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Abstract

Hashing has become an increasingly popular

technique for fast nearest neighbor search. De-

spite its successful progress in classic point-

to-point search, there are few studies regard-

ing point-to-hyperplane search, which has strong

practical capabilities of scaling up application-

s like active learning with SVMs. Existing hy-

perplane hashing methods enable the fast search

based on randomly generated hash codes, but stil-

l suffer from a low collision probability and thus

usually require long codes for a satisfying per-

formance. To overcome this problem, this paper

proposes a multilinear hyperplane hashing that

generates a hash bit using multiple linear projec-

tions. Our theoretical analysis shows that with

an even number of random linear projections, the

multilinear hash function possesses strong locali-

ty sensitivity to hyperplane queries. To leverage

its sensitivity to the angle distance, we further

introduce an angular quantization based learn-

ing framework for compact multilinear hash-

ing, which considerably boosts the search perfor-

mance with less hash bits. Experiments with ap-

plications to large-scale (up to one million) active

learning on two datasets demonstrate the overall

superiority of the proposed approach.

1. Introduction

Recent years have witnessed the success of fast approx-

imated nearest neighbor search in many domains and ap-

plications including large-scale visual search [6], objec-

∗corresponding author

t detection [3], classification [8, 15, 21] and recommenda-

tion [16, 27]. Locality-sensitive hashing (LSH) [1, 2] pi-

oneered the hash based solution with a good balance be-

tween the search performance and computational efficien-

cy. In LSH, the linear projection paradigm was adopted to

efficiently generate the hash codes for the specific similar-

ity metric like lp-norm (p ∈ (0, 2]), and has been wide-

ly accepted in many following research for compact hash

codes learning [5, 12, 14, 18, 19, 23, 25, 31], equipped with

a number of techniques like double bit quantization [9], bit

selection [17], asymmetric quantization [24] and discrete

optimization [13, 26].

Despite the progress of hashing research, most of ex-

isting methods mainly deal with the classic point-to-point

nearest neighbor search, where according to certain dis-

tance measure the closest database points to the query one

are desired as the nearest neighbors. However, in prac-

tice there are also a variety of cases that require the nearest

points to a hyperplane, namely, point-to-hyperplane search

problem. Typical instances includes the large-scale active

learning with support vector machines (SVM) [28], maxi-

mum margin clustering [32] and large-margin dimensional-

ity reduction [30]. In the task of large-scale active learning

with SVMs, the active learning iteration process selects the

unlabeled point closest (with minimum-margin) to curren-

t SVM’s decision hyperplane into the training set, and re-

trains the SVM classifier with the increasing training data,

gaining a provable performance improvement in a few itera-

tions. A common solution for point-to-hyperplane search is

the exhaustive search, which nevertheless spends expensive

computation and memory on large-scale datasets.

To address this problem, [22] proposed the concomitan-

t hashing to accelerate the min/max inner product, which

exploits properties of order statistics of statistically corre-

lated random vectors. Different from the idea of concomi-

tant hashing, prior research [8] first successfully devised hy-

perplane hashing paradigm with applications to large-scale

active learning. Based on the theoretical guarantee of colli-
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(a) point-to-hyperplane search (b) scale-invariance
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Figure 1. Illustrations for point-to-hyperplane problem: (a) an simple example, where the point x2 gives a smaller angle distance d(w,x2)
to the hyperplane P(w) than point x1; (b) an illustration for the scale-invariance of multilinear hash function with an even order m, where

x1, x2 and x3 below the hyperplane P(w) respectively share the same angle distance to P(w) and thus same hash code with x
′
1, x′

2 and

x
′
3 locating above P(w); (c) The collision probabilities p1 of different hyperplane hashing with respect to angle distance r.

sion probability using linear projections, two random hash-

ing methods (AH and EH) have been presented for point-to-

hyperplane search with respect to the angle distance and Eu-

clidean distance. The hyperplane hashing permits efficient

large-scale search for points near to a hyperplane in sub-

linear time with a certain accuracy. Following the paradig-

m based on angle distance, [15] further provided a more

strongly locality-sensitive hashing using bilinear hash func-

tions (BH). To meet the same level of search accuracy, BH

requires much less hash bits compared with AH and EH. S-

ince the bilinear hash functions are randomly generated in

BH, there inevitably exists heavy redundancy among them.

Similar to prior hashing research for point-to-point search,

a learning based BH (LBH) was designed for compact yet

discriminative hash codes, which substantially reduce the

storage and computation cost.

As the locality-sensitive property successfully promises

fast point-to-hyperplane search, this paper further enhances

the property with a much higher collision probability for an-

gle distance. To this end, we first design a novel hyperplane

hashing scheme with multilinear hash functions, which gen-

erates a hash bit based on the product of a series of lin-

ear random projections. By devising the coding scheme for

both the hyperplane query and the database points, our the-

oretical analysis shows that with an even number of pro-

jections, the multilinear hash function is more locality sen-

sitive to the angle distance than AH and BH (BH can be

treated as a special case of our multilinear hashing with t-

wo projections). This property enables us to achieve sat-

isfying performance using fewer hash bits for practical ap-

plications. Besides, we introduce an angular quantization

based learning framework for compact multilinear hyper-

plane hashing, better migrating the difficulty of the mini-

mum angle distance search. On two large datasets up to

one million, we empirically demonstrate that our approach

outperforms state-of-the-arts in active learning with SVMs.

The remaining sections are organized as follows. Sec-

tion 2 presents the formulation of the point-to-hyperplane

search problem. In Section 3 we first review the related hy-

perplane hashing methods and then introduce the proposed

random multilinear hashing with a theoretical analysis. To

pursue compact hash codes, we further devise a learning

based multilinear hashing algorithm in Section 4. Compre-

hensive experiments on the task of large-scale active learn-

ing over two popular datasets are presented in Section 5,

followed by conclusions in Section 6.

2. Problem Formulation

Let us formally state the point-to-hyperplane search

problem: given a database D = {x1, . . . ,xn} of n points

in R
d, the goal is to find the closest points in D to a giv-

en hyperplane query Pw determined by the normal vector

w ∈ R
d. Take the margin-based SVM active learning as an

example. The margin
|wT

x+b|
‖w‖ of any point x describes the

distance to the decision hyperplane Pw of SVM classifier

(w, b), and in each iteration the active selection prefers the

points with the minimum margin.

Without loss of generality, we append x with a constant

1, and assume that both x and w are normalized and Pw

passes through the origin. Then it is easy to see that the

point-to-hyperplane nearest neighbor search actually mini-

mizes the absolute value of the cosine between w and x:

| cos θw,x| =
|wTx|
‖w‖‖x‖ . (1)

Fig. 1 (a) displays the geometric relationship between

the hyperplane normal vector w and database point x. S-

ince | cos θw,x| = sin |π2 −θw,x|, the distance from x to the

hyperplane Pw is monotonically proportional to the angle

measure αw,x ∈ [0, π
2 ]:

αw,x = |π
2
− θw,x|. (2)

Therefore, αw,x can serve as the distance metric in our

problem: a narrow αw,x indicates a close point locating

near to the hyperplane Pw.

Definition 1 The distance between a vector x and a hyper-

plane Pw is measured by αω,x, i.e., d(Pw,x) = αω,x.

Under the angle distance metric, the point-to-hyperplane

search problem can equivalently be regarded as a point-to-

point search problem between the hyperplane normal vector
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Table 1. comparison of collision probability p1 and hash time th
of different hash families.

AH EH BH MH (ours)

p1
1
4 −

α2
w,x

π2
cos−1 sin2(αw,x)

π
1
2 −

2α2
w,x

π2
1
2 −

2m−1αm
w,x

πm

th 2kd kd2 or k d

ε2
2kd mkd

w and the database points in D. However, the distance met-

ric is quite different from the conventional nearest neighbor

search. Here the nearest neighbors to the hyperplane should

be the points almost perpendicular to w, rather than those

with small angles in point-to-point search. To achieve fast

approximate hyperplane query, we will devise a new family

of locality sensitive hash function that preserves the specific

angle distance with a large probability.

3. Multilinear Hyperplane Hashing

In this section, we will briefly review the existing hyper-

plane hashing methods, and then propose a random projec-

tion based locality sensitive hash of multilinear form with

a series of theoretic analysis. Before that, we have to point

out that in the whole paper we suppose the binary codes

have values from {−1, 1} (equivalent to 0/1 code in prior

hashing research) for concise derivation.

3.1. Related Work

To our best knowledge, there are only three related hy-

perplane hash families: angle hyperplane hash (AH), em-

bedding hyperplane hash (EH) [8] and bilinear hash (BH,

including its learning based version LBH) [15]. We first

give a brief review on these related works.

Angle Hyperplane Hashing: AH as the first hyperplane

hashing in the literature employs the two-bit hash function

to encode the input x ∈ R
d:

hAH(x) =

{

hu,v(x,x), x is a database point

hu,v(x,−x), x is a hyperplane normal

where hu,v(a, b) = [sgn(uTa), sgn(vTb)], with u,v ∼
N (0, Id×d), i.e., u and v are independent vectors from

Gaussian distribution.

Embedding Hyperplane Hashing: Jain et al. al-

so proposed another hyperplane hashing (EH) based on

the Euclidean distance [8]. It first computes the high

dimensional embedding by vectorizing the rank-1 ma-

trix of the input vector x as V (x) = vec(xxT) =
(x2

1, x1x2, · · · , x1xd, · · · , x2
d), and then generates the hash

bit using random projection u ∼ N (0, Id2×d2)

hEH(x) =

{

sgn(uTV (x)), x is a database point

sgn(−uTV (x)), x is a hyperplane normal

at the cost of expensive computation and storage.

Bilinear Hyperplane Hashing: To suppress the com-

putation cost and simultaneously guarantee high collision

probabilities, Liu et al. discovered a new hyperplane hash

family named bilinear hashing (BH) [15]. With two pro-

jection vectors u,v ∼ N (0, Id×d), BH hash function is

defined as:

hBH(x) = sgn(uTxxTv), (3)

respectively encoding the database point x and the hyper-

plane query Pw into hBH(x) and −hBH(w).
Table 1 compares the collision probability and time com-

plexity of different hash families.

3.2. Random Multilinear Hashing

In this paper, we propose a new generic hash family

named multilinear hash function (MH for short).

Definition 2 The multilinear hash function hm(·) : Rd →
{−1, 1} of m-order comprises m linear projection vectors

ul ∼ N (0, Id×d), l = 1, . . . ,m, with the following form

hm(x) = sgn(u1
Tx · · ·um

Tx),

i.i.d. ul ∼ N (0, Id×d), l = 1, . . . ,m.
(4)

Note that following the above definition, when m = 2,

the multilinear hash function degenerates to BH [15]. The

multilinear form enjoys several advantages in hyperplane

hashing. First, it helps us focus on the angle distance in

our hyperplane hashing, eliminating the effect of the data

scale (even the negative one, see Fig. 1(b) for an illustration

with an even m). Second, since the projection on a vec-

tor can preserve the data locality to some extent, multiple

projections together can significantly boost the probability

collision. We will show its locality sensitive property in the

following theoretical analysis.

Lemma 1 Given a query point w ∈ R
d and a database

point x ∈ R
d, the probability of collision for these two

points under hm is

P[hm(w) = hm(x)] =
(1− 2θw,x

π )
m
+ 1

2

Proof (1) When m = 1, the equation holds according to

the fact from [1].

(2) When m > 1, assuming the equation holds for all

k < m, we have,

P[hm(w) = hm(x)]

= P[hm−1(w) = hm−1(x)]P[sgn(um
Tw) = sgn(um

Tx)]

+P[hm−1(w) �= hm−1(x)]P[sgn(um
Tw) �= sgn(um

Tx)]

= P[hm−1(w) = hm−1(x)](1− θw,x

π
)

+ (1−P[hm−1(w) = hm−1(x)])
θw,x

π

=
(1− 2θw,x

π )
m
+ 1

2
.

This completes the proof. �
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Lemma 2 Given a hyperplane query Pw with the normal

vector w ∈ R
d, define hm(Pw) = −hm(w). Then, the

probability of collision for Pw and x under the random

multilinear hash hm with an even m is

P[hm(Pw) = hm(x)] =
1

2
− 2m−1αm

w,x

πm

Proof Using hm(Pw) = −hm(w) for P , we get

P[hm(Pw) = hm(x)] = 1−P[hm(w) = hm(x)]

= 1− (1− 2
θw,x

π )
m
+ 1

2
=

1

2
− 2m−1(π2 − θw,x)

m

πm
.

Then by applying the facts αw,x = |θw,x − π
2 | and m is

even, one can complete the proof. �

Lemma 2 gives us several hints to the design of multilin-

ear hyperplane hash functions. First, m should be even, oth-

erwise, one can find that the collision probability of Pw and

x under hm reaches the highest when θw,x equals π. That

is to say it is still very likely that the collision happens even

if αw,x equals to π
2 , which contradicts to our intention. Sec-

ond, under the mild condition that m is even, the collision

probability can be amplified considerably by increasing the

order m of the multilinear function. Fig. 1(b) demonstrates

the necessity of an even m for the angle distance preserva-

tion, possessing the invariance to the magnitude and reverse

of the point vector.

Theorem 1 Under the condition that m is even, the

multilinear hyperplane hash function family hm is
(

r, r(1 + ǫ), 1
2 − 2m−1rm

πm , 1
2 − 2m−1(r(1+ǫ))m

πm

)

-sensitive

to the distance measure d(Pw,x) = αw,x with r, ǫ > 0.

Proof Using Lemma 2, if d(x,Pw) ≤ r, we have

P[hm(Pw) = hm(x)] =
1

2
− 2m−1dm(Pw,x)

πm

≥ 1

2
− 2m−1rm

πm
= p1.

Likewise, when d(Pw,x) > r(1 + ǫ) we have

P[hm(Pw) = hm(x)] <
1

2
− 2m−1(r(1 + ǫ))m

πm
= p2,

and p1 > p2. This completes the proof. �

Theorem 1 indicates that the locality sensitivity to the

angle distance is bounded by the collision probability which

monotonically increases with respect to even m, and for any

even m > 2 this probability is larger than that of AH, EH

and BH (see Fig. 1(c) and Table 1). Note that using the

similar multilinear trick, we can also improve the collision

probability of AH and EH theoretically. Meanwhile, we can

see that there is a tradeoff between the high collision proba-

bility and low time complexity for bit generation. Next, we

give the theoretical performance guarantee and computation

bound when using multilinear hash functions for point-to-

hyperplane nearest neighbor search.

Theorem 2 Given a database D with n points and a hy-

perplane query Pw, if there exists a database point x∗ such

that d(x∗,Pw) ≤ r, then with ρ = ln p1

ln p2
(1) using nρ hash

tables with log1/p2
n hash bits, the random multilinear hy-

perplane hash of an even order is able to return a database

point x̂ such that d(x̂,Pw) ≤ r(1 + ǫ) with probability at

least 1 − 1
c − 1

e , c ≥ 2; (2) the query time is sublinear to

the entire data number n, with nρlog1/p2
n bit generations

and cnρ pairwise distances computation.

The theorem guarantees the practicality of MH that the n-

earest neighbors can be located fast (in a sublinear time)

with a large probability. The proof can be easily completed

based on the locality sensitivity. Please refer to the proofs

in the supplementary material.

4. Learning Multilinear Hash Functions

Though randomized hashing methods enjoy elegant the-

oretic guarantee and computational simplicity, they usual-

ly require long hash codes for satisfying performance, and

consequently need much computation and memory cost in

practice. Conventional hashing research for point-to-point

search problem attempted to address such issue by learn-

ing hash functions from data [12, 14, 31], which can gen-

erate compact hash codes by eliminating the redundancy a-

mong functions, and thus largely save computation and s-

torage [2]. Following this line, in this section we introduce

an angle quantization based learning method for the multi-

linear hyperplane hash functions (LMH for short).

4.1. Angle Quantization

Our motivation comes from the fact that hyperplane-to-

point search problem is tightly connected to the point-to-

point one. In detail, as shown in Fig. 1 (a) and guaran-

teed in Lemma 2, a hyperplane query Pω can be equiva-

lently represented by its normal ω with the multilinear hash

bit hm
j (Pw) = −hm

j (w) generated by the j-th multilinear

function hm
j (w) = sgn((uj

1)
Tw · · · (uj

m)Tw).
If we denote the k-length multilinear hash code of x by

Hm(x) = (hm
1 (x), · · · , hm

k (x))
T
, (5)

then Hm(Pw) = −Hm(w), and searching the near-

est neighbors to Pω turns to finding those points x

having the most similar hash codes (or smallest Ham-

ming distances) to Hm(Pw). Namely, for desired points

Hm(Pw)THm(x) → k with a small angle distance αw,x.
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Therefore, preserving the angle plays the most important

role in the discriminative hash function learning.

Since the hash codes actually serve as a binary represen-

tation for points in a more complex feature space [4, 5, 7],

in our problem the learnt binary codes should maximally

preserve the angle (or cosine similarity) among the points.

To this end, we propose angle quantization based learning

algorithm, which aims at capturing the angles among the

projected database points using the binary hash codes. In-

stead of random generation, here the projection vectors of

each multilinear hash function will be learnt to minimize

the angle quantization loss, and thus those points close to

the hyperplane query can be discriminatively distinguished

and located quickly in the Hamming space.

Formally, given a training set X = (x1, · · · ,xn′), our

goal is to preserve the angles among them by learning k

multilinear hash functions of m order, characterized by m

projection matrice Ul = (u1
l , · · · ,uk

l ), l = 1, . . . ,m. De-

note the projection values before binary quantization by

Y = U1
TX ⊙ · · · ⊙Um

TX,

where the symbol ⊙ represents the Hadamard product, then

the binary codes will be B = sgn(Y ) = Hm(X), and

the projection and the binary code of each xi will be the

corresponding columns of Y and B, denoted by Yi and Bi.

Therefore, for each point xi its hash code Bi should

maximally approximate Yi. The learning problem can be

formulated as follows:

max
B,Ul

n′

∑

i=1

cos(Bi,Yi)

s.t. B1 = 0, UT
l Ul = I, l = 1, . . . ,m.

(6)

The constraint UT
l Ul = I makes sure the k hash functions

are independent to each other, while B1 = 0 forces the

data to be evenly distributed over -1 and 1 for a balanced

coding, and we relax it to Y 1 = 0 due to the optimization

difficulty stemming from the discrete constraint of B.

4.2. Iterative Optimization

Note that in problem (6), if we denote the projection

of all training data using j-th hash function by yj =

(Yj1, · · · , Yjn′)
T ∈ R

n′×1, and the binary codes by bj =

(Bj1, · · · , Bjn′)
T ∈ {−1, 1}n′×1, then the problem can be

approximately reformulated as:

max

n′

∑

i=1

cos(Bi,Yi) ≈
n′

∑

i=1

BT
i√
k
Yi

=
1√
k

n′

∑

i=1

k
∑

j=1

BjiYji =
1√
k

k
∑

j=1

bj
Tyj

0 5 10 15 20
0

5
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x 105

# iteration
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je
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Figure 2. The objective with respect to the iteration number.

This rearrangement of the formula inspires our sequen-

tial optimization solution: one by one we learn u
j
l , 1 ≤ l ≤

m and the bit values bj for all training data. At each itera-

tive step, bj and u
j
l are optimized in an alternating manner

by fixing others. Specifically at the j-th step, we repeat the

following updating until the objective converges:

(Step 1) Update bj . When u
j
1, · · · ,uj

m are fixed, yj =

XTu
j
1 ⊙ · · · ⊙XTuj

m is determined, we solve bj by

max
bj

bTj yj

s.t. bj ∈ {−1, 1}n′×1
(7)

Clearly, the optimal solution is given by bj = sgn(yj).

(Step 2) Update u
j
l , l = 1, . . . ,m. This can be efficient-

ly done by alternatingly optimizing each u
j
l while fixing u

j
l′

for any l′ �= l. Since all u
j′

l , j′ < j have been learnt in pre-

vious steps, by introducing the vector

e =
(

⊙l′ �=lX
Tu

j
l′

)

, (8)

the optimization problem with respect to u
j
l turns to be

max
u

j

l

aTu
j
l

s.t. cTu
j
l = 0, (uj′

l )
Tu

j
l = 0, j′ < j,

(9)

where a = X(e ⊙ bj) and c = Xe corresponds to the

relaxed balanced constraint 1yj = 0, and (uj′

l )
Tu

j
l = 0 is

imposed to enforce the diversity of the projections.

This is a standard linear programming problem, whose

optimal solution can be efficiently obtained using a num-

ber of optimizing techniques like primal-dual interior point

[20]. In the above alternating optimization, we get a subop-

timal solution in each update, and with a few iterations we

can easily obtain the optimized multilinear hash functions

hm
j in the j-th step.

To start the learning, we randomly initialize the projec-

tion vectors of each hash function, and then learn a series of

multilinear functions that boost the accuracy of the point-

to-hyperplane search. The whole learning based multilinear

hash method is listed in Algorithm 1. Fig. 2 shows the

objective curves with respect to the number of iterations,

5123



Algorithm 1 Learning Multilinear Hyperplane Hash.

1: Input: training data X , the order of the multilinear

hash m and the code length k;

2: Initialize: the projection matrice Ul = (u1
l , · · · ,uk

l ),
ul ∼ N (0, Id×d), l = 1, . . . ,m ;

3: for j = 1, . . . , k do

4: repeat

5: Update each binary codes bj by solving (7);

6: Update each projection matrice u
j
l by solving (9),

l = 1, . . . ,m;

7: until Converge

8: end for

9: Output: the hashing projection vectors Ul, l =
1, . . . ,m and the binry codes B.

where we can observe that our algorithm can converge fast,

and thus the hash functions can be learnt efficiently at the

training stage.

Note that in LMH we mainly devote our efforts to pre-

serving the angle values instead of the absolute ones. Nev-

ertheless, the scale invariance of the multilinear hash makes

us only have to focus on the half of the subspace partitioned

by the hyperplane query, and a bit flipping over the query

code can further improve the recall performance in practice.

Though the learnt MH can hardly be proved locality sensi-

tive, exploiting the data structures faithfully helps us pursue

more discriminative functions than random way. Our exper-

iments in the next section will demonstrate this point.

5. Experiments

The studied point-to-hyperplane search problem appears

in many tasks like classification with active learning and

cutting-plane based maximum margin clustering. In our ex-

periments, we adopt the widely-studied active learning with

SVMs as the application, and comprehensively evaluate the

proposed MH and LMH in terms of search accuracy and ef-

ficiency. Besides, four state-of-the-art hyperplane hashing

algorithms AH, EH, BH and its learning version LBH, and

two naive but common methods including exhaustive linear

scan and random selection are also evaluated.

5.1. Datasets and Settings

Experiments are conducted on two large widely-adopted

datasets in classification including MNIST [11] and Tiny-

1M appended with CIFAR-10 [10]. MNIST is a dataset of

handwritten digits, comprising 60,000 training images and

10,000 test images associated with digits from 0 and 9 (i.e.,

10 different classes). Each image is represented by a 784-

dimensional vector corresponding to its 28 × 28 grayscale

pixel intensities. Tiny-1M comprises two parts from 80M

tiny image set [29]: one million images randomly sampled

without labels and CIFAR-10 with 60,000 32×32 color im-

ages associated with 10 semantic categories, each of which

has 6,000 samples. Following the setting in [15], we treat

the first part as the “other” class, and represent each image

using the provided 384-dimensional GIST descriptors.

In the SVM based classification with active learning, we

separately train linear SVMs in the one-vs-all setting for

each class with random initializations, i.e., 5 labeled sam-

ples for each class on both datasets. Then different point-

to-hyperplane methods are adopted to select the unlabeled

samples nearest to the current SVM’s hyperplane. In all

experiments we run 300 active selection iterations, and re-

train SVMs using the training set appended with the select-

ed samples in each iteration.

5.2. Results and Discussions

We compare the proposed MH and the learn based ver-

sion LMH to two naive methods: exhaustive and random s-

election, and four state-of-the-art hyperplane hashing meth-

ods: AH, EH [8], BH, and LBH [15].

At the offline stage, we first generate hash functions for

each hashing methods, and encode the database points using

the same number of hash bits for fair comparison. Accord-

ing to the size of each set, we respectively generate 16 hash

bits for hash tables on MNIST and 20 bits on Tiny-1M.

This is because the theoretical and practical analysis show

that the optimal code length should be close to log2 n [7].

When it comes to the online point-to-hyperplane search in

each active learning step, from each table we lookup the

buckets with hash codes in a small Hamming radius from

the query code, and then obtain the nearest point to the hy-

perplane by ranking candidates in the buckets. To balance

the efficiency and accuracy, in our experiments we empiri-

cally set the radius to 5 for both datasets. For the case that

no points fall within the radius, we alternatively choose the

random selection as a supplement.

5.2.1 Performance in Large-Scale Active Learning

We first report the results using different methods on M-

NIST. Fig. 3(a) plots the corresponding mean average pre-

cision (MAP) curves with respect to 300 active learning it-

erations. Clearly, BH and LBH outperform AH, EH and

random selection, and our MH and LMH (m = 4) fur-

ther improve the MAP and consistently obtains the best per-

formances among all hyperplane hashing methods, mainly

owning to the fact that the multilinear functions preserve

the discriminative power of the angle distance, and thus re-

trieve the most perpendicular points to the hyperplane nor-

mal. Moreover, we can notice that at the first few itera-

tions, LMH even gets a better performance than the exhaus-

tive way, which indicates that there is no guarantee that the

exhaustive selection can serve as the best choice for better
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Figure 3. Results of the active learning using different methods on MNIST.
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Figure 4. Results of the active learning using different methods on Tiny-1M.

test accuracy. In all iterations, LMH and MH consistently

achieve very close performance to the exhaustive selection.

This is mainly because MH can faithfully find the nearest

neighbors for each hyperplane query. The minimum mar-

gins shown in Fig. 3(b) also illustrate this point, where

LMH and MH get very small margins with a slight varia-

tion.

Fig. 3(c) further depicts the number of nonempty table

lookup per class, accumulated in the 300 iterations. It can

be observed that in certain cases AH and EH fail to retrieve

candidate points for minimum-margin based active selec-

tion. Instead, owning to the higher collision probability, our

MH and LMH can enjoy the 100% success rate for hash

table lookup given the specific Hamming radius.

To demonstrate the practicability of our hyperplane

hashing method for large-scale point-to-hyperplane search

problem, we perform active selection on the Tiny-1M

dataset with 1.06 millon images. We use the provided 10K

images from CIFAR-10 as the testing samples, and the rest

1.01 millon as the database for active sample selection. Fig.

4 shows the similar results on the Tiny-1M in terms of MAP,

minimum margins and success lookup number. Namely, as

the exhaustive selection does, both of our hashing methods

(m = 4) select the points with smaller margins than oth-

er hashing baselines (Fig. 4(b)), and hit the desired points

with a higher success rate (Fig. 4(c)). Subsequently, they

can obtain satisfying performances for the practical appli-

cations, and our LMH can further learn more compact yet

discriminative codes by exploiting the angle information a-

mong data, and again obtains the best performance.

5.2.2 Performance using Different Settings

In above experiments, we adopt one hash table and a rela-

tively large lookup radius to achieve the desired recall per-

formance, which grantees that the nearest neighbor to the

hyperplane query can be located. To comprehensively study

the performance of MH with different settings, we further

vary the parameters including the lookup radius r, the table

number L and the order m of the multilinear hash function.

Lookup radius: Fig. 5 investigates the precision and the re-

call performance in terms of the active learning curves and

the number of the success lookups. Here we vary the lookup

radius r from 4 to 6 in one 20-bits hash table and treat al-

l points belonging to the buckets within r as the ranking

candidates. It can be observed that for each method, as the

radius increases, higher precision and success lookups can

be attained. This is because that the enlarged search range

guarantees a high probability that the true nearest neighbors

can be identified among the retrieved candidates. Besides,

we can see that in all cases our MH can get the best perfor-

mance. For instance, MH using a mall lookup radius r = 4
can even get a much better performance than the baselines

using a large one, i.e., BH r = 5 and AH using r = 6 .

Table number: In practice, either adopting a large lookup

radius or building multiple hash tables can significantly in-

crease the recall for nearest neighbor search. Therefore, in

Fig. 6 we further study the performance of different hyper-

plane hash methods with more than one (4 and 8) hash ta-

bles. In order to clearly observe the effect when using more

hash tables, in this experiment we set the lookup radius to a
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Figure 5. Results of the active learning using different methods

with different lookup radius on Tiny-1M.
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Figure 6. Results of the active learning using different methods

with a different number of tables on Tiny-1M.

small one (i.e., r = 2). In this case, the ranking candidates

are those points in each table that fall in the buckets with-

in r Hamming distance to the hyperplane query. According

to Fig. 6(a), it is obvious that more hash tables can largely

boost the point-to-hyperplane search for different methods,

mainly owing to the improved recall of the nearest neigh-

bors. This conclusion can also be verified by the results of

success table lookups in Fig. 6(b). Moreover, in all cases

our MH again obtains the best performance, with the en-

couraging locality sensitivity.

Multilinear order: The above experimental results have

demonstrated that MH can achieve satisfying performance

with a high collision probability. Our theoretical analysis

implies that a large m will further increase such probability,

enhancing the locality sensitive property. To study its effect

in the application of active learning, Table 2 lists the MAP

and minimum margins of the 300th active learning iteration

using m = 4, 8, 16. Consistent with Theorem 1, using more

projection in one hash function will amplify the collision

probability of the informative samples, and thus increase

the precision of SVM classifiers, meanwhile decreasing the

minimum margins.

Computational efficiency: The computational efficiency

is regarded as a critical issue in large-scale applications.

Among all methods, only LBH and LMH require offline

training, where the iterative optimization in LMH is faster

than Nesterov’s gradient method in LBH [15]. As to the

search time, Fig. 7 shows the averaged time (in second-

s) of the active selection using different methods on Tiny-

1M. Exhaustive selection requires linearly scanning all the

points in the unlabeled database and thus suffers from much

Table 2. Classification accuracy and minimum margins of the

300th iteration using MH with different m on Tiny-1M.

m = 4 m = 8 m = 16

MAP 38.82±1.03 40.32±0.81 41.67±0.41

min |wT
x+b|

‖w‖
7.13±2.11 6.32±1.77 4.41±0.83
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Figure 7. Selection time (seconds) of active learning using MH

with different m on Tiny-1M.

more time consumption than others, while random selec-

tion serves as the most fast method, but wastes most label-

ing time on those uninformative samples. Utilizing the ta-

ble indexing, the hashing methods can avoid the expensive

computation by the sublinear search and ranking on a quite

small candidate set. Due to the dimension expansion, the

code generation in EH takes more computation and memo-

ry than others. Although our hyperplane hashing methods

depend on more linear projections than AH and BH (i.e., the

hashing time th linearly increases with m), but it is ignor-

able (≤ 10−3s when m ≤ 16) compared to other parts of the

active selection time, i.e., ranking time. From the figure, we

can observe that its total selection time varies very slightly,

and is quite close to baseline hashing methods. Therefore, it

can be concluded that MH can give a sufficiently satisfying

performance without consuming too much computation.

6. Conclusions

In this paper, we considered the point-to-hyperplane

search problem and proposed a new family of hyperplane

hash function named multilinear hashing. The proposed

multilinear hash function enjoys strong locality sensitivity

for the angle distance, and thus is able to retrieve the near-

est points for a hyperplane query in a sublinear time. By

learning the projections from the data, we can further pre-

serve the angles among data using compact yet discrimi-

native hash codes, which largely enables the practicability

of the multilinear hyperplane hashing in many application-

s. Large-scale active learning experiments on two datasets

have demonstrated the superior performance of the multi-

linear hashing in terms of both accuracy and efficiency.
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