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Abstract

Aiming at simultaneous detection and segmentation (SD-

S), we propose a proposal-free framework, which detect and

segment object instances via mid-level patches. We design

a unified trainable network on patches, which is followed

by a fast and effective patch aggregation algorithm to in-

fer object instances. Our method benefits from end-to-end

training. Without object proposal generation, computation

time can also be reduced. In experiments, our method yields

results 62.1% and 61.8% in terms of mAP r on VOC2012

segmentation val and VOC2012 SDS val, which are state-

of-the-art at the time of submission. We also report results

on Microsoft COCO test-std/test-dev dataset in this paper.

1. Introduction

Object detection and semantic segmentation have been

core tasks of image understanding for long time. Object de-

tection focuses on generating bounding boxes for objects.

These boxes may not be accurate enough to localize object-

s. Meanwhile semantic segmentation is to predict a more

detailed mask in pixel-level for different classes. It howev-

er ignores existence of single-object instances.

Recently, simultaneous detection and segmentation (S-

DS) [14] becomes a promising direction to generate pixel-

level labels for every object instance, naturally leading to

the next-generation object recognition [24] goal. Accurate

and efficient SDS can be used in a lot of disciplines as a

fundamental tool, where both pixel-wise label and object

instance information can help build robotics, achieve auto-

matic driving, enhance surveillance systems, construct in-

telligent home, to name a few.

SDS is more challenging than object detection and se-

mantic segmentation separately. In this task, instance-level

information and pixel-wise accurate mask for objects are to

be estimated. Nearly all previous work [14, 5, 15, 3] took
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the bottom-up segment-based object proposals [35, 31] as

input and modeled the system as classifying proposals with

the help of powerful deep convolutional neural networks

(DCNNs). Classified proposals are either output or refined

in post-processing to produce final results.

Issues of Object Proposals in SDS It has been noticed

that systems with object-proposal input may be accompa-

nied by a few shortcomings. First, generating segment-

based proposals takes time. The high-quality proposal

generator [31] that was employed in previous SDS work

[14, 5, 15, 3] takes about 40 seconds to process one image.

It was discussed in [5] that using previous faster segment-

based proposals decreases performance. The newest pro-

posal generators [30] are not evaluated yet for SDS.

Second, the overall SDS performance is bounded by the

quality of proposals since they only select provided pro-

posals. Object proposals inevitably contain noise regarding

missing objects and errors inside each proposal. Last but

not least, if a SDS system is independent of object propos-

al generation, end-to-end parameter tuning is impossible.

Consequently, the system loses the chance to learn feature

and structure information from images directly, which how-

ever could be important to further improve the system per-

formance with information feedback.

Our End-to-End SDS Solution To address these issues,

we propose a systematically feasible scheme to integrate

object proposal generation into the networks, enabling

end-to-end training from images to pixel-level labels for

instance-aware semantic segmentation.

Albeit beautiful in concept, practically establishing suit-

able models is difficult due to various scales, aspect ratios,

and deformation of objects. In our work, instead of seg-

menting objects directly, we propose segmenting and clas-

sifying part of or entire objects using many densely locat-

ed patches. The mask of an object is then generated by

aggregating masks of the overlapping patches in a post-

processing step, as shown in Fig. 1. This scheme shares the

spirit of mid-level representation [1, 7, 36] and part-based
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image densely localized patches aggregation result

Figure 1. Objects overlapped with many densely localized patches. After segmenting objects in different patches, aggregation can be used

to infer complete objects.

model [37, 16]. It is yet different by nature in terms of sys-

tem construction and optimization.

In our scheme, overlapped patches gather different levels

of information for final object segmentation, which makes

the result more robust than prediction from only one input.

Our end-to-end trainable SDS system is thus with output of

semantic segment labels in patches.

Our Contributions Our framework to tackle the SDS

problem makes the following main contributions.

• We propose the strategy to generate dense multi-scale

patches for object parsing.

• Our unified end-to-end trainable proposal-free network

can achieve segmentation and classification simultane-

ously for each patch. By sharing convolution in the

network, computation time is reduced and good quali-

ty results are produced.

• We develop an efficient algorithm to infer the segmen-

tation mask for each object by merging information

from mid-level patches.

We evaluated our method on PASCAL VOC 2012 seg-

mentation validation and VOC 2012 SDS validation bench-

mark datasets. Our method yields state-of-the-art perfor-

mance with reasonably short running time. We also evalu-

ated it on Microsoft COCO test-std and test-dev data. De-

cent performance is achieved based on the VGG-16 network

structure without network ensemble.

2. Related Work

The SDS task is closely related to object detection, se-

mantic segmentation, and proposal generation. We briefly

review them in this section.

Object Detection Object detection has a long history

in computer vision. Before DCNN shows its great abil-

ity for image classification [21, 33], part-based models

[9, 37] were popular. Recent object detection framework-

s [11, 12, 17, 37, 29, 34, 23, 32, 10] are based on DCNN

[21, 33] to classify object proposals. These methods either

take object proposals as independent input [12, 37, 29, 34],

or use the entire image and pool features for each propos-

al [17, 11, 32, 10]. Different from these methods, Ren et

al. [32] unified proposal generation and classification with

shared convolution feature maps. It saves time to generate

object proposals and yields good performance.

Semantic Segmentation DCNNs [21, 33] also boost per-

formance of semantic segmentation [26, 5, 15, 27, 2, 20, 28,

25]. Related methods can be categorized into two streams –

one utilizes DCNNs to classify segment proposals [15, 5]

and the other line is to use fully convolutional network-

s [26, 2, 20, 25] for dense prediction. CRF can be applied in

post-processing [2] or incorporated in the network [20, 25]

to refine segment contours.

SDS SDS is a relatively new topic. Hariharan et al. [14]

presented pioneer work. It took segment-based object pro-

posals [31] as input similar to object detection. Two net-

works – one for bounding boxes and one for masks – were

adopted to extract features. Then features from these net-

works were concatenated and classified by SVM [4].

Hariharan et al. [15] used hyper-column representation

to refine segment masks. But updating all proposals is com-

putationally too costly, especially when complex networks,

such as VGG [33], are deployed. So the method made use

of detection results [12] and a final rescore procedure was

adopted. Chen et al. [3] developed an energy minimization

framework incorporating top-down and bottom-up informa-
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Figure 2. Objects consist of many different patches. This example

shows many semantically meaningful human body and car region-

s. Part of or the entire objects can be in a patch.

tion to handle occlusion [14]. Dai et al. [5] resolved the

efficiency problem by pooling segments and bounding box

features from convolutional feature maps shared by all pro-

posals. All methods rely on proposal generation [31] and

conduct separate classification afterwards.

Liang et al. [22] proposed a proposal-free network to

tackle SDS. In [22], the category-level segmentation mask

is first generated by the method of [2]. Then another net-

work is used to assign pixels to objects by predicting loca-

tion of objects for every pixel. Finally, post-processing is

performed to generate the instance-level mask. It is notable

that we use a completely different system. Instead of having

these separate steps, we aggregate mid-level patch segment

prediction results for SDS. Our unified framework is thus

more effective.

3. Our Method

We solve the SDS problem via aggregation of local seg-

ment prediction results. We generate multi-scale dense

patches, and classify and segment them in a network. We

infer objects based on these patches. In the following, we

first motivate our SDS network and give an overview.

3.1. Motivation

An object consists of patches corresponding to parts.

This concept was extensively explored in mid-level repre-

sentation work [1, 7, 36] and found useful to extract and

organize structural information. Intuitively, by dividing ob-

jects into semantic patches, as shown in Fig. 2, it is easier

to model and highlight object variation in local regions.

Different from the traditional way [9, 12, 11], which

classifies sliding-windows or proposals as objects, our

method regards semantic patches as part of an object. Pre-

vious proposal-classification frameworks, contrarily, are

based on the assumption that most objects are already there

in proposals and what remains to do is to pick them out.

They do not search for missing objects and thus greatly de-

pend on the quality of object proposals. Our strategy to

utilize patches to represent objects is more flexible.

3.2. Network Structure

Our network is illustrated in Fig. 3. It jointly learns

the classification label and segmentation mask on each can-

didate patch. The key components are shared convolution

layers, multi-scale patch generator, multi-class classifica-

tion branch, and the segmentation branch.

3.2.1 Convolution Layers

In our method, convolution layers are shared among subse-

quent classification and segmentation branches. It greatly

decreases model complexity comparing to extracting fea-

tures for these two branches separately. The following

classification and segmentation branches can be regarded

as multi-task training [11], which enhances the generaliza-

tion ability of the network. In our case, the segmentation

branch seeks precise localization and instance masks while

the classification branch infers semantic meaning of patch-

es. They benefit each other via the shared convolution pa-

rameters.

We adopt 13 convolution layers interleaved with ReLU

and pooling layers, similar to those of VGG-16 [33]. We

abandon the last pooling layer to achieve our goal. We de-

note G as the last shared convolution feature map. With four

pooling layers, the network stride is 16 – that is, the input

image is down-sampled by a factor of 16.

3.2.2 Multi-Scale Patch Generator

One of our major contributions is multi-scale patch genera-

tor as illustrated in Fig. 4, which is essential to construct the

patch-based framework. This part aims at generating multi-

scale patches from the original image, naturally cropping

their corresponding feature grids from G, and aligning these

grids to improve the generalization ability. Also, a new s-

trategy is proposed to assign the classification and segment

labels to these patches.

Candidate Patch Generation We break objects into part-

s and aggregate them to infer objects. This scheme is easier

to achieve compared with previous proposal-based methods

that require objects tightly covered by proposals. For high
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Figure 3. Overview of our network. The cubes represent feature maps and rectangles represent operations. It takes a complete image

as input. Then a multi-scale patch generator is applied to produce patches on different scales and align corresponding feature grids.

Segmentation and classification branches are responsible for segmenting and classifying patches respectively.

recall, we use four scales of patches, i.e., 48× 48, 96× 96,

192×192, and 384×384 respectively. Sliding-windows are

used to generate these patches with stride 16, which make

each object overlapped with multiple patches in appropriate

scales.

Each patch Pi is represented by a four-tuple (r, c, h, w),
where (r, c) is the coordinate of its top-left corner while

h and w are height and width. Each Pi corresponds to a

down-sampled feature grid Gi on the feature map G. Fol-

lowing the design of [11, 17], each Gi is represented as

( r
16
, c
16
, h
16
, w
16
). The scaling factor 16 is the network stride.

Then Gi for all i are small grids with stride 1 on G.

By generating multi-scale patches from the single-scale

input image, we get several levels of feature grids. They are

cropped from the shared convolution feature map, which do

not increase computation cost. The related work of learn-

ing to segment object candidates [30] takes multi-scale in-

put and utilizes single-scale windows to search for objects.

The major difference is that our method is more flexible

for multi-scale recognition tasks. It also saves computation

time consumed by convolution layers.

Scale Alignment Note that the above feature grids Gis

are with different spatial resolutions. We map them to the

same scale to achieve scale-invariant generalization abili-

ty of the network for both classification and segmentation

branches.

As explained above, the spatial scales of Gi on G are

3 × 3, 6 × 6, 12 × 12, and 24 × 24 respectively since we

apply stride 16. We use deconvolution and pooling layers to

calibrate them to the same size 12×12, which well balances

efficiency and effectiveness. As shown in Fig. 4, we have

four cases, each corresponding to one scale. For scales 3×3
and 6 × 6, we use deconvolution layers [26] to up-sample

3×3 6×6 12×12 24×24

conv feature map

sliding window

Figure 4. Illustration of patch generation and alignment. Four s-

cales of patches correspond to the four scales of feature grids. We

align them to the same resolution.

them to scale 12× 12. The corresponding kernel-size-over-

stride values are 4×4

4
and 2×2

2
respectively. The deconvolu-

tion layer enriches spatial information, which is crucial for

the segmentation branch. We further apply 2 × 2/2 max-

pooling to map the 24 × 24 case back to the standard size.

The patches with spatial scale 12× 12 are left unchanged.

Label Assignment During Training Each patch Pi

should be associated with a class label li and a binary mask

Mi for system training. Since Pi may be just part of an ob-

ject, naively cropping labels from the ground-truth mask is

not optimal due to possibly complex object appearance and

boundary shape. We thus design the following rules to more

appropriately assign labels. We give one positive label to Pi

if it satisfies the following constraints.

1. Center of the patch is located on an object On and

2. area of On inside Pi is larger than half of On area and

3. area of On inside Pi is larger than one fifth of Pi area.
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IoU=0.89

IoU=0.83
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window

Figure 5. Illustration of patch overlap. Segment masks of the same

person are shown in rows with content overlap. For different per-

sons, segment masks generally do not overlap.

Only when all these constraints are satisfied, we assign the

object label of On to li and object segment of On contained

in Pi to Mi. This strategy reduces noise during training.

To enable multi-scale training in one pipeline and reduce

computation, we down-sample the patch mask to resolution

48× 48, which is the smallest scale of input patches.

By making patch Pi only responsible for the center ob-

ject On, we are able to distinguish among individual in-

stances. If there are multiple objects overlapped with Pi,

only the label and mask of On will be predicted. In other

words, for each patch, we segment only one object that the

patch is responsible for, rather than multiple objects over-

lapped with it to minimize ambiguity. The second and third

constraints are to make sure enough semantic information is

involved and the scale is appropriate. This simple strategy

is empirically very effective.

3.2.3 Multi-class Classification Branch

This branch takes Gis from the multi-scale patch generator

as input and predicts semantic label li of Pi. First, we apply

2 × 2 max-pooling to reduce the complexity of our model.

Similar to other standard design, we utilize three fully con-

nected layers to classify patches. The predicted score for

patch Pi is denoted as fc(Pi).

3.2.4 Segmentation Branch

Similar to multi-class classification branch, segmentation

branch also takes Gis as input. It segments part of or en-

tire object On in patch Pi. Note that we constrain that each

patch Pi is only responsible for one object On according to

the center location of Pi.

The intuition is similar to representing objects by the

center of bounding boxes [30]. But the major difference is

on relaxing the constraint that the entire object is enclosed

by the bounding box. The method of [30] aims at gener-

ating object proposals, which needs independent classifiers

for classification. Our network achieves simultaneous seg-

mentation and classification of mid-level patches. These

Algorithm 1 Patch Aggregation

Input: all patches {Pi} of the same scale, patch label-

s {xi}, patch masks {Yi}.

Procedure:

for Pk ∈ {Pi} do

for Pj ∈ Sr(Pk) do

if xk = xj then

Calculate okj , i.e., the overlap score of Pk andPj ;

Store Pk, Pj and okj as a triple in H;

Break;

end if

end for

Calculate okj with Pj ∈ Sc(Pk) in the same way;

Store Pk, Pj and okj as a triple in H;

end for

while there exist (oij ∈ H) and (oij > τ ) do

if Pi and Pj do not belong to any object then

Create a new object Qm = Yi ∪ Yj ;

else if either Pi or Pj belongs to an object Qn then

Qn = Qn ∪ Pj (or Qn = Qn ∪ Pi);

else if Pi ∈ Qm and Pj ∈ Qn then

Qm = Qm ∪Qn;

end if

Remove Pi, Pj and oij from H;

end while

Output: inferred objects in this scale, {Qi} with both the

mask and class label.

patches are not necessarily objects. After the final simple

aggregation step described in Sec. 3.3, objects are inferred.

We further model this branch as a pixel-wise classifier to

predict each element of mask Mi based on Gi directly. We

yield 48 × 48 classifiers, each for an element in Mi com-

posed of two fully connected layers interleaved with ReLU,

as shown in Fig. 3. The final prediction vector is reshaped

into the 48× 48 score map. After segmentation, we update

the size of predicted score map fs(Pi) to that of Pi. We

denote the resized score map as f̂s(Pi).

3.2.5 Training Loss and Strategy

In the training stage, we incorporate the loss of classifica-
tion and segmentation branches as

L(w) =
∑

i

[− log(f li
c (Pi)) +

λI(li 6= 0)

N

∑

j

− log(f j
s (Pi))],

(1)

where f li
c (Pi) is the prediction from the classification

branch for Pi belonging to class li. f j
s (Pi) is the predic-

tion from the segmentation branch at location j of Mi given

j ∈ [0, 482]. I(li 6= 0) is the indicator function, which is

one if li 6= 0 and zero otherwise. With this definition, we

only calculate the segmentation loss for foreground objects.
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VOC 2012 seg. val aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

PFN unified [22] 72.9 18.1 78.8 55.4 23.2 63.6 17.8 72.1 14.7 64.1 44.5 69.5 71.5 63.3 39.1 9.5 27.9 47.7 72.1 57.0 49.1

PFN independent [22] 76.4 15.6 74.2 54.1 26.3 73.8 31.4 92.1 17.4 73.7 48.1 82.2 81.7 72.0 48.4 23.7 57.7 64.4 88.9 72.3 58.7

MPA 1-scale 79.2 13.4 71.6 59.0 41.5 73.8 52.3 87.3 23.3 61.2 42.5 83.1 70.0 77.0 67.6 50.7 56.0 45.9 80.0 70.5 60.3

MPA 3-scale 79.7 11.5 71.6 54.6 44.7 80.9 62.0 85.4 26.5 64.5 46.6 87.6 71.7 77.9 72.1 48.8 57.4 48.8 78.9 70.8 62.1

Table 1. Experimental results (in % AP r) on VOC 2012 segmentation val. The entries with the best AP rs for each object class are

bold-faced.

VOC 2012 seg. val aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

PFN unified [22] 71.2 22.8 74.1 47.3 24.2 55.1 18.5 69.8 15.4 56.2 40.1 63.7 63.0 56.2 38.1 13.2 31.5 41.6 63.8 47.1 45.6

PFN independent [22] 70.8 21.1 66.7 47.6 26.7 65.3 27.5 83.2 17.2 64.5 45.1 74.7 67.9 64.5 41.3 22.1 48.8 56.5 76.2 58.2 52.3

MPA 1-scale 69.3 25.2 62.0 50.6 40.3 69.9 47.3 80.0 24.6 54.4 36.9 75.4 61.4 63.8 59.2 41.1 50.8 44.4 70.5 62.3 54.5

MPA 3-scale 71.0 23.7 64.3 50.4 42.5 74.7 54.9 78.3 26.9 59.1 40.8 76.7 61.2 64.2 62.8 42.4 53.7 46.7 73.3 63.1 56.5

Table 2. Experimental results (in % AP r
vol) on VOC 2012 segmentation val. The entries with the best AP r

vols for each object class are

bold-faced.

N is the number of elements in Mi. w is the parameter to

update. The first and second terms correspond to classifica-

tion and segmentation. λ is set to 10 for trade-off of these

two branches.

We back-propagate the gradient of this loss function to

update the parameters in the network. Different from the

structure of [32], which has four steps to train a two-branch

network, we train the two branches simultaneously to in-

crease stability and optimality.

3.3. Patch Aggregation

After network prediction, our patches are assigned with

predicted labels and segmented masks denoted as xi and Yi.

It is observed that if largely overlapped patches cover an

object instance, corresponding segment masks also overlap

heavily. For different instances, the segmented masks are

distinct from each other. This property is illustrated in Fig.

5, very common in images and usable to infer objects.

With the predicted semantic label for each patch, we pre-

vent errors accumulated from bottom-up grouping proce-

dures. By merging segmentation masks in nearby patches,

we optimize the recall for our method.

Our method to aggregate patches is sketched in Alg. 1.

For each Pi, we calculate the overlap score on segmen-

t masks for neighboring patches that have the same class

label. The overlap score oij of Pi and Pj is defined as the

intersection over union (IoU) [8] of the segmented mask in

respective patches. The row search range for Pi is the con-

secutive L patches located on the left hand side of Pi. We

denote patches in this range as Sr(Pi). The column search

range includes the consecutive L patches located on top of

Pi, denoted as Sc(Pi). We only need to search one direction

along the row and column since we iterate over all patches.

The patch pair with the highest overlap score is select-

ed where corresponding segment masks are merged. This

process iterates until no existing patch pair has the overlap

score higher than threshold τ . For each inferred object, we

take the maximum score of those patches as its prediction

score. Note that our computation is performed for differ-

ent scales independently. To deal with duplicate detection

results, we apply non-maximum suppression [37, 14].

4. Experimental Evaluation

We evaluate our method on the same benchmark datasets

[14, 5, 15, 3, 22]. We also give running-time discussion and

error analysis. Our multi-scale patch aggregation frame-

work is denoted as MPA in following experiments.

4.1. Datasets and Evaluation Metrics

Three benchmark datasets are used. The first is VOC

2012 segmentation val [8] subset. There are 1, 449 images

with high quality annotations. Note that for VOC test sub-

set [8], there is no testing server for the SDS task. We thus

compare our method with PFN [22] with the same training

data: 10, 582 training images and annotations are from the

train subset and SBD [13]; images in val subset are exclud-

ed. The second dataset is the SDS val subset of VOC 2012

and the annotations are from SBD [13]. There are 5, 732
images in this subset, on which we compare with the meth-

ods of [14, 15, 5] with the same 5, 623 training images in

the train subset. We also evaluate our method on Microsoft

COCO [24] dataset, which is newer and more complex for

SDS.

For training and fine-tuning our network, our system is

built upon the Caffe platform [19]. We use the released

VGG-16 [33] model to initialize the convolution layers in

our network. While for other new layers, we random-

ly initialize them by sampling from a zero-mean Gaus-

sian distribution. The initial learning rate is 0.001 and the

batch size is set to 10. The momentum value is 0.9 and

weight decay ratio is 0.001. We randomly pick a scale

from {0.6, 0.8, 1, 1.2, 1.4} to resize the input image and

crop patches with size 384× 384.

For evaluation, we use the metrics AP r and AP r
vol pro-
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input image ground-truth our result input image ground-truth our result

Figure 6. SDS results generated by our method on VOC 2012 SDS val subset. For each input image, we show the ground-truth label and

our segment result.

IoU threshold 0.6 0.7 0.8 0.9

PFN [22] 51.3 42.5 31.2 15.7

MPA 1-scale 54.6 45.9 34.3 17.3

MPA 3-scale 56.6 47.4 36.1 18.5

Table 3. Experimental results (in % AP r) on VOC 2012 segmen-

tation val by gradually increasing the IoU threshold. The entries

with the best AP rs are bold-faced.

posed in [14]. Similar to standard mAP [8], AP r is based

on the IoU of prediction and ground-truth. The difference is

thatAP r calculates IoU in terms of masks instead of bound-

ing boxes. AP r
vol is the average of AP r on 9 IoU threshold-

s, which is more comprehensive than AP r where the latter

uses IoU threshold 0.5 only.

During the course of inference, we apply 1-scale or 3-

scale input of the image to our network. The 3 scales are

0.6, 1 and 1.4 times of the original image resolution. We

use the same parameters on all datasets.

4.2. Results on VOC 2012 Segmentation Val

We compare with PFN [22] that produces state-of-the-art

results on VOC 2012 segmentation val subset at the time of

submission. This method is proposal-free, and yet relies on

an independent segmentation network.

The results are listed in Tables 1 and 2. The ‘PFN

unified’ system is trained by merging the segmentation

and instance branches to share convolution layers while in

Method mean AP r mean AP r
vol

SDS [14] 49.7 41.4

Hypercolumn [15] 56.5 -

Hypercolumn-rescore [15] 60.0 -

CFM [5] 60.7 -

MPA 1-scale 55.5 48.3

MPA 3-scale-rescore 61.8 52.0

Table 4. Experimental results (in % AP r and AP r
vol) on VOC

2012 SDS val. The best results are bold-faced.

‘PFN independent’ scheme, two independent networks are

trained. CRF [20] has been used to improve segments for

‘PFN’. As shown in [2], the improvement can be around 4
points under the quality measure of semantic segmentation.

Thus PFN enjoys this bonus naturally.

It is noteworthy that our results are produced without

CRF optimization. Even without this effective strategy, the

statistics shown in the two tables manifest the high quality

of our generated masks for instances. We further compare

our results with PFN measured by AP r with IoU threshold

ranging from 0.6 to 0.9 in Table 3. At all thresholds our

method performs better. Our single-scale system already

achieves state-of-the-art performance, while extra 2% im-

provement is yielded from our 3-scale structure.

4.3. Results on VOC 2012 SDS Val

We compare with CFM [5], SDS [14] and Hypercolumn

[15] on this dataset. The results are listed in Table 4. Since
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Figure 7. Impact of errors to performance measured by AP r ac-

cording to mislocalization (‘L’ bar); false positives when confused

with similar classes (‘S’ bar); and detection on background (‘B’

bar). This figure shows increase of AP r if we remove one type

of errors. (a) corresponds to the one-scale results on VOC 2012

segmentation val and (b) corresponds to the one-scale results on

VOC 2012 SDS val.

the methods we compare with only provide mean of per-

class results, we use them directly.

In particular, Hypercolumn [15] utilized an independent

detection system to rescore the refined mask. Our system

can similarly do that by using the tight bounding boxes of

our inferred objects for rescore. More specifically, we train

a Fast RCNN [11] on the same train subset. In the dura-

tion of testing, for each inferred object, we take detection

scores from Fast RCNN. That is, we keep the label and up-

date detection scores of our inferred objects. The results in

the ‘3-scale-rescore’ row manifest that our method works

decently, 1.8% higher than Hypercolumn-rescore and 1.1%
higher than CFM.

We show a few segmentation results of our method on

this dataset in Fig. 6. Large and small object instances are

detected and segmented out. It handles the situation where

instances occlude each other.

4.4. Running­time Analysis

We compare running time in this section. The experi-

ments are conducted by randomly picking 100 images on

val subset and run our system on a PC with an NVIDIA

GeForce Titan X display card and Intel Core i7 3.50GHZ

CPU with a single thread. Running time for other methods

are quoted from respective papers.

As shown in Table 5, proposal-based systems of [14, 15,

5, 3] take much longer time due to the high-quality pro-

posal generation procedure [31]. While for PFN [22], the

semantic segmentation step can be regarded as one kind of

proposal generation, more efficient than that of [31]. Our

method with the single-scale input takes less than 2 seconds

involving all computation. Our patch aggregation (Algo-

rithm 1) needs only 0.1s to complete. For our 3-scale input,

the system takes less than 10 seconds, which is still more

efficient than previous proposal-based methods with high-

quality results generated.

Method Proposal CNN Patch Agg. Total

SDS [14] 42.2s [31] 17.9s - 60.1s
Hypercolumn [15] 42.2s [31] - - > 42.2s

CFM [5] 42.2s [31] 2.1s - 44.3s
PFN [22] 0.6s - - ≈ 1s

MPA 1-scale 0s 1.1s 0.1s 1.9s

MPA 3-scale 0s 4.5s 0.9s 8.7s

Table 5. Running-time comparison of different methods.

Method @IoU=[0.5 : 0.95] @IoU=0.5 @IoU=0.75

1-scale 17.7/17.7 31.5/31.6 17.8/17.7

3-scales 20.1/20.4 35.4/35.6 20.4/20.7

MNC-16 [6] -/19.5 -/39.7 -/-

Table 6. Experimental results on Microsoft COCO test-std/test-dev

in terms of mAP r at different thresholds.

4.5. Error Analysis

We utilize the tool of [14] to analyze our results. As

shown in Fig. 7, mis-localization has a huge impact on the

performance, similar to other apporaches [14]. It implies

that localization accuracy of masks still has much room to

improve. The impact of other two errors – i.e., confusion

with similar classes or background – is much smaller. These

small errors suggest that the classification ability of our net-

work is strong.

4.6. Results on Microsoft COCO Dataset

We finally evaluate our method on Microsoft COCO

dataset [24], which has 80 object classes and a large set of

complex images. We train our network on trainval subset,

which consists of 80k+40k images. We report our results on

test-std and test-dev in terms of mAP r@IoU = [0.5 : 0.95]
(COCO metric), mAP r@IoU = 0.5 (VOC metric) and

mAP r@IoU = 0.75 (strict metric) in Table 6. It is notable

we still use the VGG-16 [33] structure without network en-

semble and do not conduct rescore step.

As shown in Table 6, compared with contemporary work

MNC-16 [6], which is also based on VGG-16 without mod-

el ensemble, our method performs decently. We expect us-

ing the 101-layer ResNet [18] would yield further perfor-

mance improvement.

5. Concluding Remarks

We have accomplished a new SDS system based on a u-

nified end-to-end trainable network. It takes raw images as

input, and classifies and segments patches. A simple ag-

gregation process is then adopted to infer objects from the

patch output of the network. We evaluated our method on

several datasets for SDS. Our future work will be to incor-

porate graphical models to further reduce mis-localization

errors.
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