean dis-

tance between Φ(x) and Φ(xc):

Ec(Φ(x),Φ(xc)) = ||Φ(x)− Φ(xc)||
2 (4)

Regularizer: There is significant amount of low-level

image information discarded during the discriminative

training of the network. In consequence, reconstructing an

image from its neural encoding can be noisy and unnatural.

For this reason, we penalize the squared gradient norm [20]

to encourage smoothness in the synthesized image:

Υ(x) =
∑

i,j

(

(xi,j+1 − xi,j)
2 + (xi+1,j − xi,j)

2
)

(5)
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Figure 3: Comparison of patch matching at different layers

of a VGG network.

Minimization: We minimize Equation 1 using back-

propagation with Limited-memory BFGS. In particular, the

gradient of Es with respect to the feature maps is the

element-wise difference between Φ(x) and their MRFs

based reconstruction using patches from Φ(xs). Such

a reconstruction is essentially a texture optimization pro-

cess [14] that uses neural patches instead of pixel patches.

It is crucially important to optimize this MRF energy at the

neural level, as the traditional pixel based texture optimiza-

tion will not be able produce results of comparable quality.

Weight The α1 and α2 are weights for the content con-

straint and the natural image prior, respectively. We set

α1 = 0 for non-guided synthesis. By default we set α1 = 1
for style transfer, while user can fine tune this value to in-

terpolate between the content and the style. α2 is fixed to

0.001 for all cases.

4. Analysis

Our key insight is that combining MRF priors with

dCNN can significantly improve synthesis quality. This sec-

tion provides a detailed analysis of our method from three

perspectives: we first show compared to pixel values, neural

activation leads to better patch matching and blending. We

then show how MRFs can further improve the results.

4.1. Neural Matching

A key component of non-parametric image synthesis is

to match the synthesized data with the example. (Figure 3

is a toy example that shows neural activation gives better

matching than pixels. The task is to match two different

car images. The first column contains the query patches

from one car; every other column shows the best matching

in the other car, found at different feature maps (including

the pixel layer).

Figure 4: Linear blending behave differently in pixel space

and in neural space. Input photos credited to: flickr user

Jsome1 (cat A), flickr user MendocinoAnimalCare (cat B).

It is clear that patch matching using pixels or neural acti-

vation at the lower layers (such as relu2 1) is sensitive to ap-

pearance variation. The neural activations at layers relu3 1

and relu4 1 give better results. The top layers (relu5 1)

seem to decrease the match quality due to the increasing

invariance against appearance variation. This is not surpris-

ing because the features at middle layers are usually trained

for recognizing object parts, as discussed in [29]. For these

reason, we use neural patches at layers relu3 1 and relu4 1

as MRFs to constrain the synthesis process.

4.2. Neural Blending

The least-squared optimization for minimizing the tex-

ture term (Es in Equation 2) leads to a linear blending op-

eration for overlapping patches. Here we show that blend-

ing neural patches often works better than directly blend-

ing pixel patches. Specifically, we compare two groups of

blending results: The first method is to directly blend the

pixels of two input patches. The second method passes

these patches through the network and blend their neural

activations at different layers. For each layer, we then re-

construct the blending result back into the pixel space using

the method described in [20].

Figure 4 compares the results of these two methods. The

first two columns are the input patches A and B for blend-

ing. They are intentionally chosen to be semantically re-

lated and structurally similar, but are significantly different

in pixel values. The third column shows the average of these

two patches. Each of the remaining column shows the re-

construction of the blending at a different layer. It is clear

that pixel based and neural based blending give very dif-

ferent results: averaging the pixels often gives strong ghost

artifacts. This can be reduced as we dive deeper into the

network: through experiments we observed that the mid-

dle level layers such as relu3 1 and relu4 1 often give more

meaningful blendings. Lower layers such as relu2 1 be-

have similarly to pixels; reconstruction from layers beyond

relu4 1 tends to be too fuzzy to be used for synthesis. This

also matches our previous observation of middle layers’

privilege for patch matching – because a representation that

gives better discriminative performance is more robust to

noise and enables better interpolation.
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Figure 5: Effect of MRFs prior in neural based synthesis.

We do not show the example patches here because they are

visually identical to the synthesized patches cropped from

our results (top). In contrast, patches cropped from [7]’s

synthesis results have severe distortion and smear (bottom).

4.3. Effect of the MRF Prior

Despite the advantages in patch matching and blending,

it is still possible for a dCNN to generate implausible re-

sults. For example, the matched patches from different lay-

ers might not always fire at the same place in the image

space, indicated by the offsets between the patches found

at layer relu3 1 and relu4 1 (Figure 3). The blending may

also produce artifacts, for example, the destructed face of

the dog (relu4 1, figure 4) and the ghosting eyes of the cat

(relu3 1, figure 4). Extreme cases can be found at [21]

which produces hallucinogenic images by simply stimulat-

ing neural activations without any constraint of the natural

image statistics.

More natural results can be obtained through additional

regularizer such as smothness (total variation) or the Gram

matrix of pixel-wise filter responses [20, 7]. Our approach

adds an MRF regularizer to the middle / upper levels of the

network. To show the benefits of the MRFs prior, we com-

pare the synthesis results with and without the constraint.

We compare against the “style constraint” based on match-

ing Gram matrices from [7]. Figure 5 validates the intended

improvements in local consistency. The first row shows im-

age patches cropped from our results. They are visually

consistent to the patches in the original style images. In con-

trast, [7] produces artifacts such as distortions and smears.

The new MRF prior reduces flexibility in local adaptation

in favor of reproducing meso-scale features more faithfully.

5. Implementation Details

This section describes implementation details of our al-

gorithm 2. We use the pre-trained 19-layer VGG-Network

from [24]. The synthesis x is initialized as random noise,

and iteratively updated by minimizing Equation 1 using

back-propagation. We use layer relu3 1 and relu4 1 for

MRFs prior, and layer relu4 2 for content constraint.

For both layer relu3 1 and relu4 1 we use 3× 3 patches.

To achieve the best synthesis quality we set the stride to

2We release code at: https://github.com/chuanli11/CNNMRF

Figure 6: Comparison with Gatys et al. [7] for artistic syn-

thesis. Content Images credited to flickr users Christopher

Michel and theilr.

one so patches are very densely sampled. The patch match-

ing (Equation 3) is implemented as an additional convolu-

tional layer for fast computation. In this case patches sam-

pled from the style image are treated as the filters. The

best matching of a query patch is the filter that gives the

maximum response. We can pre-computed the magnitude

of the filters (||Ψi(Φ(xt))|| in Equation 3) as they will not

change during the synthesis. Unfortunately the magnitude

of patches in the synthesized image (||Ψi(Φ(x))||) needs to

be computed on the fly.

In practice we use a multi-resolution process: We built

a image pyramid using the scaling factor of two, and stop

when the longest dimension of the synthesized image is less

than 64 pixels. The reference texture and reference con-

tent images are scaled accordingly. We perform 200 iter-

ations for each resolution, and the output of the previous

resolution is bi-linearly up-sampled as the initialization for

the next resolution. We implement our algorithm under the

Torch framework. Our algorithm take about three minutes

to synthesis an image of size 384×384 with a Titan X GPU.

To partially overcome the perspective and scale differ-

ence between the style and the content images, we sam-

ple patches from a number of copies of the style image

with different rotations and scales: we use seven scales

{0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15}, and for each scale we

create five rotational copies {− π
12 ,−

π
24 , 0,

π
24 ,

π
12}. Since

increasing the number of patches is computational expen-

sive, in practice we only use the rotational copies for objects

that can deform – for example faces.

6. Results

This section discusses our results. Here we focus on

style transfer and refer readers to our supplementary ma-
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terial for the results of un-guided synthesis. As discussed

later in this section, our method has strong restriction with

the input data, so a formal user study is less meaningful. For

this reason, our evaluation is performed by demonstrating

our method with a number of typical successful and failure

cases, with comparisons and discussions related to the state

of the art neural based image stylization method [7]. We

refer readers to our supplementary report for more results.

Figure 6 shows two examples of stylizing photos by

artwork. The input photos (left) are stylized using Pablo

Picasso’s “Self-portrait 1907” and Wassily Kandinsky’s

“Composition VIII”, respectively. In both cases, Gatys et

al.’s [7] method (middle) achieves interesting results, pre-

serving the content of the photos and the overall look and

feel of the artworks. However, there are weaknesses on

closer inspection: The first result (top row) contains many

unnecessary details, and the eyes look unnatural. Their sec-

ond result lost the characteristic shapes in the original paint-

ing and partially blends with the content exemplar. In con-

trast, our first result synthesized more plausible facial fea-

tures. In the second result, our method also resembles the

style better: notice the important facial features such as eyes

and the mouth are synthesized as simple shapes. Figure 7

shows two examples of photorealsitic synthesis. We transfer

the style of a vintage car to two different modern vehicles.

Notice the lack of photo-realistic details and strong smears

in [7]’s results. With the MRFs constraint (right) our results

are closer to photorealistic.

From an informal user study, we observed that [7] usu-

ally keeps the content better, and our method produces more

accurate styles. Figure 8 gives detailed analysis between

these two different characters. Here we show three patches

from the content image (red boxes), and their closet matches

from the style image and the synthesis images (using neural

level matching). Notice our method produces more plau-

sible results when a good match can be found between the

content and the style images (the first patch), and performs

less well when mis-matching happens (the second patch,

where our synthesis deviates from the content image). For

the third patch, there is no matching can be found for the car.

In this case, our method replaces the car with texture syn-

thesis, while [7] keeps the car and renders it with artifacts.

In general, our method creates more stylish images, but may

contain artifacts when the MRFs do not fit the content. In

contrast, the parametric method [7] is more adaptable to the

content, but at the cost of deviating from the style.

Here we summarize the two main differences be-

tween [7] and our method based on our experiments: First,

by matching local k × k patches our method imposes the

spatial coherence constraint that is missing from [7]. Let us

briefly motivate this design: while dCNNs represent images

at a more semantically meaningful level, they also create

distributed encoding that are difficult to invert. Our obser-

vation is that Markovian consistency of spatial neighbor-

hoods (k × k patches) reduces this problem: The encod-

ings of a dCNN are (by construction) locally correlated; re-

taining these correlations improves the synthesis of invert-

ible neural representations. Second, [7] match the global

feature distributions using the Gram matrix. Their synthe-

sized features can maneuver within the subspace spanned

by the examples. Such behavior can lead to artifacts in the

pixel space due to the non-linear inversion of the networks.

In contrast, our synthesized features are copies of the ex-

amples. Notice [7] is not equivalent to our method with

1 × 1 patches, in which case the difference between statis-

tical matching and data copying still holds.

Last but not the least, we discuss the difference between

our method and a previous work [17] that used abstract

guidance features for improving synthesis. First, from the

perspective of guidance, the VGG network has learned very

strong invariance, far beyond hand-crafted shallow features.

It can match semantically related features that have strong

appearance variation (e.g.: Figure 3). Second, it also im-

proves synthesis itself: We do not directly synthesize pix-

els but neural activations on a higher network layer. This

representation still has strong generalization ability and can

plausibly blend image patches together even if their image

patches are quite different (e.g.: Figure 4).

6.1. Limitations

Our method is an interesting extension for image based

style transfer, especially for photorealistic styles. Nonethe-

less, it has many limitations. First and for most, it is more

restricted to the input data: it only works if the content im-

age can be re-assembled by the MRFs in the style image.

For example, images of strong perspective or structure dif-

ference are not suitable for our method.

Figure 9 shows a typical example case where [7] works

better. In this case the artistic style can be more easily trans-

ferred by the parametric method: Notice how the textures

adapt to the content more naturally in [7]’s method. In con-

trast, our method tries to “reshuffle” building blocks in the

style image and lost important features in the content image.

In general, our method works better for subjects that allows

structural deformation, such as faces and cars. For subjects

that have strict symmetry properties such as architectures, it

is often that our method will generate structural artifacts. In

this case, structural statistics such as [11] may be used for

regularizing the synthesized image.

Although our method achieved improvement for photo-

realistic synthesis, it is still not as sharp as the original pho-

tos. This is due to the loss of non-discriminative image de-

tails during the training of the network. This opens an in-

teresting future work that how the dCNN can be retrained,

or incorporated with stitching based texture synthesis such

as [15] for achieving pixel-level photorealism.
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Figure 7: Comparison with Gatys et al. [7] for photo-realistic synthesis. Input images credited to flickr users Brett Levin,

Axion23 and Tim Dobbelaere.

Figure 8: Detailed analysis of the difference between our results and Gatys et al.’s [7]’s results. Input images credited to flickr

users Eden, Janine and Jim and Garry Knight.

Figure 9: A typical case where Gatys et al [7] works better.

7. Conclusions

The key insight of this paper is that we can combine the

discriminative power of a deep neural network with classi-

cal MRFs based texture synthesis. We developed a simple

method that is able to produce encouraging new results for

style transfer between images. We analyzed our results with

a number of typical successful and failure cases, and dis-

cussed its pros and cons compared to the state of the art neu-

ral based method for transferring image styles. Importantly,

our results often preserve better mesostructures in the syn-

thesized image. For this first time, this permits transferring

photo-realistic styles with some plausibility. The stricter

control of the mesostructure is also the biggest limitation

at this point: The MRF prior only offers advantages when

style and content images consists of similarly shaped ele-

ments without strong changes in perspective, size, or shape,

as covered by the invariance of the high-level neural en-

coding. Otherwise, artifacts might occur. For pure artistic

styles, the increased rigidity can then be a disadvantage.

Our work is only one step in the direction of leveraging

deep convolutional neural networks for improving image

synthesis. It opens many interesting questions and future

work such as how to resolve the incompatibility between

the structure guidance and the MRFs [11]; how to more ef-

ficiently study and transfer the middle level style across a
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big dataset; and how to generate pixel-level photorealistic

images by incorporating with stitching based texture syn-

thesis [15], or with generative training of the network.
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