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Abstract

A number of recent approaches have used deep convo-

lutional neural networks (CNNs) to build texture represen-

tations. Nevertheless, it is still unclear how these mod-

els represent texture and invariances to categorical varia-

tions. This work conducts a systematic evaluation of re-

cent CNN-based texture descriptors for recognition and at-

tempts to understand the nature of invariances captured by

these representations. First we show that the recently pro-

posed bilinear CNN model [25] is an excellent general-

purpose texture descriptor and compares favorably to other

CNN-based descriptors on various texture and scene recog-

nition benchmarks. The model is translationally invariant

and obtains better accuracy on the ImageNet dataset with-

out requiring spatial jittering of data compared to corre-

sponding models trained with spatial jittering. Based on

recent work [13, 28] we propose a technique to visual-

ize pre-images, providing a means for understanding cat-

egorical properties that are captured by these represen-

tations. Finally, we show preliminary results on how a

unified parametric model of texture analysis and synthesis

can be used for attribute-based image manipulation, e.g. to

make an image more swirly, honeycombed, or knitted. The

source code and additional visualizations are available at

http://vis-www.cs.umass.edu/texture.

1. Introduction

The study of texture has inspired many of the early rep-

resentations of images. The idea of representing texture us-

ing the statistics of image patches have led to the devel-

opment of “textons” [21, 24], the popular “bag-of-words”

models [6] and their variants such as the Fisher vector [30]

and VLAD [19]. These fell out of favor when the latest

generation of deep Convolutional Neural Networks (CNNs)

showed significant improvements in recognition perfor-

mance over a wide range of visual tasks [2, 14, 20, 33]. Re-

cently however, the interest in texture descriptors have been

revived by architectures that combine aspects of texture rep-

resentations with CNNs. For instance, Cimpoi et al. [4]

showed that Fisher vectors built on top of CNN activations

dotted water landromat

honeycombed wood bookstore

Figure 1. How is texture represented in deep models? Visual-

izing various categories by inverting the bilinear CNN model [25]

trained on DTD [3], FMD [34], and MIT Indoor dataset [32] (each

column from left to right). These images were obtained by start-

ing from a random image and adjusting it though gradient descent

to obtain high log-likelihood for the given category label using

a multi-layer bilinear CNN model (See Sect. 2 for details). Best

viewed in color and with zoom.

lead to better accuracy and improved domain adaptation not

only for texture recognition, but also for scene categoriza-

tion, object classification, and fine-grained recognition.

Despite their success little is known how these mod-

els represent invariances at the image and category level.

Recently, several attempts have been made in order to

understand CNNs by visualizing the layers of a trained

model [40], studying the invariances by inverting the

model [8, 28, 35], and evaluating the performance of CNNs

for various recognition tasks. In this work we attempt to

provide a similar understanding for CNN-based texture rep-

resentations. Our starting point is the bilinear CNN model

of our previous work [25]. The technique builds an order-

less image representation by taking the location-wise outer

product of image features extracted from CNNs and aggre-

gating them by averaging. The model is closely related to

Fisher vectors but has the advantage that gradients of the

model can be easily computed allowing fine-tuning and in-

version. Moreover, when the two CNNs are identical the bi-
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linear features capture correlations between filter channels,

similar to the early work in parametric texture representa-

tion of Portilla and Simoncelli [31].

Our first contribution is a systematic study of bilinear

CNN features for texture recognition. Using the Flickr Ma-

terial Dataset (FMD) [34], Describable Texture Dataset

(DTD) [3] and KTH-T2b [1] we show that it performs fa-

vorably to Fisher vector CNN model [4], which is the cur-

rent state of the art. Similar results are also reported for

scene classification on the MIT indoor scene dataset [32].

We also evaluate the role of different layers, effect of scale,

and fine-tuning for texture recognition. Our experiments

reveal that multi-scale information helps, but also that fea-

tures from different layers are complementary and can be

combined to improve performance in agreement with recent

work [16, 26, 29].

Our second contribution is to investigate the role of

translational invariance of these models due to the orderless

pooling of local descriptors. Recently, we showed [25] that

bilinear CNNs initialized by pre-training a standard CNN

(e.g., VGG-M [2]) on ImageNet, truncating the network at

a lower convolutional layer (e.g., conv5), adding bilinear

pooling modules, followed by domain-specific fine-tuning

leads to significant improvements in accuracy for a num-

ber of fine-grained recognition tasks. These models capture

localized feature interactions in a translationally invariant

manner which is useful for making fine-grained distinctions

between species of birds or models of cars. However, it re-

mains unclear what the tradeoffs are between explicit trans-

lational invariance in these models versus implicit invari-

ance obtained by spatial jittering of data during training. To

this end we conduct experiments on the ImageNet LSVRC

2012 dataset [7] by training several models using different

amounts of data augmentation. Our experiments reveal that

bilinear CNN models can be trained from scratch, result-

ing in better accuracy without requiring spatial jittering of

data than the corresponding CNN architectures that consist

of standard “fully-connected” layers trained with jittering.

Our third contribution is a technique to “invert” these

models to construct invariant inputs and visualize pre-

images for categories. Fig. 1 shows the inverse images for

various categories – materials such as wood and water, de-

scribable attributes such as honeycombed and dotted, and

scene categories such as laundromat and bookstore. These

images reveal what categorical properties are learned by

these texture models. Recently, Gatys et al. [13] showed

that bilinear features (they call it the Gram matrix repre-

sentation) extracted from various layers of the “verydeep

VGG network” [36] can be inverted for texture synthesis.

The synthesized results are visually appealing, demonstrat-

ing that the convolutional layers of a CNN capture textural

properties significantly better than the first and second order

statistics of wavelet coefficients of Portilla and Simoncelli.

However, the approach remains impractical since it requires

hundreds of CNN evaluations and is orders of magnitude

slower than non-parametric patch-based methods such as

image quilting [9]. We show that the two approaches are

complementary and one can significantly speed up the con-

vergence of gradient-based inversion by initializing the in-

verse image using image quilting. The global adjustment

of the image through gradient descent also removes many

artifacts that quilting introduces.

Finally, we show a novel application of our approach for

image manipulation with texture attributes. A unified para-

metric model of texture representation and recognition al-

lows us to adjust an image with high-level attributes – to

make an image more swirly or honeycombed, or generate

hybrid images that are a combination of multiple texture at-

tributes, e.g., chequered and interlaced.

1.1. Related work

Texture recognition is a widely studied area. Current

state-of-the-art results on texture and material recognition

are obtained by hybrid approaches that build orderless rep-

resentations on top of CNN activations. Cimpoi et al. [4]

use Fisher vector pooling for material and scene recogni-

tion, Gong et al. [15] use VLAD pooling for scene recogni-

tion, etc. Our previous work [25] proposed a general or-

derless pooling architecture called the bilinear CNN that

outperforms Fisher vector on many fine-grained datasets.

These descriptors are inspired by early work on texture

representations [6, 24, 30, 19] that were built on top of

wavelet coefficients, linear filter bank responses, or SIFT

features [27].

Texture synthesis has received attention from both the

vision and graphics communities due to its numerous ap-

plications. Heeger and Bergen [17] synthesized texture im-

ages by histogram matching. Portilla and Simoncelli were

one of the early proponents of parametric approaches. The

idea is to represent texture as the first and second order

statistics of various filter bank responses (e.g., wavelets,

steerable pyramids, etc.). However, these approaches were

outperformed by simpler non-parametric approaches. For

instance, Efros and Lueng [10] proposed a pixel-by-pixel

synthesis approach based on sampling similar patches – the

method was simple and effective for a wide range of tex-

tures. Later, Efros and Freeman proposed a quilting-based

approach that was significantly faster [9]. A number of

other non-parametric approaches have been proposed for

this problem [23, 39]. Recently, Gatys et al. showed that

replacing the linear filterbanks by CNN filterbanks results

in better reconstructions. Notably, the Gram matrix repre-

sentation used in their approach is identical to the bilinear

CNN features of Lin et al., suggesting that these features

might be good for texture recognition as well. However for

synthesis, the parametric approaches remain impractical as

they are orders of magnitude slower than non-parametric

approaches.
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Understanding CNNs through visualizations has also

been widely studied given their remarkable performance.

Zieler and Fergus [40] visualize CNNs using the top acti-

vations of filters and show per-pixel heatmaps by tracking

the position of the highest responses. Simonyan and Zisser-

man [35] visualize parts of the image that cause the high-

est change in class labels computed by back-propagation.

Mahendran and Vedaldi [28] extend this approach by in-

troducing natural image priors which result in inverse im-

ages that have fewer artifacts. Dosovitskiy and Brox [8]

propose a “deconvolutional network” to invert a CNN in a

feed-forward manner. However, the approach tends to pro-

duce blurry images since the inverse is not uniquely defined.

Our approach is also related to prior work on editing im-

ages based on example images. Ideas from patch-based tex-

ture synthesis have been extended in a number of ways to

modify the style of the image based on an example [18],

adjusting texture synthesis based on the content of another

image [5, 9], etc. Recently, in a separate work, Gatys et

al. [12] proposed a “neural style” approach that combines

ideas from inverting CNNs with their work on texture syn-

thesis. They generate images that match the style and con-

tent of two different images producing compelling results.

Although the approach is not practical compared to existing

patch-based methods for editing styles, it provides a basis

for a rich parametric model of texture. We describe an novel

approach to manipulate images with high-level attributes

and show several examples of editing images with texture

attributes. There is relatively little prior work on manipulat-

ing the content of an image using semantic attributes.

2. Methodology and overview

We describe our framework for parametric texture recog-

nition, synthesis, inversion, and attribute-based manipula-

tion using CNNs. For an image I one can compute the

activations of the CNN at a given layer ri to obtain a set

of features Fri = {fj} indexed by their location j. The

bilinear feature Bri(I) of Fri is obtained by computing the

outer product of each feature fj with itself and aggregating

them across locations by averaging, i.e.,

Bri(I) =
1

N

N
∑

j=1

fjf
T
j . (1)

The bilinear feature (or the Gram matrix representation)

is an orderless representation of the input image and hence

is suitable for modeling texture. Let ri, i = 1, . . . , n, be

the index of the ith layer with the bilinear feature repre-

sentation Bri . Gatys et al. [13] propose a method for tex-

ture synthesis from an input image I by obtaining an image

x ∈ R
H×W×C that matches the bilinear features at various

layers by solving the following optimization:

min
x

n
∑

i=1

αiL1

(

Bri , B̂ri

)

+ γΓ(x). (2)

Here, B̂ri = Bri(I), αi is the weight of the ith layer,

Γ(x) is a natural image prior such as the total variation

norm (TV norm), and γ is the weight on the prior. Note

that we have dropped the implicit dependence of Bri on

x for brevity. Using the squared loss-function L1(x, y) =
∑

(xi − yi)
2 and starting from a random image where each

pixel initialized with a i.i.d zero mean Gaussian, a local op-

timum is reached through gradient descent. The authors

employ L-BFGS, but any other optimization method can be

used (e.g., Mahendran and Vedaldi [28] use stochastic gra-

dient descent with momentum).

Prior work on minimizing the reconstruction error with

respect to the “un-pooled” features Fri has shown that the

content of the image in terms of the color and spatial struc-

ture is well-preserved even in the higher convolutional lay-

ers. Recently, Gatys et al. in a separate work [12] synthesize

images that match the style and content of two different im-

ages I and I ′ respectively by minimizing a weighted sum

of the texture and content reconstruction errors:

min
x

λL1

(

Fs, F̂s

)

+

n
∑

i=1

αiL1

(

Bri , B̂ri

)

+ γΓ(x). (3)

Here F̂s = Fs(I
′) are features from a layer s from which

the target content features are computed for an image I ′.

The bilinear features can also be used for predicting at-

tributes by first normalizing the features (signed square-root

and ℓ2) and training a linear classifier in a supervised man-

ner [25]. Let li : i = 1, . . . ,m be the index of the ith layer

from which we obtain attribute prediction probabilities Cli .

The prediction layers may be different from those used for

texture synthesis. Given a target attribute Ĉ we can obtain

an image that matches the target label and is similar to the

texture of a given image I by solving the following opti-

mization:

min
x

n
∑

i=1

αiL1

(

Bri , B̂ri

)

+ β

m
∑

i=1

L2

(

Cli , Ĉ
)

+ γΓ(x).

(4)

Here, L2 is a loss function such as the negative log-

likelihood of the label Ĉ and β is a tradeoff parameter.

If multiple targets Ĉj are available then the losses can be

blended with weights βj resulting in the following opti-

mization:

min
x

n
∑

i=1

αiL1

(

Bri , B̂ri

)

+βj

m
∑

i=1,j

L2

(

Cli , Ĉj

)

+γΓ(x).

(5)
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Implementation details. We use the 16-layer VGG

network [36] trained on ImageNet for all our experiments.

For the image prior Γ(x) we use the TVβ norm with β = 2:

Γ(x) =
∑

i,j

(

(xi,j+1 − xi,j)
2 + (xi+1,j − xi,j)

2
)

β

2 . (6)

The exponent β = 2 was empirically found to lead to better

reconstructions in [28] as it leads to fewer “spike” artifacts

than β = 1. In all our experiments, given an input image

we resize it to 224×224 pixels before computing the target

bilinear features and solve for x ∈ R
224×224×3. This is

primarily for speed since the size of the bilinear features are

independent of the size of the image. Hence, an output of

any size can be obtained by minimizing Eqn. 5. We use

L-BFGS for optimization and compute the gradients of the

objective with respect to x using back-propagation. One

detail we found to be critical for good reconstructions is

that we ℓ1 normalize the gradients with respect to each of

the L1 loss terms to balance the losses during optimization.

Mahendran and Vedaldi [28] suggest normalizing each L1

loss term by the ℓ2 norm of the target feature B̂ri . Without

some from of normalization the losses from different layers

are of vastly different scales leading to numerical stability

issues during optimization.

Using this framework we: (i) study the effectiveness of

bilinear features Bri extracted from various layers of a net-

work for texture and scene recognition (Sect. 3), (ii) investi-

gate the nature of invariances of these features by evaluating

the effect of training with different amounts of data augmen-

tation (Sect. 4), (iii) provide insights into the learned mod-

els by inverting them (Sect. 5), and (iv) show results for

modifying the content of an image with texture attributes

(Sect. 6). We conclude in Sect. 7.

3. Texture recognition

In this section we evaluate the bilinear CNN (B-CNN) rep-

resentation for texture recognition and scene recognition.

Datasets and evaluation. We experiment on three tex-

ture datasets – the Describable Texture Dataset (DTD) [3],

Flickr Material Dataset (FMD) [34], and KTH-TISP2-b

(KTH-T2b) [1]. DTD consists of 5640 images labeled with

47 describable texture attributes. FMD consists of 10 mate-

rial categories, each of which contains 100 images. Unlike

DTD and FMD where images are collected from the Inter-

net, KTH-T2b contains 4752 images of 11 materials cap-

tured under controlled scale, pose, and illumination. The

KTH-T2b dataset splits the images into four samples for

each category. We follow the standard protocol by training

on one sample and test on the remaining three. On DTD

and FMD, we randomly divide the dataset into 10 splits and

report the mean accuracy across splits. Besides these, we

also evaluate our models on MIT indoor scene dataset [32].

Indoor scenes are weakly structured and orderless texture

representations have been shown to be effective here. The

dataset consists of 67 indoor categories and a defined train-

ing and test split.

Descriptor details and training protocol. Our features

are based on the “verydeep VGG network” [36] consist-

ing of 16 convolutional layers pre-trained on the ImageNet

dataset. The FV-CNN builds a Fisher Vector representation

by extracting CNN filterbank responses from a particular

layer of the CNN using 64 Gaussian mixture components,

identical to setup of Cimpoi et al. [4]. The B-CNN features

are similarly built by taking the location-wise outer product

of the filterbank responses and average pooling across all lo-

cations (identical to B-CNN [D,D] in Lin et al. [25]). Both

these features are passed through signed square-root and

ℓ2 normalization which has been shown to improve perfor-

mance. During training we learn one-vs-all SVMs (trained

with SVM hyperparameter C = 1) and weights scaled such

that the median positive and negative class scores in the

training data is +1 and −1 respectively. At test time we

assign the class with the highest score. Our code in imple-

mented using MatConvNet [38] and VLFEAT [37] libraries.

3.1. Experiments

The following are the main conclusions of the experiments:

1. B-CNN compares favorably to FV-CNN. Tab. 1

shows results using the B-CNN and FV-CNN on various

datasets. Across all scales of the input image the perfor-

mance using B-CNN and FV-CNN is virtually identical.

The FV-CNN multi-scale results reported here are compara-

ble (±1%) to the results reported in Cimpoi et al. [4] for all

datasets except KTH-T2b (−4%). These differences in re-

sults are likely due to the choice of the CNN 1 and the range

of scales. These results show that the bilinear pooling is as

good as the Fisher vector pooling for texture recognition.

One drawback is that the FV-CNN features with 64 GMM

components has half as many dimensions (64×2×256) as

the bilinear features (256×256). However, it is known that

these features are highly redundant and their dimensional-

ity can be reduced by an order of magnitude without loss in

performance [11, 25].

2. Multi-scale analysis improves performance. Tab. 1

shows the results by combining features from multiple

scales 2s, s ∈ {1.5:-0.5:-3} relative to the 224×224 image.

We discard scales for which the image is smaller than the

size of the receptive fields of the filters, or larger than 10242

pixels for efficiency. Multiple scales consistently lead to an

improvement in accuracy.

1 they use the conv5 4 layer of the 19-layer VGG network.
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FV-CNN B-CNN

Dataset s = 1 s = 2 ms s = 1 s = 2 ms

DTD 67.8 70.6 73.6 69.6 71.5 72.9
±0.9 ±0.9 ±1.0 ±0.7 ±0.8 ±0.8

FMD 75.1 79.0 80.8 77.8 80.7 81.6
±2.3 ±1.4 ±1.7 ±1.9 ±1.5 ±1.7

KTH-T2b 74.8 75.9 77.9 75.1 76.4 77.9
±2.6 ±2.4 ±2.0 ±2.8 ±3.5 ±3.1

MIT indoor 70.1 78.2 78.5 72.8 77.6 79.0

Table 1. Comparison of B-CNN and FV-CNN. We report mean

per-class accuracy on DTD, FMD, KTH-T2b and MIT indoor

datasets using FV-CNN and B-CNN representations constructed

on top of relu5 3 layer outputs of the 16-layer VGG network [36].

Results are reported using input images at different scales: s = 1,

s = 2 and ms are with images resized to 224×224, 448×448 and

pooled across multiple scales respectively.

Dataset relu2 2 relu3 3 relu4 3 relu5 3

DTD 42.9 59.0 68.8 69.9

FMD 49.6 62.2 73.4 80.2

KTH-T2b 59.9 71.3 78.8 79.0

MIT indoor 32.2 54.5 71.1 72.8

Table 2. Layer by layer performance. The classification accu-

racy using B-CNN features based on the outputs of different layers

on several datasets using input at s = 1, i.e. 224×224 pixels. The

numbers are reported on the first split of all datasets.

3. Higher layers perform better. Tab. 2 shows the

performance using various layers of the CNN. The accuracy

improves using the higher layers in agreement with [4].

4. Multi-layer features improve performance. By

combining features from all the layers we observe a

small but significant improvement in accuracy on DTD

69.9%→ 70.7% and on MIT indoor from 72.8% → 74.9%.

This suggests that the features from multiple layers cap-

ture complementary information and can be combined to

improve performance. This is in agreement with the “hy-

percolumn” approach of Hariharan et al. [16].

5. Fine-tuning leads to a small improvement. On the

MIT indoor dataset fine-tuning the network using the B-

CNN architecture leads to a small improvement 72.8% →
73.8% using relu5 3 and s = 1. Fine-tuning on texture

datasets led to insignificant improvements which might be

attributed to their small size. On larger and specialized

datasets, such as fine-grained recognition, the effect of fine-

tuning can be significant [25].

4. The role of translational invariance

Earlier experiments on B-CNN and FV-CNN were re-

ported using pre-trained networks. Here we experiment

with training a B-CNN model from scratch on the ImageNet

LSRVC 2012 dataset. We experimenting with the effect of

spatial jittering of training data on the classification perfor-

mance. For these experiments we use the VGG-M [2] ar-

chitecture which performs better than AlexNet [22] with a

moderate decrease in classification speed. For the B-CNN

model we replace the last two fully-connected layers with

a linear classifier and softmax layer on the outputs of the

square-root and ℓ2 normalized bilinear features of the relu5

layer outputs. The evaluation speed for B-CNN is 80% of

that of the standard CNN, hence the overall training times

for both architectures are comparable.

We train various models with different amounts of spa-

tial jittering – “f1” for flip, “f5” for flip + 5 translations and

“f25” for flip + 25 translations. In each case the training

is done using stochastic sampling where one of the jittered

copies is randomly selected for each example. The net-

work parameters are randomly initialized and trained using

stochastic gradient descent with momentum for a number of

epochs. We start with a high learning rate and reduce it by a

factor of 10 when the validation error stops decreasing. We

stop training when the validation error stops decreasing.

Fig. 2 shows the “top1” validation errors and compares

the B-CNN network to the standard VGG-M model. The

validation error is reported on a single center cropped im-

age. Note that we train all networks with neither PCA color

jittering nor batch normalization and our baseline results are

within 2% of the top1 errors reported in [2]. The VGG-

M model achieves 46.4% top1 error with flip augmentation

during training. The performance improves significantly to

39.6% with f25 augmentation. As fully connected layers

in a standard CNN network encode spatial information, the

model loses performance without spatial jittering. For B-

CNN network, the model achieves 38.7% top1 error with

f1 augmentation, outperforming VGG-M with f25 augmen-

tation. With more augmentations, B-CNN model improves

top1 error by 1.6% (38.7% → 37.1%). Going from f5 to

f25, B-CNN model improves marginally by < 1%. The re-

sults show that B-CNN feature is discriminative and robust

to translation. With a small amount of data jittering, B-CNN

network achieves fairly good performance, suggesting that

explicit translation invariance might be preferable to the im-

plicit invariance obtained by data jittering.

5. Understanding texture representations

In this section we aim to understand B-CNN texture rep-

resentation by synthesizing invariant images, i.e. images

that are nearly identical to a given image according to the

bilinear features, and inverse images for a given category.

Visualizing invariant images for objects. We use

relu1 1, relu2 1, relu3 1, relu4 1, relu5 1 layers for texture

representation. Fig. 3 shows several invariant images to the

image on the top left, i.e. these images are virtually identi-

cal as far as the bilinear features for these layers are con-
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Figure 2. Effect of spatial jittering on ImageNet LRVC 2012

classification. The top1 validation error on a single center crop

on ImageNet dataset using the VGG-M network and the corre-

sponding B-CNN model. The networks are trained with different

levels of data jittering: “f1”, “f5”, and “f25” indicating flip, flip +

5 translations, and flip + 25 translations respectively.

Figure 3. Invariant inputs. These six images are virtually iden-

tical when compared using the bilinear features of layers relu1 1,

relu2 1, relu3 1, relu4 1, relu5 1 of the VGG network [36].

cerned. Translational invariance manifests as shuffling of

patches but important local structure is preserved within the

images. These images were obtained using γ = 1e− 6 and

αi = 1 ∀i in Eqn. 5. We found that as long as some higher

and lower layers are used together the synthesized textures

look reasonable, similar to the observations of Gatys et al.

Role of initialization on texture synthesis. Although

the same approach can be used for texture synthesis, it is not

practical since it requires several hundreds of CNN evalu-

ations, which takes several minutes on a high-end GPU. In

comparison, non-parametric patch-based approaches such

as image quilting [9] are orders of magnitude faster. Quilt-

ing introduces artifacts when adjacent patches do not align

with each other. The original paper proposed an approach

relu2 2 + relu3 3 + relu4 3 + relu5 3

water

foliage

bowling

Figure 4. Effect of layers on inversion. Pre-images obtained by

inverting class labels using different layers. The leftmost column

shows inverses using predictions of relu2 2 only. In the following

columns we add layers relu3 3, relu4 3, and relu5 3 one by one.

where a one-dimensional cut is found that minimizes arti-

facts. However, this can fail since local adjustments cannot

remove large structural errors in the synthesis. We instead

investigate the use of quilting to initialize the gradient-based

synthesis approach. Fig. 5 shows the objective through it-

erations of L-BFGS starting from a random and quilting-

based initialization. Quilting starts at a lower objective and

reaches the final objective of the random initialization sig-

nificantly faster. Moreover, the global adjustments of the

image through gradient descent remove many artifacts that

quilting introduces (digitally zoom in to the onion image

to see this). Fig. 6 show the results using image quilting

as initialization for style transfer [12]. Here two images

are given as input, one for content measured as the conv4 2

layer output, and one for style measured as the bilinear fea-

tures. Similar to texture synthesis, the quilting-based ini-

tialization starts from lower objective value and the opti-

mization converges faster. These experiments suggest that

patch-based and parametric approaches for texture synthe-

sis are complementary and can be combined effectively.

Visualizing texture categories. We learn linear clas-

sifiers to predict categories using bilinear features from

relu2 2, relu3 3, relu4 3, relu5 3 layers of the CNN on var-

ious datasets and visualize images that produce high pre-

diction scores for each class. Fig. 1 shows some example

inverse images for various categories for the DTD, FMD

and MIT indoor datasets. These images were obtained by

setting β = 100, γ = 1e−6, and Ĉ to various class labels in

Eqn. 5. These images reveal how the model represents tex-

ture and scene categories. For instance, the dotted category

of DTD contains images of various colors and dot sizes and

the inverse image is composed of multi-scale multi-colored

dots. The inverse images of water and wood from FMD are
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Figure 5. Effect of initialization on texture synthesis. Given an input image, the solution reached by the L-BFGS after 250 iterations

starting from a random image: syn(rand), and image quilting: syn(quilt). The results using image quilting [9] are shown as quilt. On the

right is the objective function for the optimization for 5 random initializations. Quilting-based initialization starts at a lower objective value

and matches the final objective of the random initialization in far fewer iterations. Moreover, many artifacts of quilting are removed in the

final solution (e.g., the top row). Best viewed with digital zoom. Images are obtained from http://www.textures.com.

content style tranf(rand)

quilt tranf(quilt)

content style tranf(rand)

quilt tranf(quilt)

Figure 6. Effect of initialization on style transfer. Given a con-

tent and a style image the style transfer reached using L-BFGS af-

ter 100 iterations starting from a random image: tranf(rand), and

image quilting: tranf(quilt). The results using image quilting [9]

are shown as quilt. On the bottom right is the objective function

for the optimization for 5 random initializations.

highly representative of these categories. Note that these

images cannot be obtained by simply averaging instances

within a category which is likely to produce a blurry image.

The orderless nature of the texture descriptor is essential to

produce such sharp images. The inverse scene images from

the MIT indoor dataset reveal key properties that the model

learns – a bookstore is visualized as racks of books while a

laundromat has laundry machines at various scales and lo-

cations. In Fig. 4 we visualize reconstructions by incremen-

tally adding layers in the texture representation. Lower lay-

ers preserve color and small-scale structure and combining

all the layers leads to better reconstructions. Even though

the relu5 3 layer provides the best recognition accuracy,

simply using that layer did not produce good inverse im-

ages (not shown). Notably, color information is discarded

in the upper layers. Fig. 7 shows visualizations of some

other categories across datasets.

6. Manipulating images with texture attributes

Our framework can be used to edit images with texture

attributes. For instance, we can make a texture or the con-

tent of an image more honeycombed or swirly. Fig. 8 shows

some examples where we have modified images with vari-

ous attributes. The top two rows of images were obtained

by setting αi = 1 ∀i, β = 1000 and γ = 1e−6 and varying

Ĉ to represent the target class. The bottom row is obtained

by setting αi = 0 ∀i, and using the relu4 2 layer for content

reconstruction with weight λ = 5e− 8.

The difference between the two is that in the content re-

construction the overall structure of the image is preserved.

The approach is similar to the neural style approach [12],

but instead of providing a style image we adjust the image

with attributes. This leads to interesting results. For in-

stance, when the face image is adjusted with the interlaced

attribute (Fig. 8 bottom row) the result matches the scale and

orientation of the underlying image. No single image in the

DTD dataset has all these variations but the categorical rep-

resentation does. The approach can be used to modify an

image with other high-level attributes such as artistic styles

by learning style classifiers.
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braided bubbly foliage leather bakery bowling

cobwebbed scaly metal stone classroom closet

Figure 7. Examples of texture inverses (Fig. 1 cont.) Visualizing various categories by inverting the bilinear CNN model [25] trained on

DTD [3], FMD [34], and MIT Indoor dataset [32] (two columns each from left to right). Best viewed in color and with zoom.

input fibrous paisley

input honeycombed swirly

input veined bumpy

freckled interlaced marbled

Figure 8. Manipulating images with attributes. Given an im-

age we synthesize a new image that matches its texture (top two

rows) or its content (bottom two rows) according to a given at-

tribute (shown in the image).

We can also blend texture categories using weights βj of

the targets Ĉj . Fig. 9 shows some examples. On the left is

the first category, on the right is the second category, and in

the middle is where a transition occurs (selected manually).

7. Conclusion

We present a systematic study of recent CNN-based tex-

ture representations by investigating their effectiveness on

chequered β1/β2 = 2.11 interlaced

grid β1/β2 = 1.19 knitted

swirly β1/β2 = 0.75 paisley

Figure 9. Hybrid textures obtained by blending the texture on

the left and right according to weights β1 and β2.

recognition tasks and studying their invariances by inverting

them. The main conclusion is that translational invariance is

a useful property not only for texture and scene recognition,

but also for general object classification on the ImageNet

dataset. The resulting models provide a rich parametric ap-

proach for texture synthesis and manipulation of content of

images using texture attributes. The key challenge is that

the approach is computationally expensive, and we present

an initialization scheme based on image quilting that signif-

icantly speeds up the convergence and also removes many

structural artifacts that quilting introduces. The comple-

mentary qualities of patch-based and gradient-based meth-

ods may be useful for other applications.
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[5] A. Criminisi, P. Pérez, and K. Toyama. Region filling and

object removal by exemplar-based image inpainting. Image

Processing, IEEE Transactions on, 13(9), 2004. 3

[6] G. Csurka, C. R. Dance, L. Dan, J. Willamowski, and

C. Bray. Visual categorization with bags of keypoints. In

ECCV Workshop on Stat. Learn. in Comp. Vision, 2004. 1, 2

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 2

[8] A. Dosovitskiy and T.Brox. Inverting visual representations

with convolutional networks. In CVPR, 2016. 1, 3

[9] A. Efros and W. T. Freeman. Image quilting for texture syn-

thesis and transfer. In SIGGRAPH, 2001. 2, 3, 6, 7

[10] A. Efros and T. Leung. Texture synthesis by non-parametric

sampling. In CVPR, 1999. 2

[11] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact

bilinear pooling. arXiv preprint arXiv:1511.06062, 2015. 4

[12] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm

of artistic style. arXiv preprint arXiv:1508.06576, 2015. 3,

6, 7

[13] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis

and the controlled generation of natural stimuli using convo-

lutional neural networks. In NIPS, 2015. 1, 2, 3

[14] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 1

[15] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features.

In ECCV, 2014. 2
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