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Abstract

With the recent popularity of animated GIFs on social

media, there is need for ways to index them with rich meta-

data. To advance research on animated GIF understanding,

we collected a new dataset, Tumblr GIF (TGIF), with 100K

animated GIFs from Tumblr and 120K natural language de-

scriptions obtained via crowdsourcing. The motivation for

this work is to develop a testbed for image sequence de-

scription systems, where the task is to generate natural lan-

guage descriptions for animated GIFs or video clips. To en-

sure a high quality dataset, we developed a series of novel

quality controls to validate free-form text input from crowd-

workers. We show that there is unambiguous association

between visual content and natural language descriptions

in our dataset, making it an ideal benchmark for the visual

content captioning task. We perform extensive statistical

analyses to compare our dataset to existing image and video

description datasets. Next, we provide baseline results on

the animated GIF description task, using three representa-

tive techniques: nearest neighbor, statistical machine trans-

lation, and recurrent neural networks. Finally, we show

that models fine-tuned from our animated GIF description

dataset can be helpful for automatic movie description.

1. Introduction

Animated GIFs have quickly risen in popularity over the

last few years as they add color to online and mobile com-

munication. Different from other forms of media, GIFs are

unique in that they are spontaneous (very short in duration),

have a visual storytelling nature (no audio involved), and

are primarily generated and shared by online users [3]. De-

spite its rising popularity and unique visual characteristics,

there is a surprising dearth of scholarly work on animated

GIFs in the computer vision community.

In an attempt to better understand and organize the grow-

ing number of animated GIFs on social media, we con-

structed an animated GIF description dataset which consists

of user-generated animated GIFs and crowdsourced natural
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Figure 1: Our TGIF dataset contains 100K animated GIFs and

120K natural language descriptions. (a) Online users create GIFs

that convey short and cohesive visual stories, providing us with

well-segmented video data. (b) We crawl and filter high quality

animated GIFs, and (c) crowdsource natural language descriptions

ensuring strong visual/textual association.

language descriptions. There are two major challenges to

this work: (1) We need a large scale dataset that captures a

wide variety of interests from online users who produce an-

imated GIFs; (2) We need automatic validation methods

that ensure high quality data collection at scale, in order

to deal with noisy user-generated content and annotations.

While it is difficult to address these two challenges at once,

there has been great progress in recent years in collecting

large scale datasets in computer vision [33, 20, 34, 31]. Our

work contributes to this line of research by collecting a new

large scale dataset for animated GIF description, and by pre-

senting automatic validation methods that ensure high qual-

ity visual content and crowdsourced annotations.

Our dataset, Tumblr GIF (TGIF), contains 100K ani-

mated GIFs collected from Tumblr, and 120K natural lan-

guage sentences annotated via crowdsourcing. We de-

veloped extensive quality control and automatic validation

methods for collecting our dataset, ensuring strong and un-

ambiguous association between GIF and sentence. In ad-

dition, we carefully evaluate popular approaches for video

description and report several findings that suggest future

research directions. It is our goal that our dataset and base-

line results will serve as useful resources for future video

description and animated GIF research.1

Our work is in part motivated by the recent work on im-

1We use video description, image sequence description, and animated

GIF description interchangeably, as they all contain sequences of images.
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age and video description [40, 9, 14, 21, 38]. Describing

animated GIFs, or image sequences in general, is different

from the image captioning task (e.g., MS-COCO [20]) be-

cause of motion information involved between frames. Re-

cent movie description datasets, such as M-VAD [34] and

MPII-MD [31], made the first attempt towards this direction

by leveraging professionally annotated descriptive video

service (DVS) captions from commercial movies. However,

as we show later in this paper, such datasets contain cer-

tain characteristics not ideal for image sequence description

(i.e., poorly segmented video clips, descriptions with con-

textual information not available within a provided clip).

We make the following contributions in this paper:

1. We collect a dataset for animated GIF description. We

solved many challenges involved in data collection, includ-

ing GIF filtering, language validation and quality control.

2. We compare our dataset to other image and video de-

scription datasets, and find that animated GIFs are tempo-

rally well segmented and contain cohesive visual stories.

3. We provide baseline results on our dataset using several

existing video description techniques. Moreover, we show

that models trained on our dataset can improve performance

on the task of automatic movie description.

4. We make our code and dataset publicly available at

https://github.com/raingo/TGIF-Release

2. Related Work

There is growing interest in automatic image and video

description [20, 34, 31, 44]. We review existing datasets

and some of the most successful techniques in this domain.

Datasets. For image captioning, the SBU dataset [25]

contains over 1 million captioned images crawled from the

web, while the MS-COCO dataset [20] contains 120K im-

ages and descriptions annotated via crowdsourcing. The

VQA [1] and the Visual Madlibs [44] datasets are released

for image captioning and visual question answering.

In the video domain, the YouTube2Text dataset [5, 11]

contains 2K video clips and 120K sentences. Although

originally introduced for the paraphrasing task [5], this

dataset is also suitable for video description [11]. The

TACoS dataset [30] contains 9K cooking video clips and

12K descriptions, while the YouCook dataset [8] contains

80 cooking videos and 748 descriptions. More recently, the

M-VAD [34] and MPII-MD [31] datasets use the descrip-

tive video service (DVS) from commercial movies, which

is originally developed to help people with visual impair-

ment understand non-narrative movie scenes. Since the

two datasets have similar characteristics, the Large Scale

Movie Description Challenge (LSMDC) makes use of both

datasets [34, 31]. Our work contributes to the video domain

with 1) animated GIFs, which are well-segmented video

clips with cohesive stories, and 2) natural language descrip-

tions with strong visual/textual associations.

Techniques. Image and video description has been tack-

led by using established algorithms [42, 10, 25, 17, 32]. Or-

donez et al. [25] generate an image caption by finding k

nearest neighbor images from 1 million captioned images

and summarizing the retrieved captions into one sentence.

Rohrbach et al. [32] formulate video description as a trans-

lation problem and propose a method that combines seman-

tic role labeling and statistical machine translation.

Recent advances in recurrent neural networks has led to

end-to-end image and video description techniques [40, 9,

14, 21, 39, 38, 43, 26, 41]. Venugopalan et al. [39] rep-

resent video by mean-pooling image features from frames,

while Li et al. [43] apply the soft-attention mechanism to

represent each frame of a video, which is then output to

an LSTM decoder [12] to generate a natural language de-

scription. More recently, Venugopalan et al. [38] use an

LSTM to encode image sequence dynamics, formulating

the problem as sequence-to-sequence prediction. In this

paper, we evaluate three representative techniques (near-

est neighbor [25], statistical machine translation [32], and

LSTMs [38]) and provide benchmark results on our dataset.

2.1. Comparison with LSMDC

In essence, movie description and animated GIF descrip-

tion tasks both involve translating image sequence to natu-

ral language, so the LSMDC dataset may seem similar to

the dataset proposed in this paper. However, there are two

major differences. First, our set of animated GIFs was cre-

ated by online users while the LSMDC was generated from

commercial movies. Second, our natural language genera-

tions were crowdsourced whereas the LSMDC descriptions

were carried out by descriptive video services (DVS). This

led to the following differences between the two datasets2:

Language complexity. Movie descriptions are made

by trained professionals, with an emphasis on describing

key visual elements. To better serve the target audience

of people with visual impairment, the annotators use ex-

pressive phrases. However, this level of complexity in lan-

guage makes the task very challenging. In our dataset, our

workers are encouraged to describe major visual content di-

rectly, and not to use overly descriptive language. As an ex-

ample to illustrate the language complexity difference, the

LSMDC dataset described a video clip as “amazed some-

one starts to play the rondo again.”, while for the same clip,

a crowd worker described as “a man plays piano as a woman

stands and two dogs play.”

Visual/textual association. Movie descriptions often

contain contextual information not available within a single

movie clip; they sometimes require having access to other

parts of a movie that provide contextual information. Our

descriptions do not have such issue because each animated

2Side-by-side comparison examples: https://goo.gl/ZGYIYh
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GIF is presented to workers without any surrounding con-

text. Our analysis confirmed this, showing that 20.7% of

sentences in LSMDC contain at least two pronouns, while

in our TGIF dataset this number is 7%.

Scene segmentation. In the LSMDC dataset, video

clips are segmented by means of speech alignment, aligning

speech recognition results to movie transcripts [31]. This

process is error-prone and the errors are particularly harm-

ful to image sequence modeling because a few irrelevant

frames either at the beginning or the end of a sequence can

significantly alter the sequence representation. In contrast,

our GIFs are by nature well segmented because they are

carefully curated by online users to create high quality vi-

sual content. Our user study confirmed this; we observe that

15% of the LSMDC movie clips v.s. 5% of animated GIFs

is rated as not well segmented.

3. Animated GIF Description Dataset

3.1. Data Collection

We extract a year’s worth of GIF posts from Tumblr us-

ing the public API3, and clean up the data with four filters:

(1) Cartoon. We filter out cartoon content by matching

popular animation keywords to user tags. (2) Static. We

discard GIFs that show little to no motion (basically static

images). To detect static GIFs, we manually annotated 7K

GIFs as either static or dynamic, and trained a Random For-

est classifier based on C3D features [36]. The 5-fold cross

validation accuracy for this classifier is 89.4%. (3) Text. We

filter out GIFs that contain text, e.g., memes, by detecting

text regions using the Extremal Regions detector [23] and

discarding a GIF if the regions cover more than 2% of the

image area. (4) Dedup. We compute 64bit DCT image hash

using pHash [45] and apply multiple index hashing [24] to

perform k nearest neighbor search (k = 100) in the Ham-

ming space. A GIF is considered a duplicate if there are

more than 10 overlapping frames with other GIFs. On a

held-out dataset, the false alarm rate is around 2%.

Finally, we manually validate the resulting GIFs to see

whether there is any cartoon, static, and textual content.

Each GIF is reviewed by at least two annotators. After these

steps, we obtain a corpus of 100K clean animated GIFs.

3.2. Data Annotation

We annotated animated GIFs with natural language de-

scriptions using the crowdsourcing service CrowdFlower.

We carefully designed our annotation task with various

quality control mechanisms to ensure the sentences are both

syntactically and semantically of high quality.

A total of 931 workers participated in our annotation

task. We allowed workers only from Australia, Canada,

3https://www.tumblr.com/docs/en/api/v2

Figure 2: The instructions shown to the crowdworkers.

New Zealand, UK and USA in an effort to collect fluent de-

scriptions from native English speakers. Figure 2 shows the

instructions given to the workers. Each task showed 5 ani-

mated GIFs and asked the worker to describe each with one

sentence. To promote language style diversity, each worker

could rate no more than 800 images (0.7% of our corpus).

We paid 0.02 USD per sentence; the entire crowdsourcing

cost less than 4K USD. We provide details of our annotation

task in the supplementary material.

Syntactic validation. Since the workers provide free-

form text, we automatically validate the sentences be-

fore submission. We do the following checks: The sen-

tence (1) contains at least 8, but no more than 25 words

(white space separated); (2) contains only ASCII charac-

ters; (3) does not contain profanity (checked by keyword

matching); (4) should be typed, not copy/pasted (checked

by disabling copy/paste on the task page); (5) should con-

tain a main verb (checked by using standard POS tag-

ging [35]); (6) contains no named entities, such as a name

of an actor/actress, movie, country (checked by the Named

Entity Recognition results from DBpedia spotlight [6]); and

(7) is grammatical and free of typographical errors (checked

by the LanguageTool4).

This validation pipeline ensures sentences are syntacti-

cally good. But it does not ensure their semantic correct-

ness, i.e., there is no guarantee that a sentence accurately

describes the corresponding GIF. We therefore designed a

semantic validation pipeline, described next.

4https://languagetool.org/
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Semantic validation. Ideally, we would like to validate

the semantic correctness of every submitted sentence (as we

do for syntactic validation). But doing so is impractical.

We turn to the “blacklisting” approach, where we identify

workers who underperform and block them accordingly.

We annotated a small number of GIFs and used them to

measure the performance of workers. We collected a valida-

tion dataset with 100 GIFs and annotated each with 10 sen-

tences using CrowdFlower. We carefully hand-picked the

GIFs whose visual story is clear and unambiguous. After

collecting the sentences, we manually reviewed and edited

them to make sure they meet our standard.

Using the validation dataset, we measured the semantic

relatedness of sentence to GIF using METEOR [18], a met-

ric commonly used within the NLP community to measure

machine translation quality. We compare a user-provided

sentence to 10 reference sentences using the metric, accept

a sentence if the METEOR score is above a threshold (em-

pirically set at 20%). This will filter out junk sentences, e.g.,

“this is a funny GIF taken in a nice day,” but retain sentences

with similar semantic meaning as the reference sentences.

We used the dataset in both the qualification and the main

tasks. In the qualification task, we provided 5 GIFs from the

validation dataset and approved a worker if they success-

fully described at least four tests. In the main task, we ran-

domly mixed one validation question with four main ques-

tions; a worker is blacklisted if the overall approval rate on

validation questions falls below 80%. Because validation

questions are indistinguishable from normal task questions,

workers have to continue to maintain a high level of accu-

racy in order to remain eligible for the task.

As we run the CrowdFlower task, we regularly reviewed

failed sentences and, in the case of a false alarm, we manu-

ally added the failed sentence to the reference sentence pool

and removed the worker from the blacklist. Rashtchian et

al. [28] and Chen et al. [5] used a similar prescreening strat-

egy to approve crowdworkers; our strategy to validate sen-

tences during the main task is unique to our work.

4. Dataset Analysis

We compare TGIF to four existing image and video de-

scription datasets: MS-COCO [20], M-VAD [34], MPII-

MD [31], and LSMDC [34, 31].

Descriptive statistics. We divide 100K animated GIFs

into 90K training and 10K test splits. We collect 1 sentence

and 3 sentences per GIF for the training and test data, re-

spectively. Therefore, there are about 120K sentences in

our dataset. By comparison, the MS-COCO dataset [20]

has 5 sentences and 40 sentences for each training and test

sample, respectively. The movie datasets have 1 profes-

sionally created sentence for each training and test sample.

On average, an animated GIF in our dataset is 3.10 seconds

long, a video clip in the M-VAD [34] and the MPII-MD [31]

TGIF M-VAD MPII-MD LSMDC COCO

(a) 125,781 46,523 68,375 108,470 616,738

(b) 11,806 15,977 18,895 22,898 54,224

(c) 112.8 31.0 34.7 46.8 118.9

(d) 10 6 6 6 9

(e) 2.54 5.45 4.65 5.21 -

Table 1: Descriptive statistics: (a) total number of sentences, (b)

vocabulary size, (c) average term frequency, (d) median number of

words in a sentence, and (e) average number of shots.

Noun man, woman, girl, hand, hair, head, cat, boy, person

Verb be, look, wear, walk, dance, talk, smile, hold, sit

Adj. young, black, other, white, long, red, blond, dark

Table 2: Top frequent nouns/verbs/adjectives
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Figure 3: The main plot shows the distribution of language model

scores averaged by the number of words in each dataset. The box

plot shows the distribution of sentence lengths.

datasets are 6.13 and 3.02 seconds long, respectively.

Table 1 shows descriptive statistics of our dataset and ex-

isting datasets, and Table 2 shows the most frequent nouns,

verbs and adjectives. Our dataset has more sentences with

a smaller vocabulary size. Notably, our dataset has an

average term frequency that is 3 to 4 times higher than

other datasets. A higher average term frequency means less

polymorphism, thus increasing the chances of learning vi-

sual/textual associations, an ideal property for image and

video description.

Language generality-specificity. Our dataset is anno-

tated by crowdworkers, while the movie datasets are anno-

tated by trained professionals. As a result, the language in

our dataset tends to be more general than the movie datasets.

To show this, we measure how sentences in each dataset

conform to ”common language” using an n-gram language

model (LM) trained on the Google 1B word corpus [4]. We

average the LM score by the number of words in each sen-

tence to avoid the tendency of a longer sentence producing

a lower score. Figure 3 shows that our dataset has higher

average LM scores even with longer sentences.
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Category motion contact body percp. comm.

Examples

turn sit wear look talk

move stand smile show wave

walk kiss laugh stare speak

dance put blow watch point

shake open dress see nod

TGIF 30% 17% 11% 8% 7%

LSMDC 31% 21% 3% 12% 4%

COCO 19% 35% 3% 7% 2%

Table 3: Top verb categories with most common verbs for

each category, and the distribution of verb occurrences on three

datasets. Bold faced numbers are discussed in the text. “percp.”

means “perception”, and “comm.” means “communication.”

TGIF LSMDC

Q1: Video contains a cohesive, self-

contained visual story without any

frame irrelevant to the main story.

100.0%

±0.2%

92.0%

±1.7%

Q2: Sentence accurately describes the

main visual story of the video without

missing information.

95.0%

±1.4%

78.0%

±2.6%

Q3: Sentence describes visual content

available only within the video.

94.0%

±1.5%

88.0%

±2.0%

Table 4: Polling results comparing TGIF and LSMDC datasets.

Verb characteristics. Identifying verbs (actions) is per-

haps one of the most challenging problems in image and

video description. In order to understand what types of

verbs are used for describing each dataset, we link verbs

in each sentence to WordNet using the semantic parser

from [31]. Table 3 shows the distribution of top verb cat-

egories in each dataset (verb categories refer to the highest-

level nodes in the WordNet hierarchy).

Not surprisingly, the MS-COCO dataset contains more

static verbs (contact) compared to the video description

datasets, which have more dynamic verbs (motion). This

suggests that video contains more temporally dynamic con-

tent than static images. Most importantly, our dataset

has more “picturable” verbs related to human interactions

(body), and fewer abstract verbs (perception) compared to

the LSMDC dataset. Because picturable verbs are arguably

more visually identifiable than abstract verbs (e.g., walk vs.

think), this result suggests that our dataset may provide an

ideal testbed for video description.

Quality of segmentation and description. To make

qualitative comparisons between the TGIF and LSMDC

datasets, we conducted a user study designed to evaluate

the quality of segmentation and language descriptions (see

Table 4). The first question evaluates how well a video is

segmented, while the other two evaluate the quality of text

descriptions (how well a sentence describes the correspond-

ing video). In the questionnaire we provided detailed exam-

ples for each question to facilitate complete understanding

of the questions. We randomly selected 100 samples from

each dataset, converted movie clips to animated GIFs, and

mixed them in a random order to make them indistinguish-

able. We recruited 10 people from various backgrounds,

and used majority voting to pool the answers from raters.

Table 4 shows two advantages of ours over LSMDC:

(1) the animated GIFs are carefully segmented to convey

a cohesive and self-contained visual story; and (2) the sen-

tences are well associated with the main visual story.

5. Benchmark Evaluation

We report results on our dataset using three popular tech-

niques used in video description: nearest neighbor, statisti-

cal machine translation, and LSTM.

5.1. Evaluation Metrics

We report performance on four metrics often used

in machine translation: BLEU [27], METEOR [18],

ROUGE [19] and CIDEr [37]. BLEU, ROUGE and CIDEr

use only exact n-gram matches, while METEOR uses syn-

onyms and paraphrases in addition to exact n-gram matches.

BLEU is precision-based, while ROUGE is recall-based.

CIDEr optimizes a set of weights on the TF-IDF match

score using human judgments. METEOR uses an F1 score

to combine different matching scores. For all four metrics,

a larger score means better performance.

5.2. Baseline Methods

The TGIF dataset is randomly split into 80K, 10K and

10K for training, validation and testing, respectively. The

automatic animated GIF description methods learn from the

training set, and are evaluated on the testing set.

5.2.1 Nearest Neighbor (NN)

We find a nearest neighbor in the training set based on its

visual representation, and use its sentence as the prediction

result. Each animated GIF is represented using the off-the-

shelf Hybrid CNN [46] and C3D [36] models; the former

encodes static objects and scenes, while the latter encodes

dynamic actions and events. From each animated GIF, we

sample one random frame for the Hybrid CNN features and

16 random sequential frames for the C3D features. We then

concatenate the two feature representations and determine

the most similar instance based on the Euclidean distance.

5.2.2 Statistical Machine Translation (SMT)

Similar to the two-step process of Rohrbach et al. [31], we

automatically label an animated GIF with a set of seman-

tic roles using a visual classifier and translate them into

a sentence using SMT. We first obtain the semantic roles

of words in our training examples by applying a semantic

parser [31, 7]. We then train a visual classifier using the
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same input features as in the NN baseline and the semantic

roles as the target variable. We use the multi-label classifi-

cation model of Read et al. [29] as our visual classifier.

We compare two different databases to represent seman-

tic roles: WordNet [22] and FrameNet [2], which we re-

fer to as SMT-WordNet and SMT-FrameNet, respectively.

For SMT-WordNet, we use the same semantic parser of

Rohrbach et al. [31] to map the words into WordNet entries

(semantic roles), while for SMT-FrameNet we use a frame

semantic parser from Das et al. [7]. We use the phrase based

model from Koehn et al. [15] to learn the SMT model.

5.2.3 Long Short-Term Memory (LSTM)

We evaluate an LSTM approach using the same setup of

S2VT [38]. We also evaluate a number of its variants in

order to analyze effects of different components.

Basic setup. We sample frames at 10 FPS and encode

each using a CNN [16]. We then encode the whole sequence

using an LSTM. After the encoding stage, a decoder LSTM

is initialized with a “BOS” (Beginning of Sentence) token

and the hidden states/memory cells from the last encoder

LSTM unit. The decoder LSTM generates a description

word-by-word using the previous hidden states and words,

until a “EOS” (End of Sentence) token is generated. The

model weights – CNN and encoder/decoder LSTM – are

learned by minimizing the softmax loss L:

L = −
1

N

N∑

i=1

T∑

t=1

p(yt = Si

t
|ht−1, S

i

t−1
), (1)

where Si
t

is the tth word of the ith sentence in the training

data, ht is the hidden state and yt is the predicted word at

timestamp t. The word probability p(yt = w) is computed

as the softmax of the decoder LSTM output.

At the test phase, the decoder has no ground-truth word

from which to infer the next word. There are many infer-

ence algorithms for this situation, including greedy, sam-

pling, and beam search. We empirically found that the sim-

ple greedy algorithm performs the best. Thus, we use the

most likely word at each time step to predict the next word

(along with the hidden states).

We implemented the system using Caffe [13] on three

K80 GPU cards, with the batch size fixed to 16, the learn-

ing rate decreasing from 0.1 to 1e-4 gradually, and for 16

epochs (800K iterations) over the training data. The opti-

mization converges at around 600K iterations.

Variants on cropping scheme. We evaluate five variants

of cropping schemes for data augmentation. S2VT uses a

well-adopted spatial cropping [16] for all frames indepen-

dently. To verify the importance of sequence modeling, we

test Single cropping, where we take a single random frame

from the entire sequence. No-SP crops 10 patches (2 mir-

rors of center, bottom/top-left/right) from each frame and

Tempo CubicS2VT

Figure 4: Illustration of three cropping schemes. S2VT crops

patches from random locations across all frames in a sequence.

The Tempo also crops patches from random locations, but from a

randomly cropped subsequence. The Cubic crops patches from a

random location shared across a randomly cropped subsequence.

average their CNN features. Spatial cropping is shown to be

crucial to achieve a translation invariance for image recog-

nition [33]. To achieve similar invariance effect along the

temporal axis, we introduce Tempo, where a subsequence is

randomly cropped from the original sequence and used as

input for the sequence encoder (instead of the original full

sequence); the spatial cropping is also applied to this base-

line. S2VT crops patches from different spatial locations

across frames. However, this introduces a spatial incon-

sistency into the LSTM encoder because the cropped lo-

cation changes over the temporal axis. This may make it

difficult to learn the right spatial-temporal dynamic to cap-

ture the motion information. Therefore, we introduce Cubic

cropping, which adds a spatial consistency constraint to the

Tempo version (see Figure 4).

Variants on CNN weight optimization. We evalu-

ate three variants on how the CNN weights are initialized

and updated. S2VT sets the weights by pretraining it on

ImageNet-1K class categories [33] and fixing them through-

out. The Rand model randomly initializes the CNN weights

and fixes them throughout. To keep the CNN weights fixed,

we limit the gradients of the loss function backpropagate

only to the encoder LSTM. Finetune takes the pretrained

parameters and finetunes them by backpropagating the gra-

dients all the way down to the CNN part.

5.3. Results and Discussion

Table 5 summarizes the results. We can see that NN per-

forms significantly worse than all other methods across all

metrics. The NN copies sentences from the training set;

our result suggests the importance of explicitly modeling

sequence structure in GIFs and sentences for TGIF dataset.

SMT baselines. Our results show that SMT-FrameNet

outperforms SMT-WordNet across the board. Does it mean

the former should be preferred over the latter? To answer

this, we dissect the two-step process of the SMT baseline by

analyzing visual classification (image to semantic role) and

machine translation (semantic role to sentence) separately.

The mean F1 score of visual classification on the test set is

only 0.22% for WordNet; for FrameNet it is 2.09%. We also
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Methods BLEU-{1,2,3,4} METEOR ROUGE L CIDEr

Nearest Neighbor 25.3 7.6 2.2 0.7 7.0 21.0 1.5

SMT
WordNet 27.8 13.6 6.3 3.0 9.6 26.0 8.9

FrameNet 34.3 18.1 9.2 4.6 14.1 28.3 10.3

LSTM

S2VT 51.1 31.3 19.1 11.2 16.1 38.7 27.6

C
ro

p

Single 47.0 27.1 15.7 9.0 15.4 36.9 23.8

No-SP 51.4 32.1 20.1 11.8 16.1 39.1 28.3

Tempo 49.4 30.4 18.6 10.6 16.1 38.4 26.7

Cubic 50.9 31.5 19.3 11.1 16.2 38.7 27.6

C
N

N Rand 49.7 27.2 14.5 5.2 13.6 36.6 7.6

Finetune 52.1 33.0 20.9 12.7 16.7 39.8 31.6

Table 5: Benchmark results on three baseline methods and their variants on five different evaluation metrics.

observe poor grammar performance with both variants, as is

shown in Figure 5. We believe poor performance of visual

classifiers has contributed to the poor grammar in gener-

ated sentences. This is because it makes the distribution of

the input to the SMT system inconsistent with the training

data. Although nowhere close to the current state-of-the-

art image classification performance [33], the difference in

mean F1 scores in part explains the better performance of

SMT-FrameNet, i.e., the second step (machine translation)

receives more accurate classification results as input. We

note, however, that there are 6,609 concepts from WordNet

that overlaps with our dataset, while for FrameNet there are

only 696 concepts. So the performance difference could

merely reflect the difficulty of learning a visual classifier

for WordNet with about 10 times more label categories.

We find a more conclusive answer by analyzing the ma-

chine translation step alone: We bypass the visual classifi-

cation step by using ground-truth semantic roles as input to

machine translation. We observe an opposite result: a ME-

TEOR score of 21.9% for SMT-FrameNet and 29.3% for

SMT-WordNet. This suggests: (1) having a more expres-

sive and larger semantic role vocabulary helps improve per-

formance; and (2) there is huge potential for improvement

on SMT-WordNet, perhaps more so than SMT-FrameNet,

by improving visual classification of WordNet categories.

LSTM baselines. The LSTM methods significantly out-

perform the NN and the SMT baselines even with the simple

CNN features – NN and SMT baselines use Hybrid CNN

and C3D features. This conforms to recent findings that

end-to-end sequence learning using deep neural nets outper-

forms traditional hand-crafted pipelines [43, 38]. By com-

paring results of different LSTM variants we make three

major observations: (1) The fact that Single performs worse

than all other LSTM variants (except for Rand) suggests the

importance of modeling input sequence structure; (2) The

four variants on different cropping schemes (S2VT, No-

SP, Tempo, Cubic) perform similarly to each other, sug-

gesting spatial and temporal shift-invariance of the LSTM

approaches to the input image sequence; (3) Among the

20% 40% 60% 80% 100%

S2VT 15.0 15.5 15.7 16.1 16.1

Table 6: METEOR scores improve as we use more training data,

but plateau after 80% of the training set.

three variants of different CNN weight initialization and up-

date schemes (S2VT, Rand, Finetune), Finetune performs

the best. This suggests the importance of having a task-

dependent representation in the LSTM baseline.

Qualitative analysis. Figure 5 shows sentences gener-

ated using the three baselines and their METEOR scores.

The NN appears to capture some parts of visual compo-

nents (e.g., (c) “drops” and (d) “white” in Fig. 5), but almost

always fails to generate a relevant sentence. On the other

hand, the SMT-FrameNet appears to capture more detailed

semantic roles (e.g., (a) “ball player” and (b) “pool of wa-

ter”), but most sentences contain syntactic errors. Finally,

the LSTM-Finetune generates quite relevant and grammati-

cal sentences, but at times fail to capture detailed semantics

(e.g., (c) “running through” and (f) “a group of people”).

We provide more examples in the supplementary material.

Do we need more training data? Table 6 shows the

METEOR score of S2VT on various portions of the train-

ing dataset (but on the same test set). Not surprisingly, the

performance increases as we use more training data. We

see, on the other hand, that the performance plateaus after

80%. We believe this shows our TGIF dataset is already at

its capacity to challenge current state-of-the-art models.

Importance of multiple references. Table 7 shows the

METEOR score of three baselines according to different

numbers of reference sentences in our test set. We see a

clear pattern of increasing performance as we use more ref-

erences in evaluation. We believe this reflects the fact that

there is no clear cut single sentence answer to image and

video description, and that it suggests using more references

will increase the reliability of evaluation results. We believe

the score will eventually converge with more references; we

plan to investigate this in the future.
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Figure 5: Example animated GIFs and generated sentences from nearest neighbor (N), SMT-FrameNet (S), and LSTM-Finetune (L). The

GT refers to one of the 3 ground truth sentences provided by crowdworkers. The numbers in parentheses show the METEOR score (%) of

each generated sentence. More examples can be found here: https://goo.gl/xcYjjE

# of references One Two Three

NN 5.0 6.2 7.0

SMT-FrameNet 10.5 12.8 14.1

LSTM-Finetune 12.1 15.0 16.7

Table 7: METEOR scores improve with more reference sentences.

M-VAD MPII-MD LSMDC

TGIF 3.53 3.92 3.96

Movie 4.99 5.35 5.82

TGIF-to-Movie 5.17 5.42 5.77

Table 8: METEOR scores from cross-dataset experiments.

5.4. Cross­Dataset Adaptation: GIF to Movies

Finally, we evaluate whether an LSTM trained to de-

scribe animated GIFs can be applied to the movie descrip-

tion task. We test three settings (see Table 8). TGIF repre-

sents the basic S2VT model trained on the TGIF dataset,

while Movie is the S2VT model trained on each movie

dataset (M-VAD, MPII-MD, and LSMDC) respectively.

Finally, TGIF-to-Movie represents the S2VT model pre-

trained on the TGIF and fine-tuned on each of the movie

datasets, respectively. We see that the TGIF-to-Movie im-

proves performance on the M-VAD and MPII-MD datasets,

and performs comparably to the LSMDC dataset.

6. Conclusions

We presented the Tumblr GIF (TGIF) dataset and

showed how we solved multiple obstacles involved in

crowdsourcing natural language descriptions, using auto-

matic content filtering for collecting animated GIFs, as well

as novel syntactic and semantic validation techniques to en-

sure high quality descriptions from free-form text input. We

also provided extensive benchmark results using three pop-

ular video description techniques, and showed promising

results on improving movie description using our dataset.

We believe TGIF shows much promise as a research tool

for video description and beyond. An animated GIF is sim-

ply a limited series of still frames, often without narrative or

need for context, and always without audio. So focusing on

this constrained content is a more readily accessible bridge

to advance research on video understanding than a leap to

long-form videos, where the content is complex with con-

textual information that is currently far from decipherable

automatically. Once the content of animated GIFs is more

readily recognizable, the step to video understanding will be

more achievable, through adding audio cues, context, story-

telling archetypes and other building blocks.
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