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Abstract

Multi-label image classification aims to predict multiple

labels for a single image which contains diverse content. By

utilizing label correlations, various techniques have been

developed to improve classification performance. However,

current existing methods either neglect image features when

exploiting label correlations or lack the ability to learn

image-dependent conditional label structures. In this paper,

we develop conditional graphical Lasso (CGL) to handle

these challenges. CGL provides a unified Bayesian frame-

work for structure and parameter learning conditioned on

image features. We formulate the multi-label prediction as

CGL inference problem, which is solved by a mean field

variational approach. Meanwhile, CGL learning is efficien-

t due to a tailored proximal gradient procedure by apply-

ing the maximum a posterior (MAP) methodology. CGL

performs competitively for multi-label image classification

on benchmark datasets MULAN scene, PASCAL VOC 2007

and PASCAL VOC 2012, compared with the state-of-the-art

multi-label classification algorithms.

1. Introduction

Multi-label image classification targets the specific prob-

lem of predicting the presence or absence of multiple object

categories in an image. Like other high-level vision tasks

such as object recognition [2], image annotation [15] and

scene classification [5], multi-label image classification is

very challenging due to large intra-class variation caused by

viewpoint, scale, occlusion, illumination, etc. To meet these

challenges, many image representation and feature learning

schemes have been developed to gain variation-invariance,

such as GIST [29], dense SIFT [4], VLAD [18], object bank

[25], and deep CNN [22, 8]. Meanwhile, label correlations,

which are typically encoded in a graph structure, have been

exploited to further improve classification performance.

In literature, the task of finding a meaningful label struc-

ture is commonly handled with probabilistic graphical mod-

els [20]. A classical approach is the ChowLiu Tree [11]
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Figure 1. Comparison of graphical models between uncondition-

al and conditional graphical Lasso. The templates denotes replica

of n training images and labels. x
(l) represents the l-th image

and y
(l) denotes its label vector. The parameters {ν,ω}, {α,β}

are shared across training data, and are themselves parameterized

by hyperparameters λ1 and λ2. In graphical Lasso, ν and ω pa-

rameterize unary and pairwise potentials, respectively. In contrast,

the parameterization is achieved by considering linear functions of

x
(l), i.e., βT

x
(l) and αT

x
(l), in conditional graphical Lasso.

which utilizes mutual information between labels to obtain

a maximum spanning tree structure and is proved to be e-

quivalent to the maximum likelihood estimation. Recent-

ly, probabilistic label enhancement model (PLEM) [26] ex-

ploits label co-occurrence pairs based on a maximum span-

ning tree construction and applies the tree structure to solve

multi-label classification problem. In these methods, the

structure learned on labels is naively used to model the label

structure conditioned on features, which is inappropriate be-

cause this kind of structure describes the label distribution

rather than the conditional distribution of labels.

To target the problem, several methods have been pro-

posed to incorporate input features during label structure

learning [6, 43, 35]. An extension to the ChowLiu Tree is

designed in [6] which investigates two kinds of condition-

al mutual information to learn a conditional tree structure.

Meanwhile, a conditional directed acyclic graph (DAG) is
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also designed to reformulate multi-label classification into

a series of single-label classification problems [43]. More

recently, clique generating machine (CGM) [35] learns the

conditional label structure in a structured support vector

machine framework. These methods assume a shared la-

bel graph across all input images, which provides a better

approximation to the true structure than the uncondition-

al label graph. However, such a shared conditional graph

is not flexible enough to characterize the label structure of

each unique image.

In this paper, we propose a conditional label structure

learning method which can produce image-dependent con-

ditional label structures. Our method extends the classi-

cal graphical Lasso (GL) framework which estimates graph

structure associated with Markov random field (MRF) by

employing sparse constraints [28, 31, 24]. 1 We term the

proposed method as conditional graphical Lasso (CGL).

See Figure 1 for the comparison between graphical mod-

els of GL and CGL. CGL offers a principled approach to

model conditional label structures within a unified Bayesian

framework. Besides, CGL provides a simple but effective

way to learn image-dependent label structures by consider-

ing conditional label correlations as linear weight functions

of features. Such favourable properties are achieved via an

efficient mean field approximate inference procedure and a

tailored proximal gradient based learning algorithm.

2. Related Works

Apart from the structure learning approach, we briefly

review three other main categories of multi-label classifica-

tion methods which follows the taxonomy of recent surveys

[36, 45, 16]. The three categories include problem transfor-

mation, algorithm adaptation and dimension reduction.

Problem transformation methods reformulate multi-label

classification into single-label classification. For example,

the binary relevance (BR) method trains binary classifiers

for each label independently. By considering label depen-

dency, classifier chain (CC) [33], as well as its ensemble

and probabilistic variants [10], constructs a chain of bina-

ry classifiers, in which each classifier additionally use the

previous labels as its input features. Another group of al-

gorithms are built upon label powerset or hierarchy infor-

mation, which includes random k-label sets (RAKEL) [37],

pruned problem transformation (PPT) [32], hierarchical bi-

nary relevance (HBR) [7] and hierarchy of multi-label clas-

sifiers (HOMER) [36].

Algorithm adaptation methods extend typical classifiers

to multi-label situation. For example, multi-label K near-

est neighbour (MLkNN) [44] adapts kNN to handle multi-

label classification, which exploits the prior label distribu-

1In literature, the term “graphical Lasso” is traditionally restricted to

refer structure learning for (continuous) Gaussian MRF only. In this paper,

we use this concept to cover continuous, discrete and mixed random fields.

tion within the neighbourhood of an image instance and ap-

plies the maximum a posterior (MAP) prediction. Instance

based logistic regression (IBLR) [9] adapts LR by utilizing

label information from the neighbourhood of an image in-

stance as features.

Dimension reduction methods target to handle high-

dimensional features and labels. The reduction of feature

space aims to reduce feature dimension either by feature s-

election or by feature extraction. For example, multi-label

informed latent semantic indexing (MLSI) [41], multi-label

least square (MLLS) [19], multi-label F-statistics (MLF)

and multi-label ReliefF (MLRF) [21]. Label specific fea-

tures (LIFT) [42] method represents an image instance as

its distances to label-specific clustering centers of positive

and negative training image instances, and use the features

to train binary classifiers and make predictions. On the oth-

er hand, the reduction of label space utilizes a variety of

strategies, such as compressed sensing [17], random projec-

tion [47], principal label space transformation (PLST) [34]

and maximum margin output coding (MMOC) [46].

3. Model Representation

In this section, we first review the basic GL framework

from a Bayesian perspective. Then we present the exten-

sion by considering conditional variables and exploiting a

group sparse prior. To simplify discussion, we will consider

a fully-connected and pairwise label graph, though the same

methodology can be easily applied to a higher-order case.

3.1. Graphical Lasso

An GL framework considers the problem of estimat-

ing the graph structure associated with an MRF. Consid-

er the ℓ1-regularized Ising MRF [31] over a label vector

y ∈ {−1, 1}m, GL employs an ℓ1 regularization over pair-

wise parameters and achieves conditional independence by

increasing sparsity. An ℓ1 regularization is equivalent to

imposing a Laplacian prior. Thus, we can formulate the ℓ1-

regularized Ising model into the Bayesian framework which

is given by

p(y,ν,ω) = p(y|ν,ω)p(ν)p(ω), (1)

p(y|ν,ω) ∝ exp





m∑

i=1

νiyi +
∑

i<j

ωijyiyj



 , (2)

p(ν) ∝ λ
d/2
1 exp(−λ1‖ν‖

2
2), (3)

p(ω) ∝ λ
d/2
2 exp(−λ2‖ω‖1), (4)

where ν and ω parameterize the unary and pairwise poten-

tials over y. λ1 and λ2 are hyperparameters which con-

trol the strength of regularization over ν and ω, respective-

ly. Though the label graph learned by GL can be applied

to multi-label classification, both ν and ω have no explicit

2978



connection to the image features. In the next subsection, we

will make a conditional extension to GL by incorporating

image features to the learning process of label graph which

leads to our CGL framework.

3.2. Conditional Graphical Lasso

As an extension to the GL framework, we consider a

more deliberate structure learning approach when condi-

tional variables emerge. In particular, CGL framework aims

to search adaptive structures among response variables (la-

bels) conditioned on input variables (image features).

For the particular multi-label classification task, we s-

tudy the problem of learning a joint prediction y = fΘ(x) :
X 7→ Y , where the prediction function f is parameterized

by Θ, the image feature space X = {x : ‖x‖ ≤ 1,x ∈ R
d}

and the label space Y = {−1, 1}m. By considering appro-

priate priors on Θ, we arrive at the joint probability distri-

bution over y and Θ conditioned on x,

p(y,Θ|x) = p(y|x,Θ)p(Θ). (5)

Note that the joint conditional distribution can be specified

according to certain considerations, such as dealing with

overfitting problems and inducing sparsity over label cor-

relations.

Consider a label graph G = (V, E), V = {1, 2, · · · ,m}
denotes the set of nodes corresponding to labels and E =
{(i, j) : i < j; i, j ∈ V} represents the set of edges en-

coding pairwise label correlations. We can model the con-

ditional distribution p(y|x,Θ) with a set of unary and pair-

wise potentials over the label graph G,

p(y|x,Θ) ∝ exp





m∑

i=1

νi(x)yi +
∑

i<j

ωij(x)yiyj



 . (6)

The above unary and pairwise weights {νi(x)}, {ωij(x)}
can be linear or nonlinear functions of x. For simplicity,

we restrict the weights to be linear functions of x which are

defined as

{
νi(x) = βT

i x, for i ∈ V;
ωij(x) = αT

ijx, for (i, j) ∈ E .
(7)

To this end, the model parameter Θ = {β,α} contains

β = [β1, ..., βm] and α = [α12, ..., α(m−1)m]. Note that,

conditioned on x, (6) is exactly an Ising model for y. It can

also be treated as a special instantiation of CRF [23], by

defining features φi(x,y) = yix and ψij(x,y) = yiyjx.

As for the model prior p(Θ), we employ multivariate

d-dimensional Gaussian priors over each group of the n-

ode regression coefficients, which is equivalent to place an

ℓ2-norm regularizer on the nodewise parameters β. Mean-

while, we use multivariate d-dimensional Multi-Laplacian

priors [30] over each group of the edge regression coeffi-

cients, which can be regarded as imposing an ℓ2,1-norm,

i.e., group-Lasso regularizer on the edgewise parameters α.

More specifically,

p(Θ) = p(β)p(α) =
m∏

i=1

p(βi)
∏

i<j

p(αij), (8)

p(βi) ∝ λ
d/2
1 exp(−λ1‖βi‖

2
2), (9)

p(αij) ∝ λ
d/2
2 exp(−λ2‖αij‖2), (10)

where hyperparameters λ1 and λ2 control the strength of

regularization over β and α, respectively. It is worth men-

tioning that one can also choose other kinds of priors over

the model parameters provided the priors can induce certain

sparsity over pairwise correlations.

4. Algorithms

In this section, we derive both inference and learn-

ing algorithms for CGL. Generally, the label space Y =
{−1, 1}m in (6) maintains an exponentially large number

of possible configurations. To normalize the conditional

distribution in (6), one requires the log-partition function.

For CGL with linear weight functions of x in (7), the log-

partition function is defined as

A(Θ,x) = log
∑

y∈Y

exp

{
m∑

i=1

yiβ
T
i x+

∑

i<j

yiyjα
T
ijx

}

, (11)

which involves a summation over all the configurations.

Hence, it is computationally intractable to exactly calcu-

late the log-partition function. To make CGL inference and

learning tractable, we resort to approximate inference and

learning algorithms via the variational methodology.

4.1. Approximate Inference

Inference of CGL involves two main tasks: marginal in-

ference and the most probable explanation (MPE) predic-

tion. However, conducting inference from the exact distri-

bution p(y|x) is intractable due to the log-partition func-

tion A(Θ,x). Considering tractable approximation tech-

niques, we choose the variational approach instead of sam-

pling methods for its simplicity and efficiency. In particular,

by applying the mean field assumption, the optimal varia-

tional approximation of p(y|x) is obtained by

q̂(y) = arg min
q(y)=∏
i
q(yi)

KL[q(y)‖p(y|x,Θ)]. (12)

According to [3], the marginal q(yi) that minimizes (12)

is achieved by analytically minimizing a Lagrangian which

consists of the Kullback-Leibler divergence and Lagrangian

multipliers constraining the marginal q(yi) to be a valid
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Algorithm 1 CGL Inference

Input: Image x and model parameters Θ = (β,α).
Output: Variational distribution q̂(y) =

∏
i q̂(yi).

Initialize q(0)(yi)←
1

1+exp{−2yiβT
i
x}

for each i.

while not converged do

for i = 1, · · · ,m do

Prepare expected statistics,

ξq(y\i) =

{
Eq(t+1)(yj)[yj ] : 1 ≤ j < i;

Eq(t)(yj)[yj ] : i < j ≤ m.

}

Update the variational distribution q(t+1)(yi) with

ξq(y\i) by using (16).

Update the i-th expected statistic Eq(t+1)(yi)[yi].
end for

t = t+ 1
end while

probability distribution. For brevity of presentation, we

simply give the update formula for each q(yi),

q(yi)←
1

Zi
expEq(y\i)[ln p(y|x,Θ)], (13)

where Ep[g] calculates the expectation of function g w.r.t.

distribution p, Zi is the normalization term for distribution

q(yi), and we defined q(y\i) =
∏

j 6=i q(yj).
To solve (12) for updating q(yi), we expand and refor-

mulate the expectation w.r.t. q(y\i). By dissecting out all

the terms that contain yi, we obtain

Eq(y\i)[ln p(y|x,Θ)]

= yiβ
T
i x+ yiEq(y\i)


∑

j 6=i

yj


αT

ijx+ const (14)

= yiβ
T
i x+ yi

∑

j 6=i

Eq(yj)[yj ]α
T
ijx+ const, (15)

where we have applied the marginalization property of the

joint distribution q(y\i) to obtain (15).

With a further consideration for the normalization con-

straint of a valid probability distribution, we arrive at a lo-

gistic regression for each q(yi) given by

q(yi) = σ


2yi


βT

i x+
∑

j 6=i

Eq(yj)[yj ]α
T
ijx




 , (16)

where σ(t) = 1
1+exp(−t) is the sigmoid function. This for-

mula requires the expectation of other variables connected

to variable yi. Thus, a cycling and iterative updating for

each q(yi) is performed until convergence to a stationary

point. Algorithm 1 presents the pseudo code for this pro-

cedure. It is worth mentioning that, we employed the most

Algorithm 2 CGL Learning

Input: Training images and labels {X,Y}, hyperparam-

eters {λ1, λ2}, and learning rate η, where 1/η is set larger

than the Lipschitz constant of ∇Js(Θ) (25).

Output: Model parameters Θ̂ = (β̂, α̂).

Initialize β(0) = 0, α(0) = 0.

while not converged do

Update the variational distributions {q̂(y(l))}nl=1 with

Θ(k) = (β(k),α(k)) by using Algorithm 1.

Calculate the gradient of Js(Θ) at Θ(k) = (β(k),α(k))
according to (24).

Update Θ(k+1) = (β(k+1),α(k+1)) by using (27);

k = k + 1
end while

recent expected statistics ξq(y\i) instead of the terms from

previous round when updating one particular factor distri-

bution q(yi). This strategy can avoid undesired abrupt os-

cillations of the iterative procedure to some extend.

So far, it seems that our derivation only considers opti-

mizing a factorized variational distribution q(y) which ap-

proximates p(y|x). However, the same methodology can

be straightforwardly applied to other inference and learning

tasks. Take MPE for example, suppose we are given a new

image x, MPE aims to perform a joint prediction of its label

vector y with some learned model parameter Θ̂. Instead of

conducting the max-product algorithm over p(y|x, Θ̂), we

can achieve the prediction ŷ directly from q(y).

4.2. Structure and Parameter Learning

Given a set of i.i.d. training images X = {x(l)}nl=1 and

their label vectors Y = {y(l)}nl=1, structure and parameter

learning of CGL aims to find the optimal model parame-

ter Θ̂ which achieves the maximum a posterior (MAP) un-

der certain values of hyperparameters {λ1, λ2}. It is worth

emphasizing that the graphical structure is implicitly repre-

sented by the ℓ2-norm of αij . In other words, a nonzero

vector αij almost probably indicates an edge in the graph

between node i and j, while a zero vector αij implies no

such edge. To utilize the MAP methodology for CGL learn-

ing, the Bayesian rule is applied to obtain

Θ̂ = argmax
Θ

p(Θ|Y,X) (17)

= argmax
Θ

p(Y,Θ|X)∫
Θ
p(Y,Θ|X)

(18)

= argmax
Θ

p(Y,Θ|X) (19)

= argmax
Θ

n∏

l=1

p(y(l)|x(l),Θ)p(Θ). (20)

Note that we have exploited the fact that the evidence∫
Θ
p(Y,Θ|X) is independent of the model parameter Θ.
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And the final optimization problem (20) is achieved by con-

sidering (5) and the i.i.d. assumption.

By taking negative logarithm of the posterior and substi-

tuting (6), (9) and (10) into (20), the original maximization

problem can be reformulated into an equivalent minimiza-

tion problem as below,

Θ̂ = argmin
Θ
−

m∑

i=1

βT
i φ̄i −

∑

i<j

αT
ijψ̄ij +

1

n

n∑

l=1

A(Θ,x(l))

+
λ1
n

m∑

i=1

‖βi‖
2
2 +

λ2
n

∑

i<j

‖αij‖2, (21)

where φ̄i = 1
n

∑n
l=1 y

(l)
i x(l), ψ̄ij = 1

n

∑n
l=1 y

(l)
i y

(l)
j x(l).

Note that we have included A(Θ,x) into (6) before the

derivation, and thrown away all other terms that are inde-

pendent of Θ.

Denoting by L(Θ) the objective function on the right-

hand-side of (21). To learn the parameters Θ, a direc-

t gradient-based optimizer is inapplicable due to the non-

smooth ℓ2,1-norm regularizer. In addition, the intractable

log-partition function A(Θ,x) makes the optimization even

more complicated. As an alternative, we optimize L(Θ)
by first dividing the objective into smooth and nonsmooth

parts, and then apply the soft thresholding technique. Mean-

while, the mean field approximation is employed to approx-

imate the gradient of A(Θ,x).

More specifically, we first separate out the smooth part

of L(Θ) and denote it by Js(Θ), i.e.,

Js(Θ) = −

m∑

i=1

βT
i φ̄i −

∑

i<j

αT
ijψ̄ij +

1

n

n∑

l=1

A(Θ,x(l))

+
λ1
n

m∑

i=1

‖βi‖
2
2. (22)

Further, according to the mean field approximation de-

scribed in Section 4.1, the gradient of A(Θ,x) is estimated

by replacing the true conditional distribution p(y|x) with

the variational distribution q̂(y). Hence, we have

{
∇Aβi

(Θ,x) = Ep(y|x)[yix] ≈ Eq̂(y)[yix]

∇Aαij (Θ,x) = Ep(y|x)[yiyjx] ≈ Eq̂(y)[yiyjx].
(23)

This results in a simple approximation of the gradient ∇Js
at the k-th iteration Θ(k) = {β(k),α(k)} as below






∇Jsβi
(Θ(k)) ≈ −φ̄i +

1
n

n∑
l=1

q̂(y
(l)
i )x(l) + 2λ1

n
β
(k)
i

∇Jsαij
(Θ(k)) ≈ −ψ̄ij +

1
n

n∑
l=1

q̂(y
(l)
i )q̂(y

(l)
j )x(l).

(24)

Then, a surrogate J(Θ) of the objective function L(Θ) can

be obtained by using ∇Js(Θ
(k)), i.e.,

J(Θ;Θ(k)) = Js(Θ
(k))

+
m∑

i=1

〈∇Jsβi
(Θ(k)), βi − β

(k)
i 〉+

1

2η
‖βi − β

(k)
i ‖

2
2

+
∑

i<j

〈∇Jsαij
(Θ(k)), αij − α

(k)
ij 〉

+
1

2η
‖αij − α

(k)
ij ‖

2
2 +

λ2
n
‖αij‖2. (25)

The parameter η in (25) serves as a similar role to the vari-

able updating step size in gradient descent methods. It can

be shown that J(Θ) ≥ L(Θ) and J(Θ(k)) = L(Θ(k))
if 1/η is larger than the Lipschitz constant of ∇Js(Θ

(k)).
Hence, Θ can be updated by minimizing (25), i.e.,

Θ(k+1) = argmin
Θ

J(Θ;Θ(k)), (26)

which is solved by

{
β
(k+1)
i = β

(k)
i − η∇Jsβi

(Θ(k))

α
(k+1)
ij = S(α

(k)
ij − η∇Jsαij

(Θ(k)); λ2

n ),
(27)

where the soft thresholding function is

S(u; ρ) =

{
(1− ρ

‖u‖2
)u, if ‖u‖2 > ρ;

0, otherwise.
(28)

Iteratively applying (27) until convergence provides a first-

order method for solving (21). The pseudo code for this

procedure is summarized in Algorithm 2. Note that the gra-

dient descent steps in Algorithm 2 can be speeded up with

modern optimization procedures, such as the fast iterative

shrinkage thresholding [1].

As a final remark, the conditional graph structure learned

by CGL is largely related to the value of hyperparame-

ter λ2. In general, a larger λ2, which represents a more

peaked Multi-Laplacian prior over α, can lead to a spars-

er conditional structure. As a consequence, it is impor-

tant to find an appropriate level of sparsity, which can be

achieved by resorting to domain knowledge or data-driven

cross-validation techniques.

5. Experiments

In this section, we evaluate the performance of CGL on

the task of multi-label image classification. In particular, all

experiments are conducted on three benchmark multi-label

image datasets, including MULAN scene (MULANscene)2,

PASCAL VOC 2007 (PASCAL07) [12] and PASCAL VOC

2012 (PASCAL12) [13]. MULAN scene dataset contains

2047 images with 6 labels, and each image is represented

2http://mulan.sourceforge.net/
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Figure 2. Illustration of the CGL label graphs learned from PASCAL07-CNN.

Table 1. Datasets summary. #images stands for the number of all

images, #features stands for the dimension of the features, and

#labels stands for the number of labels.
Dataset #images #features #labels

MULANscene 2047 294 6

PASCAL07-PHOW 9963 3600 20

PASCAL07-CNN 9963 4096 20

PASCAL12-PHOW 11540 3600 20

PASCAL12-CNN 11540 4096 20

by a 294-dimensional feature. PASCAL VOC 2007 dataset

consists of 9963 images with 20 labels. For PASCAL VOC

2012, we use public available train and validation subsets

which contains 11540 images with 20 labels. As for image

features of the latter two datasets, two kinds of feature ex-

tractors are employed, i.e., the PHOW (a variant of dense

SIFT descriptors extracted at multiple scales) features [4]

and the deep CNN (convolutional neural network) features

[22, 8]. We extract PHOW features of 3600 dimensions

by using the VLFeat implementation [38]. For deep CNN

features, we use MatConvNet matlab toolbox [39] and the

’imagenet-vgg-f’ model pretrained on ImageNet database

[8] to represent each image as a 4096-dimensional feature.

The basic information of the datasets is summarized in Ta-

ble 1.

5.1. Label Graph Structure of CGL

To build up an intuition on structure learning of CGL,

we employ PASCAL07 with CNN features to visualize the

label correlations under different levels of sparsity regular-

ization. In particular, we fix hyperparameter λ1 = 0.01 and

let λ2 varies in the range 0.001 ∼ 0.1 to check the label

graph evolvement. Since CGL models pairwise label corre-

lations via a parametric linear function, i.e., ωij(x) = αT
ijx,

the label graph is actually dependent on features thus unique

for each image. To simplify the visualization of so many la-

bel graphs, we use the average feature of training images,

i.e., x̄ = 1
n

∑
l x

(l), and consider the average label graph.

Figure 2 presents the graph structure variations as λ2 in-

creases. From the four label graphs, the number of edges

shrinks as λ2 increases. In addition, the maintained edges

are consistent with both semantic co-occurrence (e.g., chair

and table) and repulsion (e.g., cat and dog) edges. For

co-occurrence, ”chair” and ”table” often co-appear in the

dataset and have large positive correlations, thus the edge

weight in the label graph is a large positive value. In con-

trast, ”cat” and ”dog” share certain visual similarity, though

they seldom co-appear in the dataset. These two terms can

be easily treated as conditionally independent by consider-

ing label only. However, CGL can successfully capture the

repulsion between these two terms, which is represented as

a large negative edge weight in the label graph. It is not

astonishing since CGL takes both feature and label into ac-

count when modeling label correlations.

5.2. Comparison Methods and Measures

We compare CGL with the binary relevance (BR)

method and six state-of-the-art multi-label classification

methods. In this paper, we use logistic regression to imple-

ment BR method which is also named as the independent

logistic regressions (ILRs) method. Moreover, six state-of-

the-art multi-label classification methods - instance-based

learning by logistic regression (IBLR) [9], multi-label k-

nearest neighbor (MLkNN) [44], classifier chains (CC)

[33], maximum margin output coding (MMOC) [46], prob-

abilistic label enhancement model (PLEM) [26] and clique

generating machine (CGM) [35] were also employed for

comparison study. Note that ILRs can be regarded as the

basic baseline and other methods represent state-of-the-arts.

In our experiments, LIBlinear [14] ℓ2-regularized logistic

regression is employed to build binary classifiers for ILRs.

Based on ILRs, we implement PLEM by ourselves. As for

other methods, we use publicly available codes in MEKA 3

and the authors’ homepages 4 5.

We use six widely accepted performance criteria to e-

3http://meka.sourceforge.net/
4http://www.cs.cmu.edu/˜yizhang1/
5http://www.tanmingkui.com/cgm.html
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Table 2. Multi-label image classification performance comparison via 5-fold cross validation

Datasets Methods
Measures

Hamming loss 0-1 loss Accuracy F1-Score Macro-F1 Micro-F1

MULANscene

ILRs 0.117±0.006 0.495±0.022 0.592±0.016 0.622±0.014 0.677±0.016 0.669±0.014

IBLR 0.085±0.004 0.358±0.016 0.677±0.018 0.689±0.019 0.747±0.010 0.738±0.014

MLkNN 0.086±0.003 0.374±0.015 0.668±0.018 0.682±0.019 0.742±0.013 0.734±0.012

CC 0.104±0.005 0.346±0.015 0.696±0.015 0.710±0.015 0.716±0.018 0.706±0.014

MMOC 0.126±0.017 0.401±0.046 0.629±0.049 0.639±0.050 0.680±0.031 0.638±0.049

PLEM 0.096±0.005 0.423±0.010 0.627±0.011 0.644±0.012 0.713±0.017 0.704±0.014

CGM 0.096±0.004 0.390±0.016 0.647±0.016 0.659±0.016 0.717±0.011 0.708±0.012

CGL 0.096±0.006 0.347±0.019 0.705±0.019 0.724±0.020 0.745±0.015 0.731±0.018

PASCAL07-PHOW

ILRs 0.093±0.001 0.878±0.007 0.294±0.008 0.360±0.009 0.332±0.008 0.404±0.007

IBLR 0.066±0.001 0.832±0.003 0.270±0.005 0.308±0.006 0.258±0.007 0.408±0.009

MLkNN 0.066±0.001 0.839±0.006 0.256±0.007 0.291±0.008 0.235±0.006 0.392±0.007

CC 0.091±0.000 0.845±0.010 0.318±0.005 0.379±0.003 0.348±0.004 0.417±0.001

MMOC 0.065±0.001 0.850±0.003 0.259±0.009 0.299±0.011 0.206±0.007 0.392±0.012

PLEM 0.066±0.001 0.800±0.005 0.319±0.009 0.362±0.010 0.324±0.013 0.445±0.011

CGM 0.073±0.002 0.819±0.011 0.327±0.010 0.381±0.010 0.359±0.014 0.450±0.011

CGL 0.070±0.002 0.742±0.010 0.386±0.011 0.433±0.011 0.371±0.012 0.475±0.014

PASCAL07-CNN

ILRs 0.046±0.001 0.574±0.011 0.610±0.010 0.673±0.009 0.651±0.004 0.688±0.007

IBLR 0.043±0.001 0.554±0.011 0.597±0.014 0.649±0.015 0.621±0.007 0.682±0.010

MLkNN 0.043±0.001 0.557±0.010 0.585±0.014 0.635±0.015 0.613±0.006 0.668±0.011

CC 0.051±0.001 0.586±0.008 0.602±0.008 0.668±0.008 0.635±0.009 0.669±0.008

MMOC 0.037±0.000 0.512±0.008 0.634±0.009 0.684±0.009 0.663±0.005 0.719±0.004

PLEM 0.045±0.001 0.555±0.011 0.619±0.009 0.678±0.009 0.654±0.008 0.694±0.008

CGM 0.044±0.001 0.552±0.011 0.628±0.009 0.689±0.009 0.661±0.006 0.702±0.009

CGL 0.040±0.001 0.480±0.010 0.676±0.009 0.730±0.009 0.680±0.007 0.726±0.008

PASCAL12-PHOW

ILRs 0.100±0.001 0.891±0.009 0.269±0.007 0.333±0.008 0.324±0.008 0.370±0.005

IBLR 0.068±0.001 0.869±0.009 0.219±0.005 0.252±0.003 0.253±0.007 0.345±0.005

MLkNN 0.069±0.001 0.883±0.008 0.191±0.006 0.218±0.005 0.213±0.007 0.306±0.006

CC 0.097±0.001 0.862±0.012 0.291±0.010 0.350±0.010 0.340±0.007 0.380±0.006

MMOC 0.067±0.001 0.865±0.003 0.227±0.005 0.262±0.007 0.200±0.007 0.346±0.004

PLEM 0.068±0.001 0.823±0.009 0.286±0.009 0.325±0.009 0.326±0.012 0.405±0.008

CGM 0.076±0.002 0.836±0.007 0.302±0.009 0.352±0.010 0.361±0.015 0.417±0.011

CGL 0.076±0.001 0.762±0.006 0.365±0.007 0.413±0.007 0.380±0.007 0.442±0.005

PASCAL12-CNN

ILRs 0.051±0.001 0.613±0.002 0.581±0.005 0.649±0.006 0.638±0.005 0.658±0.005

IBLR 0.045±0.001 0.574±0.006 0.575±0.009 0.627±0.010 0.613±0.008 0.657±0.006

MLkNN 0.045±0.002 0.575±0.012 0.566±0.015 0.616±0.017 0.604±0.011 0.645±0.013

CC 0.055±0.001 0.615±0.010 0.579±0.009 0.647±0.010 0.623±0.005 0.643±0.007

MMOC 0.039±0.001 0.525±0.005 0.619±0.006 0.669±0.007 0.659±0.004 0.699±0.005

PLEM 0.049±0.001 0.592±0.006 0.590±0.003 0.653±0.003 0.639±0.004 0.664±0.004

CGM 0.047±0.001 0.583±0.006 0.603±0.006 0.666±0.007 0.650±0.005 0.677±0.006

CGL 0.042±0.001 0.498±0.010 0.661±0.005 0.717±0.006 0.677±0.004 0.707±0.003

valuate all the methods, including four example based mea-

sures (Hamming loss, zero-one loss, accuracy and F1-score)

and two label based measures (Macro-F1 and Micro-F1).

In general, example based measures encourage the impor-

tance of performing well on each example, the Macro-F1

score is more influenced by the performance on rare cate-

gories, and the Micro-F1 score tend to be dominated by the

performance on common categories. More details of these

evaluation measures can be found in [40, 27]. It is worth

mentioning that, PLEM, CGM and our method solve MPE

inference problem for label prediction (each predicted label

is either 0 or 1 thus containing no ranking information). As

a result, ranking based measures like mean average preci-

sion (mAP) are not suitable for these methods. In addition,

all the methods are compared by 5-fold cross validation on

each dataset. And the mean and standard deviation are re-

ported for each criterion. For CGL hyperparameters, we fix

λ1 = 0.01, and set λ2 as 0.0149 for MULANscene and

0.003 for PASCAL07 and PASCAL12.

5.3. Results and Discussion

Table 2 summarizes the experimental results on MU-

LANscene, PASCAL07 and PASCAL12 of all eight algo-

rithms evaluated by the six measures. Except for Ham-

ming loss, CGL achieves better or comparable results on

all datasets with different types of feature. This is because

Hamming loss treats the prediction of each label individu-

ally. However, CGL performs significantly better than oth-

er methods on PASCAL07 and PASCAL12 in terms of the

other five measures. Especially in terms of accuracy and

F1-score, CGL performs the best on all datasets. It is inter-

esting that these two measures encourage good performance

on each example. CGL’s outstanding performance on ac-

curacy and F1-score confirms our motivation of exploiting

conditional label correlations, which enables example based

label graph. In the following, we present a more detailed

comparison between CGL and the four different categories

of multi-label classification methods.

We first compare CGL with problem transformation
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Figure 3. Performance variation of CGL versus the hyperparameter λ2 on MULANscene.
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Figure 4. Performance variation of CGL versus the hyperparameter λ2 on PASCAL07-CNN.

methods (ILRs and CC). We observe that both CGL and C-

C outperforms ILRs which validates the improvements ob-

tained by exploiting label correlations for multi-label clas-

sification. However, CC has to incrementally conduct train-

ing and prediction thus is not scalable to large label space.

Secondly, CGL shows better performance than algorith-

m adaptation methods (IBLR and MLkNN). Both IBLR and

MLkNN adopt a local approach to adjust label prediction

performance for each image instance. However, such lazy

learners can be very inefficient when making predictions e-

specially when the training database is large.

Thirdly, CGL outperforms the label space dimension re-

duction algorithm MMOC. Though MMOC obtained good

performance on PASCAL07-CNN and PASCAL12-CNN,

the training of output codes is time-consuming. In addition,

MMOC is sensitive to the features at hand since its per-

formance degrades more than other methods when PHOW

feature is utilized instead of CNN.

Finally, we compare three structure learning based meth-

ods (PLEM, CGM and CGL). One can observe that both

CGL and CGM performs better than PLEM on all datasets.

This is because PLEM learns the label graph based on la-

bel statistics without using the features. On the other hand,

CGM learns a shared label graph across all images which

lacks flexibility. In contrast, CGL exploits conditional label

correlations that are adaptive to different images.

To investigate how CGL exploits label correlations, we

present the performance variation of CGL versus the hyper-

paramter λ2 on MULANscene and PASCAL07-CNN. We

use the same setting in Section 5.1 by letting λ1 = 0.01 and

λ2 range from 0.001 to 0.1. The results are shown in Fig-

ures 3 and 4. To make the performance variation easier to

understand, we also provide the curve of #Edges versus λ2
in Figures 3(a) and 4(a). According to the two curves, larg-

er λ2 encourages graph sparsity which leads to fewer edges.

As for the performance curves, we can draw several conclu-

sions. First, the performance almost keeps stable when λ
is larger than some value since few label correlations have

been utilized. Second, utilizing more relevant label corre-

lations can improve the performance. However, adding too

many label correlations (especially irrelevant ones) may im-

pair the performance due to overfitting issues.

6. Conclusion

A conditional structure learning approach has been de-

veloped for multi-label image classification. Our proposed

conditional graphical Lasso framework offers a principled

way to model label correlations by jointly considering im-

age features and labels. In addition, our proposed frame-

work is provided with a graceful Bayesian interpretation.

The multi-label prediction task is formulated into an infer-

ence problem which is handled via an efficient mean field

approximate procedure. And the learning problem is ef-

ficiently solved by a tailored proximal gradient algorith-

m. Empirical evaluations confirmed the effectiveness of our

method and showed its superiority over other state-of-the-

art multi-label classification algorithms.
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