
Highway Vehicle Counting in Compressed Domain

Xu Liu1, Zilei Wang2, Jiashi Feng3, Hongsheng Xi2

1,2 Department of Automation, University of Science and Technology of China, Hefei, 230027, China
3 Department of ECE, National University of Singapore, Singapore

1liuxu91@mail.ustc.edu.cn, 2{zlwang, xihs}@ustc.edu.cn, 3elefjia@nus.edu.sg

Abstract

This paper presents a highway vehicle counting method

in compressed domain, aiming at achieving acceptable esti-

mation performance approaching the pixel-domain method-

s. Such a task essentially is challenging because the avail-

able information (e.g. motion vector) to describe vehicles

in videos is quite limited and inaccurate, and the vehicle

count in realistic traffic scenes always varies greatly. To

tackle this issue, we first develop a batch of low-level fea-

tures, which can be extracted from the encoding metadata

of videos, to mitigate the informational insufficiency of com-

pressed videos. Then we propose a Hierarchical Classifica-

tion based Regression (HCR) model to estimate the vehicle

count from features. HCR hierarchically divides the traffic

scenes into different cases according to vehicle density, such

that the broad-variation characteristics of traffic scenes can

be better approximated. Finally, we evaluated the proposed

method on the real highway surveillance videos. The re-

sults show that our method is very competitive to the pixel-

domain methods, which can reach similar performance a-

long with its lower complexity.

1. Introduction

Estimating the number of on-road vehicles is one of the

important tasks in intelligent transportation system (ITS),

which can be used to monitor the traffic status and then

guide the traffic control and optimization, e.g. program-

ing better driving routes through bypassing the congested

roads [2]. In this paper, we particularly consider the vehicle

counting issue by the means of video analysis. Compared

with employing specialized sensors (e.g. infrared or induc-

tive loop detector), the visual counting system is more easy

to deploy by reusing the roadside cameras, and thus pays

lower cost [16].

In a typical traffic surveillance system, the central sub-

system connects all terminal cameras through a private net-

work and is expected to constantly receive the surveillance

videos. In practice, however, only part of video streams can

H

M

L

first-layer

binary

classifier1

hierarchical classification based regression (HCR)

features

second-layer regression

models

estimated

count

�����

������

�	���

��
���

�����
B2

B1
H

M

L

multi-class

classifier binary

classifier2

Figure 1. The Hierarchical Classification based Regression (HCR)

model. The traffic scenes are firstly classified into three categories:

H (heavy), M (medium), and L (light). To tackle the boundary

cases produced by the first-layer classifier, i.e. samples around the

boundary area of two categories are more likely to be misclassi-

fied, the second layer classifiers are introduced to distinguish the

samples whether located in the boundary area (i.e. B1 or B2). Af-

terwards, regression models are applied to each category.

be simultaneously accessed due to the limitation of network

bandwidth [12]. Such partial acquisition is rather tolerable

for the purpose of monitoring with the help of free stream

switch. But it is inapplicable to the video analysis that need-

s to process almost all of video streams for fully capturing

the traffic status of a wide range. Thus it is naturally con-

sidered to conduct the analysis function in the terminal de-

vices (e.g. surveillance workstations). These devices are

usually equipped with lower configurations than the central

servers considering the overall costs. Therefore, the video

analysis algorithms are expected to have low computational

complexity for fulfilling the real-time requirements.

The video analysis can be conducted in the pixel or com-

pressed domain. Particularly, the pixel-domain methods are

to first decode the surveillance videos into huge volume

of frame pixels and then operate on the pixels to complete

some specific target. Due to involving such decoding proce-

dure and massiveness of processed pixels, the high compu-

tational complexity is usually possessed [13]. On the con-

trary, the compressed-domain methods are to directly oper-

ate on the video data of compressed format, which is exact-

ly the original form of storing and transmitting videos [1].

3016

Hence it is considered that the compressed-domain meth-

ods may be more appropriate for large-scale video analysis

system. In this paper, we particularly address the vehicle

counting issue in compressed domain.

The video analysis methods in compressed domain

mainly rely on the encoding metadata, which can be easi-

ly extracted from video bitstreams, e.g. the motion vector

(MV), DCT coefficients, and macro-blocks (MB) partition

modes [1]. There are two non-trivial challenges for vehicle

counting. First, the critical metadata in compressed videos

(i.e. motion estimation and compensation vectors) are orig-

inally determined from the view of compression efficiency

rather than video analysis [30]. Consequently, the features

extracted from video bitstreams are probably inaccurate and

noisy in describing moving vehicles, besides less available

information can be provided compared to the frame pixel-

s. Second, the traffic scenes are usually fast-changing with

containing various numbers of vehicles in a broad range,

and vulnerable to the external factors (e.g. weather con-

ditions, and illumination changes) [28]. These challenges

make it quite difficult to accurately model the realistic traf-

fic scenes for vehicle counting.

In this paper, we propose a multi-regression method for

highway vehicle counting in compressed domain, with aims

of achieving acceptable prediction performance approach-

ing the pixel-domain methods. To our best knowledge, this

is the first attempt on this issue. Specifically, we first de-

velop a batch of low-level features to capture the crucial in-

formation associated with vehicle count. These features can

be easily computed from the provided MVs and block par-

tition modes, and cover the size, shape, motion, and texture

of traffic scenes. We believe that all of features together can

rather mitigate the disadvantage of informational insuffi-

ciency. Then we propose a Hierarchical Classification based

Regression (HCR) model for vehicle counting, as illustrat-

ed in Figure 1. HCR divides the traffic scenes into multiple

cases according to the vehicle density (e.g. heavy, medi-

um, and light here), and then adopts one well-performed re-

gression model for each of them. Indeed, introducing such

classification is for better approximating the broad-variation

characteristics of traffic scenes, since it is observed in prac-

tice that some density-specific patterns are presented for the

scenes involving different vehicle counts. Furthermore, we

add one more layer of classifiers for handling the boundary

cases produced by the first-layer classifiers. As a result, the

large estimation deviation incurred by misclassification can

be greatly alleviated.

We evaluated the proposed method on the real highway

surveillance videos presenting various traffic scenes. The

experimental results show that our method is very compet-

itive compared to the pixel-domain methods, which results

in the similar performance (the estimation error of 2 ∼ 3),

while possesses lower computation complexity.

2. Related Works

Object counting as one of the typical visual tasks target-

s to estimate the number of specific objects within a giv-

en image [15]. According to the adopted strategy, exist-

ing approaches can be roughly divided into three categories:

counting by detection, counting by clustering, and counting

by regression [17]. Usually, the methods based on detec-

tion [9, 10] or clustering [23, 34] need to explicitly segment

the objects or track the feature points, and thus may fail if

the serious occlusions or scene clutters arise. Differently,

the regression based methods [3, 6, 33] are to straightfor-

wardly learn a mapping from the extracted image features

to the desired density value. Such a way can alleviate the u-

biquitous interferences and thus is usually outperforming in

practice along with the advantage of simplicity. Hence the

regression model is considered more applicable to counting

objects from the realistic scenes [17].

In the previous literatures, most of the proposed regres-

sion models are primarily aimed to crowd counting in pub-

lic [25]. For example, Davies et al. [7] first proposed a lin-

ear regression model mapping the holistic features into the

people count. Chan et al. [3] proposed a perspective nor-

malization method to handle the diversity of camera per-

spectives and a bank of complementary features to improve

the accuracy. In addition, some semi-supervised counting

methods [27, 31] were also proposed, which were princi-

pally to utilize the continuity and consistency between un-

labeled samples and their temporally neighboring samples.

Comparatively, these methods can exploit more unlabeled

data, e.g. via transfer learning [18], and thus perform better

for the complicated crowd scenes difficult to label. Recent-

ly, convolutional neural network (CNN) was specially intro-

duced to cross-scene crowd counting [33]. Specifically, the

model was pretrained using a given dataset and then fine-

tuned for an unseen target scene by feeding the retrieved

similar training samples.

However, existing regression methods for vehicle count-

ing are very rare, which practically is rather difficult due

to the visual diversity of vehicle appearance (e.g. truck

vs. car). To our best knowledge, only a three-level cascad-

ed regression model in pixel domain [16] was proposed to

classify the vehicle scenes, and no any compressed-domain

method has been investigated yet. Actually, current work-

s in compressed domain mostly focus on the detection and

segmentation of moving objects [13, 26, 14]. Other relat-

ed works to vehicle counting are to estimate some traffic

parameters, e.g. the congestion level, and vehicle speed.

Specifically, Porikli et al. [22] proposed a traffic conges-

tion estimation method by analyzing the MPEG-encoded

videos, where the DCT coefficients and MVs were exploit-

ed. Tusch et al. [29] introduced four features associated

with the vehicle density to estimate level of service (LOS).

Yu et al. [32] proposed to estimate the mean vehicle speed

3017

H.264

bitstream

partition

modes
Normalized

MV field
MV

Normalization
Data parsing

Foreground

segmentation

Feature

Extraction
Estimation

Perspective

Normalization

Selected

framesReconstruction

vehicle

counts

Preprocessing

Decoder

HCR

Figure 2. The framework of our proposed highway vehicle counting system, which includes three key stages: (1) video preprocessing,

(2) feature extraction, and (3) estimation of vehicle count. The preprocessing stage is to extract the video encoding information from

input video bitstream, and then prepares the necessary data for extracting features. Then these data are translated into various features to

represent the complex traffic scenes. Finally, the number of vehicles is estimated using the proposed HCR.

using MVs of MPEG-encoded videos.

3. Our Approach

3.1. Overview

In this paper, we propose to solve the vehicle counting

issue in compressed domain, aiming at approaching the per-

formance achieved by the pixel-domain methods. The main

obstacles to vehicle counting in compressed domain lie in

the limited and inaccurate provision of available informa-

tion and broad-changing of traffic scenes. In this work, we

tackle these challenges by constructing rich features, which

can effectively exploit the provided data for representing the

traffic scenes, and proposing a novel counting model, i.e.

Hierarchical Classification based Regression (HCR), which

adaptively applies the suitable submodel for the given traffic

scene according to its presenting characteristics.

Figure 2 shows the framework of the proposed counting

method. It can be seen that the processing pipeline main-

ly comprises of three key stages: (1) video preprocessing,

(2) feature extraction, and (3) estimation of vehicle count.

Specifically, in the preprocessing stage, we first parse the

input video bitstream to extract the video encoding infor-

mation, and then prepare the necessary data for extracting

features. Then we translate these data into various features,

which are expected to be rich enough for accurately rep-

resenting complex traffic scenes. Finally, we conduct the

vehicle counting, i.e. estimate the number of vehicles, us-

ing the proposed HCR. In this paper, H.264 codec [30] is

particularly adopted due to its high encoding efficiency and

wide application in the real video surveillance systems. For

a given compressed video bitstream, we mainly extract the

metadata of Motion Vector (MV) and Macro-block (MB)

partition modes.

3.2. Preprocessing

The preprocessing stage targets to produce the metadata

of standardized format from the raw video bitstream, which

mainly includes the motion vector normalization, macro-

block weighting, foreground segmentation, and perspective

normalization.

3.2.1 Motion vector normalization

In the H.264 compressed format, MB is the basic unit of

video encoding [30]. The MBs can be encoded in various

block partition modes, such as 16×16, 16×8, 8×16, 8×8,

8 × 4, 4 × 8, and 4 × 4, and each block corresponds to a

MV. In addition, multiple reference frames can be used for

one frame in order to improve the efficiency of inter-frame

encoding. Thus the MVs in the same frame often have d-

ifferent temporal scales. In this work, we use the temporal

interpolation to normalize the MVs to a uniform temporal

scale. Let Bij denotes the MB at the location (i, j), where

i and j denote the index of MB along the X-axis and Y-axis

in the video frames, respectively. The MV of Bij at the time

t is denoted by Vij(t). The corresponding normalized MV

is defined as:

Ṽij(t) =
Vij(t)

t− r
, (1)

where r is the time of the reference MB.

The mode of the smallest block in H.264 is 4 × 4. In

order to obtain a uniform MV field, we split all the block-

s into 4 × 4, e.g. one 8 × 16 would be partitioned into 8
pseudo-MBs with the size of 4 × 4. Particularly, the MVs

of 4 × 4 pseudo-MBs are straightforwardly assigned using

the MV of corresponding parent MB. Additionally, for the

intra-coded blocks originally having no MVs, we adopt the

Polar Vector Median (PVM) [13] method to compute their

MVs. Finally, we obtain a normalized MV field Ṽ .

3018

(a) (b)

(c) (d)

Figure 3. Foreground Segmentation: (a) Original frame, (b) ROI,

(c) Foreground mask, and (d) Foreground image.

3.2.2 Macro-block weighting

There are seven different partition sizes in H.264 with the

application of deformable macro-block technology. Partic-

ularly, the areas around moving objects usually have small

partition sizes in order to achieve higher compression ef-

ficiency [26]. Therefore, the blocks with smaller partition

sizes are more likely to represent the actual vehicle motion,

and thus are expected to make more contributions to holis-

tic features. We assign MBs different weights according to

the MB partition modes. Let fm(Bij) denotes the partition

mode of Bij . Then the weights are determined by following

the rules as:

Wij =























1 if fm(PBij) is 16× 16
2 if fm(PBij) is 16× 8 or 8× 16
3 if fm(PBij) is 8× 8
4 if fm(PBij) is 8× 4 or 4× 8
5 if fm(PBij) is 4× 4

, (2)

where PBij denotes the parent block of the 4 × 4 pseudo-

block Bij .

3.2.3 Foreground segmentation

This process is to separate the foreground regions from

background in the normalized MV field. To this end, we

first apply a binary region of interest (ROI) to the MV field.

Then we adopt the thresholding strategy to produce the fi-

nal foreground regions, i.e. the block Bi inside the ROI

is labeled as foreground if its MV is larger than the preset

threshold Tf . To capture the vehicle motion in all scenes,

the threshold is set as Tf = 1 in our implementation. Fig-

ure 3 presents an exemplar of segmentation result. It can be

observed that the moving vehicles can be roughly contained

by the segmented foreground regions although part of back-

grounds may also be involved. In particular, adopting the

simple thresholding strategy here is due to its low complex-

ity, and we believe that the performance would be further

improved if some advanced methods are taken.

3.2.4 Perspective normalization

In the video surveillance systems, the far vehicles appear

smaller than those closer to the camera due to the perspec-

tive effects. Consequently, the features extracted from the

same object with different scene depths would be diversi-

fied. To deal with such an issue, the perspective normaliza-

tion is usually performed. Practically, each block is scaled

with a weight, and larger weights are assigned to the further

vehicle candidates.

The perspective effect is almost fixed for a certain cam-

era or workstation. Thus we only need to periodically sam-

ple the video frames and then update the perspective nor-

malization map (denoted by S with each block one value).

In this paper, we first adopt the method in [3] to compute

the perspective normalization map in the pixel domain, and

then transform it into the desired map S in the MV filed by

down-sampling.

3.3. Feature extraction

We elaborate on the feature extraction in this section.

Ideally, the features should capture the significant informa-

tion associated with vehicle count or density. To this end,

we develop a batch of low-level features, which cover the

size, shape, motion, and texture.

Size: The size features can capture the magnitude of

holistic foreground segment. Here we particularly use two

metrics, i.e. area, and perimeter length.

• Area: It is defined as the total number of blocks be-

longing to the segmented foreground. This feature de-

noted by fa is calculated from the perspective normal-

ization map S and MB type weights Wij , i.e.

fa =
∑

Bij∈F

Wij · Sij , (3)

where F represents the foreground area.

• Perimeter length: It is defined as the total number of

blocks lying on the perimeter of foreground segment.

Formally, this feature denoted by fl is weighted using

MB type weights Wij and square root of perspective

normalization map S as in [3]:

fl =
∑

Bij∈P

Wij ·
√

Sij , (4)

where P denotes the set of perimeter blocks.

3019

Shape: Aside from the Perimeter length, which cap-

tures the global properties of the segments, the orientation

of perimeter blocks also carries significant shape informa-

tion due to presenting some local and internal pattern. In

this paper, therefore, we define the shape feature as an ori-

entation histogram of perimeter blocks, where eight bins are

used. For the block Bij , the orientation oij and magnitude

mij are calculated as follows:

oij = tan−1{gy(Ṽij)/gx(Ṽij)}

mij =
√

gx(Ṽij)2 + gy(Ṽij)2
, (5)

where gx(Ṽij) and gy(Ṽij) denote the horizontal and verti-

cal components of Ṽij , respectively. In addition, the voting

weight of Bij is adjusted by W and S when computing the

histogram, and is (mij ·Wij ·
√

Sij).
HOMV: MVs reflect the motion orientation and magni-

tude of objects represented by MBs. In this paper, we com-

pute a feature named Histogram of Oriented Motion Vector

(HOMV) to present such information. The calculation of

HOMV is similar to the shape feature, except for the M-

B range and weights. To be specific, all foreground MBs

are involved for HOMV, and the voting weight for Bij is

(mij ·Wij · Sij).
Texture: The texture features are strongly correlated

to the vehicle density for traffic scenes. Compared with

scenes of low density, scenes of high density tend to present

finer patterns [20]. So we extract the texture feature to

capture such a clue. In object counting, two texture fea-

tures are widely used, i.e. Gray-level co-occurrence matrix

(GLCM) [11, 3] and local binary pattern (LBP) [19]. In this

work, we particularly employ the LBP operator [21] due to

its simplicity and effectiveness. The LBP feature is con-

structed by comparing the MVs of eight-neighboring MBs

to the target one. Formally, LBP of the target MB Bij is

defined as:

LBPij =
∑

Bk∈Nij

s(d(Ṽij , Ṽk)) · 2
k, (6)

where Nij represents the set of neighboring MBs of Bij ,

and Bk is its element with k = 0, 1, · · · , 7. In addition,

d(·) is a distance metric function to measure the similarity

between two MVs, which is defined as:

d(Ṽi, Ṽj) = exp

{

−
‖Ṽi − Ṽj‖

2

‖Ṽi‖2 + ‖Ṽj‖2

}

. (7)

And s(·) is a sign function:

s(x) =

{

1 x ≥ Ts

0 x < Ts
. (8)

Here Ts is a threshold, which is set to 0.9 throughout our

experiments.

Figure 4. Example frames from the UCSD highway traffic dataset.

The sample frames present various vehicle densities: light (top

row), medium (middle row) and heavy (bottom row).

Figure 5. Correspondence between vehicle count and foreground

size. The correlation is quite complicated compared to the sim-

ple linearity, while the local linearity is approximately held if the

vehicle density varies within a small range.

The final texture feature employed in this paper is the

histogram of the LBP outputs accumulated over all fore-

ground MBs. All of proposed features are then concatenat-

ed together to form the feature vector of one frame.

3.4. Counting method

Now we investigate the vehicle counting method that is

used to estimate the number of vehicles. In the previous

works, the regression based methods have shown impres-

sive performance [17, 25]. Thus we also adopt the regres-

sion as the base model. This work is the first attempt to

the vehicle counting in compressed domain, while the pre-

vious works mainly focus on the crowd counting in pixel

domain, e.g. on the UCSD pedestrian dataset [3] or Mall

dataset [6], in which the foreground areas vary nearly linear

with the number of people. However, such a correlation has

not been held yet for vehicle counting, especially in com-

pressed domain.

To intuitively show the characteristics of traffic scenes,

3020

Figure 4 provides some realistic highway images, and Fig-

ure 5 demonstrates an exemplar of the relationship between

the vehicle count and foreground area. It can be seen

that the correlation is quite complicated compared to the

simple linearity. Theoretically, the major factors causing

such complication include the broad variation of vehicle ap-

pearance, inaccurate information provision by compressed

videos, and wide visual field of surveillance cameras.

To tackle these challenges, we propose a Hierarchical

Classification based Regression (HCR) model in this work.

Here it is considered that the local linearity is approximate-

ly held if the vehicle density1 only varies within a small

range. That is, the traffic scenes containing different num-

bers of vehicles present the density-specific patterns. This

assumption practically is reasonable according to the results

in Figure 5, and exactly turns to be the core idea of HCR.

The HCR model is illustrated in Figure 1. Specifical-

ly, we first apply a multi-class classifier to divide the traffic

scenes into K categories representing different ranges of

vehicle density (K = 3 is adopted in our experiments with

heavy, medium, and light as used in [4]). However, the es-

timation error may be rather bigger once the input traffic

scene is misclassified. Then we also introduce the second-

layer classifiers to deal with the boundary cases, which to-

gether with the first-layer classifiers form a soft-segmented

multiple classifiers. Here the (K − 1) binary classifiers are

deployed in the second layer, each of which takes charge of

one boundary area. When an new traffic scene arrives, it

would be separately classified by both layers of classifiers,

and two or three confidence scores are obtained. In partic-

ular, only the samples with the scores in the second layer

more than a given threshold Tc = 0.7 are identified to be-

long to the boundary area. As a result, the input scene is

finally assigned to one of the (2K − 1) classes.

In our implementation, we adopt the SVM classifier with

radial basis function (RBF) kernel [5] to perform the clas-

sification, and Gaussian Process Regression (GPR) [24],

which does not impose any prior assumptions, as the re-

gression model to estimate the number of vehicles for each

class. It is worth pointing out that by combining differen-

t covariance functions, e.g. linear, rational quadratic, and

squared-exponential, GPR has the flexibility to encode d-

ifferent assumptions about the function we wish to learn.

In this work, the following covariance function [3] is em-

ployed:

K(xi,xj) = a0+a1x
T
i xj+a2 exp

(

−
|xi − xj |

2

2a3

)

+δija4.

(9)

Here δij is a sign function with 1 if i = j and 0 otherwise,

and θ = (a0, a1, a2, a3, a4) is the hyper-parameters, which

defines the covariance function. The first two terms capture

1It is equivalent to the vehicle count for fixed camera vision.

the linear trend, the third term captures local non-linearities,

while the last term models the observation noise.

4. Experiment

There are three types of temporally interleaved frames

in H.264 bitstream [30]: I-frame, P-frame and B-frame.

I-frame is absolutely intra-coded, P-frame is motion com-

pensated in the forward direction from I-frame or other P-

frame, and B-frame is motion compensated in both forward

and backward directions. In our experiments, only P-frames

and I-frames are used since the consecutive P-frames can

provide continuous motion information. All videos are en-

coded using the H.264/AVC JM v.18.6 encoder2. We use

the same frame features extracted in Section 3.3 for both

classification and counting.

4.1. Dataset

Due to the lack of benchmark database for vehicle count-

ing, we adopt the UCSD highway traffic dataset [4] for eval-

uation. This dataset consists of 254 video sequences of day-

time highway traffic in Seattle and Washington. Each video

contains 42 to 52 frames recorded at 10 frames per second

(fps) and the resolution is 320 × 240 pixels. Figure 4 pro-

vides some exemplar frames. Such a dataset is challenging

due to containing diverse traffic patterns, e.g. covering the

light, medium and heavy congestion with various weather

conditions (clear, overcast, and raining).

The UCSD dataset was originally built for classification.

To perform the vehicle counting considered in this work,

we constructed the corresponding counting dataset with the

same traffic videos. Specifically, we first select a region of

interest (ROI) in the traffic scene (see Figure 3(b)). Then

we extract 8 samples from each video every 5 frames, i.e.

the 5th, 10th, 15th, 20th, 25th, 30th, 35th, and 40th frames.

Finally, we manually label these frames by marking the cen-

tral points of vehicle bodies. As a result, a total of 42, 859
vehicles in the 2032 frames are labeled, which cover all rep-

resentative traffic situations in the USCD dataset.

As for the classification, we define the dense categories

by counting the labeled vehicles. Specifically, the samples

containing vehicles less than 20 are categorized as light, the

ones between 20 and 40 are as medium, and the rests are as

heavy. Besides, we define the boundary area of light and

medium as the range of [16, 24], and that of medium and

heavy is [36, 44].

4.2. Classification results

In the experiment, the samples were randomly split in-

to the training set containing 800 samples and the test set

2http://iphome.hhi.de/suehring/tml/

3021

http://iphome.hhi.de/suehring/tml/

Number of training samples 200 300 400 500 600 700 800

size 3.700 3.411 3.441 3.358 3.145 3.034 2.935

size + shape 3.641 3.360 3.338 3.315 3.009 2.909 2.808

size + shape + HOMV 3.582 3.324 3.288 3.281 2.899 2.824 2.702

Ours (with all features) 3.389 3.214 3.193 3.063 2.813 2.736 2.593

[3] 3.324 3.294 3.217 3.074 2.838 2.650 2.653

[25] 3.301 3.242 3.196 3.181 3.035 2.586 2.543

Table 1. Comparison of approaches and feature sets on UCSD dataset with the first splitting strategy.

Number of training samples 200 300 400 500 600 700 800

size 3.981 3.747 3.719 3.665 3.577 3.352 3.332

size + shape 3.865 3.639 3.576 3.474 3.355 3.179 3.173

size + shape + HOMV 3.820 3.618 3.556 3.448 3.310 3.110 3.111

Ours (with all features) 3.639 3.483 3.420 3.332 3.142 2.956 2.938

[3] 4.140 3.581 3.439 3.515 3.229 3.020 2.970

[25] 3.866 3.443 3.432 3.268 3.170 2.923 2.917

Table 2. Comparison of approaches and feature sets on UCSD dataset with the second splitting strategy.

200 300 400 500 600 700 800
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

training size

A
c
c
u
ra
c
y

Figure 6. Classification accuracies for different training sizes.

holding the remaining 1232 samples to balance the differen-

t traffic patterns and weather conditions in the training and

test set. The feature of any frame for classification is gen-

erated by averaging the features of five consecutive neigh-

boring frames in order to improve the robustness. We in-

crease the number of training samples from 200 to 800 with

the interval of 100 to investigate its influence to the perfor-

mance. For each training setting, we repeat the experiment

five times, and report the mean classification accuracy. Fig-

ure 6 gives the classification results under different numbers

of training samples. It can be seen that the classification ac-

curacy is around 90% and increases as more training sam-

ples are used.

In addition, we compare the proposed method to the

pixel-domain baseline methods [4, 8]. For fair comparison,

the same training/test samples and settings are used, and

the average features on the whole video clips are adopted

as video representations. On this dataset, we finally achieve

the mean classification accuracy of 94.22%, which is very

close to the best performance of 94.50% achieved by [4]

and 95.28% by [8]. These results show that the features

extracted from encoded videos are discriminative and ro-

bust enough for classification, i.e. the compressed-domain

method is rather competitive to the pixel-domain ones.

4.3. Counting results

For vehicle counting, we adopt the mean-absolute-error

(MAE) to measure the performance, which represents the

difference between the predicted counts and the ground

truth. Here we conduct multiple experiments with differ-

ent combinations of features in order to demonstrate the ef-

fect of each feature. In addition, we also compare the pro-

posed method against the pixel-domain regression methods

in [3, 25]. For this type of experiments, two splitting strate-

gies are adopted, and each experiemnt is repeated five times.

For the first strategy, the samples are randomly split into the

training set containing 800 samples and the test set contain-

ing 1232 samples as in the classification experiment. Con-

sequently, the different traffic scenarios and weather condi-

tions are roughly balanced for the training and test sets. The

second strategy is to randomly select 80 of 254 videos and

use the samples in the selected videos as the training set.

By selecting videos rather than samples, we can remove the

impact that the training and test samples may from the same

video.

Table 1 and Table 2 report the resulting MAEs for both

splitting strategies. It can be seen that the counting per-

formance is consistently improved as more features are im-

3022

200 300 400 500 600 700 800
2

2.5

3

3.5

4

training size

M
A

E

GP

MGP

HCR-ideal

HCR

Figure 7. Comparison of MAE for different models. Here GP de-

notes the single GPR model. MGP represents the one-layer multi-

regression model, and HCR-ideal is the ideal version of HCR that

adopts the ground truth as classification results.

posed, which demonstrates the effectiveness of all proposed

features for vehicle counting. Additionally, our method re-

sults in the similar performance to the pixel-domain meth-

ods [3, 25], although the second splitting strategy involves a

slight performance decrease due to the inconsistence of the

sample patterns for training and testing. Thus the proposed

method is considered to be very competitive.

We further evaluate the proposed HCR by comparing

with the single Gaussian model (GP), one-layer multi-

regression model (MGR), and the ideal version of HCR that

adopts the classification ground truth to replace the predict-

ed ones. Figure 7 provides an intuitive comparison perfor-

mance for different methods. Evidently, the multiple re-

gressions always outperform the single regression, and the

introduced second-layer classifiers in HCR put the counting

performance towards the optimal results.

5. Conclusion

In this work, we present a highway vehicle counting

method in compressed domain. Our purpose is to achieve

acceptable estimation performance approaching the pixel-

domain methods. Specifically, we first developed a batch of

low-level features by utilizing the codec metadata of com-

pressed videos. Then we proposed a hierarchical classifica-

tion based regression model (HCR) to estimate the number

of vehicles. Finally, we verified the effectiveness of the pro-

posed method through the experimental evaluation. This

work shows that the compressed-domain method may be

very applicable for the real-world video surveillance sys-

tems, due to the advantages of low complexity, convenient

deployment, and competitive performance.

Acknowledgements

This work is supported partially by the National Nat-

ural Science Foundation of China under Grant 61233003

and 61203256, Natural Science Foundation of Anhui

Province (1408085MF112), and the Fundamental Research

Funds for the Central Universities (WK3500000002 and

WK3490000001).

References

[1] R. V. Babu, M. Tom, and P. Wadekar. A survey on com-

pressed domain video analysis techniques. Multimedia Tools

and Applications, 2014.

[2] E. Baş, F. S. Salman, et al. Automatic vehicle counting from

video for traffic flow analysis. In IVS, IEEE, 2007.

[3] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy pre-

serving crowd monitoring: Counting people without people

models or tracking. In CVPR, 2008.

[4] A. B. Chan and N. Vasconcelos. Classification and retrieval

of traffic video using auto-regressive stochastic processes. In

IVS, IEEE, 2005.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support

vector machines. TIST, 2011.

[6] K. Chen, C. C. Loy, S. Gong, and T. Xiang. Feature mining

for localised crowd counting. In BMVC, 2012.

[7] A. C. Davies, J. H. Yin, S. Velastin, et al. Crowd monitor-

ing using image processing. Electronics & Communication

Engineering Journal, 1995.

[8] K. G. Derpanis and R. P. Wildes. Classification of traffic

video based on a spatiotemporal orientation analysis. In

WACV, 2011.

[9] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian

detection: An evaluation of the state of the art. TPAMI, 2012.

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. TPAMI, 2010.

[11] R. M. Haralick, K. Shanmugam, and I. H. Dinstein. Textural

features for image classification. TSMC, 1973.

[12] S.-C. Huang and B.-H. Chen. Automatic moving object ex-

traction through a real-world variable-bandwidth network for

traffic monitoring systems. TIE, 2014.

[13] S. H. Khatoonabadi and I. V. Bajić. Video object tracking in

the compressed domain using spatio-temporal markov ran-

dom fields. TIP, 2013.

[14] S. S. Kruthiventi and R. V. Babu. Crowd flow segmentation

in compressed domain using crf. In ICIP, 2015.

[15] V. Lempitsky and A. Zisserman. Learning to count objects

in images. In NIPS, 2010.

[16] M. Liang, X. Huang, C.-H. Chen, X. Chen, and A. Tokuta.

Counting and classification of highway vehicles by regres-

sion analysis. TITS, 2015.

[17] C. C. Loy, K. Chen, S. Gong, and T. Xiang. Crowd count-

ing and profiling: Methodology and evaluation. Modeling,

Simulation and Visual Analysis of Crowds, Springer, 2013.

[18] C. C. Loy, S. Gong, and T. Xiang. From semi-supervised to

transfer counting of crowds. In ICCV, 2013.

3023

[19] W. Ma, L. Huang, and C. Liu. Advanced local binary pattern

descriptors for crowd estimation. In PACIIA, 2008.

[20] A. Marana, S. Velastin, L. Costa, and R. Lotufo. Estimation

of crowd density using image processing. In IEE Colloquium

Image Processing for Security Applications, 1997.

[21] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution

gray-scale and rotation invariant texture classification with

local binary patterns. TPAMI, 2002.

[22] F. Porikli and X. Li. Traffic congestion estimation using hm-

m models without vehicle tracking. In IVS, IEEE, 2004.

[23] V. Rabaud and S. Belongie. Counting crowded moving ob-

jects. In CVPR, 2006.

[24] C. E. Rasmussen. Gaussian processes for machine learning.

2006.

[25] D. Ryan, S. Denman, S. Sridharan, and C. Fookes. An eval-

uation of crowd counting methods, features and regression

models. CVIU, 2015.

[26] H. Sabirin and M. Kim. Moving object detection and track-

ing using a spatio-temporal graph in h. 264/avc bitstreams

for video surveillance. TMM, 2012.

[27] B. Tan, J. Zhang, and L. Wang. Semi-supervised elastic net

for pedestrian counting. Pattern Recognition, 2011.

[28] B. Tian, B. T. Morris, M. Tang, Y. Liu, Y. Yao, C. Gou,

D. Shen, and S. Tang. Hierarchical and networked vehicle

surveillance in its: A survey. TITS, 2015.

[29] R. Tusch, F. Pletzer, A. Krätschmer, L. Böszörmenyi, B. Rin-

ner, T. Mariacher, and M. Harrer. Efficient level of service

classification for traffic monitoring in the compressed video

domain. In ICME, 2012.

[30] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra.

Overview of the h. 264/avc video coding standard. TCSVT,

2003.

[31] W. Xia, J. Zhang, and U. Kruger. Semisupervised pedestri-

an counting with temporal and spatial consistencies. TITS,

2015.

[32] X. Yu, P. Xue, L. Duan, and Q. Tian. An algorithm to esti-

mate mean vehicle speed from mpeg skycam video. Multi-

media Tools and Applications, 2007.

[33] C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd

counting via deep convolutional neural networks. In CVPR,

2015.

[34] R. Zhao and X. Wang. Counting vehicles from semantic re-

gions. TITS, 2013.

3024

