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Abstract

In this paper we present an approach to enhance exist-

ing maps with fine grained segmentation categories such as

parking spots and sidewalk, as well as the number and lo-

cation of road lanes. Towards this goal, we propose an ef-

ficient approach that is able to estimate these fine grained

categories by doing joint inference over both, monocular

aerial imagery, as well as ground images taken from a

stereo camera pair mounted on top of a car. Important to

this is reasoning about the alignment between the two types

of imagery, as even when the measurements are taken with

sophisticated GPS+IMU systems, this alignment is not suf-

ficiently accurate. We demonstrate the effectiveness of our

approach on a new dataset which enhances KITTI [8] with

aerial images taken with a camera mounted on an airplane

and flying around the city of Karlsruhe, Germany.

1. Introduction

We are in an exciting time for computer vision, and more

broadly AI, as the development of fully autonomous sys-

tems such as self-driving cars seems possible in the near

future. These systems have to robustly estimate the scene

in 3D, its semantics as well as be able to self-localize at all

times. Key to the success of these tasks is the use of maps

containing detailed information such as road location, num-

ber of lanes, speed limit, traffic signs, parking spots, traffic

rules at intersections, etc.

Current maps, however, have been created with the use

of semi-automatic systems that employ many man-hours of

laborious and tedious labeling. An alternative to this costly

labeling is to employ existing maps and correct/enhance

them based on ground imagery or LIDAR point clouds, cap-

tured, for example, by a Velodyne/cameras mounted on top

of a car. Systems like TESLA auto-pilot [1] are currently

using their deployed fleet of cars, which are equipped with

cameras, to perform such corrections. However, it is dif-

ficult to create full coverage of the world as we will need

access to imagery/LIDAR from millions of cars in order to

reliably enhance maps at a world-scale.

Alternatively, aerial images provide us with full coverage

of a significant portion of the world, but at a much lower

resolution than ground images. This makes semantic seg-

mentation from aerial images a very difficult task. In this

paper, we propose to use both aerial and ground images to

jointly infer fine grained segmentation of roads. Towards

this goal, we take advantage of the OpenStreetMap (OSM)

project, which provides us with freely available maps of the

road topology in the form of piece-wise linear road seg-

ments. We formulate the problem as energy minimization,

inferring the number and location of the lanes for each road

segment, parking spots, sidewalks and background, as well

as the alignment between the ground and aerial images. We

employ deep learning to estimate semantics from both aerial

and ground images, and define a set of potentials exploiting

these semantic cues, as well as road constraints, relation-

ships between parallel roads, and the smoothness of both

the estimations along the road as well as the alignment be-

tween consecutive ground frames.

We demonstrate the effectiveness of our approach in a

new dataset which covers a wide area of the city of Karl-

sruhe in Germany, both from the ground and from the air.

We provide pixel-level annotations for the aerial images in

terms of fine-grained road categories. We call our dataset

Air-Ground-KITTI. We show that our approach is able to

estimate these categories reliably, while significantly reduc-

ing the alignment error between the ground and aerial im-

ages when compared to a sophisticated GPS+IMU system.

2. Related work

For several decades, researchers from various communi-

ties (e.g., vision, remote sensing) have been working on au-

tomatic extraction of semantic information from aerial im-

ages. In the following, we summarize the approaches most

relevant to our work.
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Figure 1. Illustration of our model: (a) Parameterization of our approach. Our random variables are the absolute location of the different

region boundaries (e.g., sidewalk) as well as the alignment between air and ground. (b) Our formulation allows a random variable to take

the same state as the previous node, collapsing a region to have 0 width. (c). For each ground-view image, a random variable models the

alignment noise. (d). Projection of our parameterization on the ground-view.

Aerial image parsing: Early approaches employed prob-

abilistic models that aimed to produce topologically con-

nected roads. [2] defined a probabilistic model that tiled the

image into patches, performed road inference inside each

patch via dynamic programming, and then “stitched” to-

gether high-confidence patches to ensure road connectiv-

ity. Recent work exploits learned classifiers to perform se-

mantic segmentation. [15, 16] trained a neural net to clas-

sify pixels in local patches as road. They employ a post-

processing step to ensure a consistent road topology across

the patches, which is, however, prone to block-effects. [26]

segments the road by defining an MRF on superpixels.

High-order cliques are sampled over straight segments or

junctions to encourage a road-like network structure. Due to

complexity of high order terms a sampling scheme is used

to concentrate on more important cliques. [4] samples graph

junction-points using image consistency and shape priors.

A full review of this large field is out of scope of this paper,

and we refer the reader to [14] for a detailed review.

Aerial parsing with maps: While proven useful in many

computer vision and robotics applications [9, 13, 3, 25],

few works employ map information for parsing aerial im-

ages. [20] uses a screenshot of the vector map as a weak

source of ground-truth for training a road classifier. [27]

exploit road center-lines from OSM maps as a ground-truth

road location and performs road segmentation by estimat-

ing the width of the road. This is done by finding bound-

aries of superpixels along the direction of the road, and ig-

noring dependencies across different line (road) segments.

However, the alignment between OSM and aerial images

is far from perfect. To solve this problem, [12] proposed a

MRF which reasons about re-positioning the road centerline

and estimating the width of the road. Smoothness is incor-

porated between consecutive line segments by encouraging

their widths to be similar. In our work we go beyond this

approach by introducing a formulation that reasons about

more fine-grained road semantics such as lanes, sidewalks

and parking spots, and exploits simultaneously aerial im-

ages as well as ground imagery to infer this information.

Fine-grained road parsing: Very few works exist that

extract detailed segmentation. [17] propose a hierarchical

probabilistic grammar to parse smaller-scale aerial regions

into roads, buildings, vehicles and parking lots. Classifiers

are first employed to generate object/building/vegetation

proposals while the grammar imposes semantic and geo-

metric constraints in order to derive the final parse. Learn-

ing and inference are both hard in grammars, and computa-

tionally expensive sampling techniques typically need to be

employed. In our work, we are aiming at a detailed pars-

ing of the roads into sub-categories. Unlike [17], we exploit

OSM information in order to derive an efficient formulation.

The work most related to ours is [21] which exploits the

map as a screenshot of the road vector map to perform road

and lane estimation. The authors take a pipeline approach,

where, in the first step, road lane hypotheses are generated

based on the output of the road classifier and detected lane

markings. In the second step, the authors provide heuris-

tics to “track” the lane hypotheses and connect them into a

single lane labeling.

Aerial-to-ground reasoning: Recent work aims to ex-

ploit both aerial and the ground-view, mainly for the prob-

lem of geo-localization. In [11], a deep neural network is

used to match ground images with aerial images in oblique

views. The matches come from facade to facade matching

and therefore can not be extended to orthographic aerial im-

ages. In [22], 3D reconstructions from the ground images

are matched to oblique views of aerial images. [10] learn

cross-view matching between ground images, aerial ortho-

graphic photos and land cover attributes. This extends the

image geolocalization to areas not covered by ground im-

ages. Forster et al. [7] match the computed 3D maps of
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(a) Along Road (b) Perpendicular to Road (c) Along ground image sequence

Figure 2. BCD: The graph shows a simplified network with two parallel roads (each with 3 random variables) and one ground image

per segment connected to the right road. BCD alternates between three types of updates. (a) Along the road updates: we optimize over

each chain with the same color (while holding all other variables fix). The pairwise terms fold to unaries (see dashed black lines). (b)

Perpendicular to the road updates: we do inference for the nodes with the same color (holding the rest fix). (c) Along the ground alignments:

We minimize only the t variables which are depicted in green. The y variables are fixed and are depicted in black.

MAVs and ground robots for localization and map augmen-

tation. This method relies on matching 3D information and

therefore needs multiview images both from above and on

ground. In our work, we exploit the maps as well as ground

and aerial imagery to perform fine-grained road parsing. We

are not aware of prior work that tackles this problem.

3. Fine-grained Semantic Parsing of Roads

We now describe our model that infers fine-grained se-

mantic categories of roads from aerial and ground images.

In particular, we are interested in estimating sidewalks,

parking, road lanes as well as background (e.g., vegetation,

buildings). Towards this goal we exploit freely available

cartographic maps (we use OSM), that provide us with the

topology of the road network in the area of interest. Our

approach takes as input an aerial image xA, a road map xM

and a set of ground stereo images xG, which are taken by a

calibrated stereo pair mounted on top of a car. The map xM

is composed of a set of roads, where each road is defined as

a piece-wise linear curve representing its centerline.

3.1. Model Formulation

We formulate the problem as the one of inference in a

Markov random field (MRF), which exploits deep features

encoding appearance in both aerial and ground images,

edge information, smoothness in the direction of the road as

well as restrictions between parallel roads to avoid double

counting the evidence. Our model encodes each street seg-

ment in the aerial image with 15 random variables encoding

all possible combinations of background (B), sidewalk (S),

road lanes (L) and parking (P). In particular,

y = (y1, · · · , y15)

= (B1, S1, B2, S2, P1, L, P2, S3, B3, S4, B4)

with B1, B4 the rightmost (leftmost) border of the back-

ground. We model roads with up to 6 lanes, i.e., L =
(L1, L2, L3, L4, L5, L6). We allow all variables (but L6)

to take the state of the previous random variable in the se-

quence (i.e., yi = yi−1), encoding the fact that some of

these regions might be absent, e.g., there is no parking or

sidewalk. This is not the case for L6 forcing the fact that

at least one lane should be present. We define the states of

each random variable to be [−15, 15]m from the projection

of the OSM centerline in the aerial image (Fig. 1). This

discretization represents pixel increments. Note that while

there are 15 random variables, y defines 16 different re-

gions as B1 and B4 are not limited on the left (right). Each

region width is simply defined by wi = yi − yi−1, while

the width of B1 is defined as w1 = −15m + y1, and the

width of B4 as w16 = 15m − y16, since −15m and 15m
are the beginning and end of the state space. Note that the

combination (B,S,B, S) is necessary (both on the left and

right), as there are many bike lines in Germany (where our

imagery is captured), and it is not possible to distinguish

them from the sidewalk. Fig. 1 illustrates the model.

Each of our ground images comes with a rough align-

ment with the aerial image as we have access to a

GPS+IMU and the cameras are registered w.r.t these sen-

sors. This alignment is, however, noisy with 1.67m error

on average. Thus, our model reasons about the alignment

when scoring the ground images. Towards this goal, we de-

fine t = (t1, · · · , tn) to be a set of random variables (one

per ground image) representing the displacement in the di-

rection perpendicular to the OSM road segment. We define

the state space of each misalignment to be ti ∈ (−4m, 4m).
This is discretized to represent pixel increments.

We define the energy of the MRF as to encode the infor-

mation contained in the ground and aerial images as well as

smoothness terms and constraints on the possible solutions:

E(y, t,xA,xM ,xG) = Eair(y,xA) + Eground(y, t,xG)

+ Esmooth(y, t,xM ) + Econst(y)
(1)

We now define the potentials we employ in more detail.

Aerial semantics: We take advantage of deep learning in

order to estimate semantic information from aerial images.

In particular, we create pixel-wise estimates of 5 semantic

categories: road, sidewalk, background, building and park-

ing. We exploit the CNN for segmentation [23, 19] trained
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GPS+IMU Our alignment

Figure 3. Effect of reasoning about alignment: (left) alignment

given by GPS+IMU, (right) alignment inferred by our model.

(top) Ground road classifier projected into the aerial image (shown

in red). (bottom) Our semantic classes projected on the ground

image. Our joint reasoning significantly improves alignment.

on ILSVRC-2014, which we fine-tune for a 5-label clas-

sification task: road, parking spot, sidewalk, building and

background. To train the network we created training exam-

ples by extracting patches centered on the projection of the

OSM road segments. If the road segment is too long (i.e.,

long straight road) we create an example every 20m. We

further perform data augmentation by applying small rota-

tions, shifts and flips to the training examples. The output of

the soft-max is a downsampled segmentation. To create our

features, we upsample the softmax output using linear inter-

polation as in [5]. To save computation, we only apply the

network in the region of interest (regions of the image that

are close to OSM roads). The aerial semantic potential then

encodes the fact that our final segmentation should agree

with the semantics estimated by the deep net. Towards this

goal, we define 5 features for each of our 16 regions, one

per label of the deep net. Each feature simply aggregates

the output of the softmax in that region. Recall that each

region is defined by two consecutive random variables, e.g.

the first sidewalk is defined by y1, y2, that is B1, S1. We

refer the reader to Fig. 1 for an illustration. While this po-

tential seems pairwise in nature, we can further decompose

it into unary potentials via accumulators A perpendicular to

the road direction. These are simply generalizations of inte-

gral images from axis aligned accumulators to accumulators

over arbitrary directions. We thus define

φcl(y
j
i , y

j
i−1) =

∑

p∈Ωj

i
(yj

i
,y

j

i+1
)

ϕ(p) = A(yji+1)−A(yji )

with yji the i-th variable of the j-th road segment, and ϕ(p)
the softmax output interpolated at pixel p. To compute this

features, we only need 5 accumulators per road segment,

one for each semantic class that the deep net predicts.

Aerial edges: This potential encodes the fact that the lo-

cation of the boundaries between regions should be close
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Figure 4. Precision-Recall curves for our deep classifier and the

road classifier of [12] marked with * and in dashed.

to image edges. We thus apply the edge detector of [6] to

detect edges in our aerial images. We then define the po-

tential to be the sum of the edges on the boundary between

consecutive regions. To make it more robust we thicken the

boundary to be of size 3 pixels.

Along the road smoothness: We encode smoothness

along the road by encouraging consecutive road segments

to be similar. In particular, we use the ℓ1 distance between

consecutive road estimations in the direction of the road, i.e.

φsm(y
j
i , y

j+1
i ) = |yji − yj+1

i |

Parallel roads: The regions of close by parallel roads can

overlap. To avoid double counting the evidence, we incor-

porate an additional constraint that forces S1 of the second

road to be bigger or equal to B4 of the first road or vice

versa. We refer the reader to Fig. 1 for an illustration.

Road collapse constraints: We force each variable yi to

have a state higher or equal than the previous variable, so

that the order is preserved. Note that equal means that a

road can collapse (i.e., does not exist)

φcoll(yi, yi+1) =

{

∞ if yi+1 < yi

0 otherwise

The only exception is L6, which we force to have non-zero

width as otherwise we could have a road segment without

road. Thus

φex(L5, L6) =

{

∞ if L6 ≤ L5

0 otherwise

Lane size constraint: This constraint forces each region,

if present, (i.e., if it is not taking state 0) to have a minimal

and maximal size. In particular, we use (1m-3m) for side-

walk, (1.8m-4.5m) for parking and (2.3m-4.6m) for each

road lane. Note that width 0 is allowed so that regions can

disappear if they are not present in the road segment (e.g.,
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(a) Intersection with tram line. (b) Small town.

(c) A road with three lanes. (d) Two roads with tram stop in between.

(e) Dense urban area. (f) Splitting road plus a bike lane along the street.
Figure 5. Visualization of our semantic road parsing results using only aerial images. The road lanes are shown with shades of pink, the

sidewalk with blue and the parking spots with yellow.

we only have two lanes, there is no sidewalk on the high-

way). The intervals for the lanes are estimated based on the

standards of German roads, while the sidewalk and parking

intervals are computed based on empirical estimates.

Centerline prior: As our images are well registered with

OSM, we include a prior that the centerline of our model

should be close to the centerline of OSM. In particular,

φcen(L3) =

{

||L3 − l||2 if − 7.5 ≤ L3 ≤ 7.5

∞ otherwise

with l the location of the centerline.

Ground semantics: We take advantage of deep learning

in order to estimate semantic information from ground im-

ages. We exploit the VGG [23] implementation of [19]

trained on PASCAL VOC, which we fine-tuned to predict

the same 5 classes as the aerial semantics (road, park-

ing, sidewalk, building and background). We estimate the

ground plane from the stereo image and project pixels be-

longing to this plane to the aerial image via a homography.

We then define our ground semantic potential to encourage

the segmentation to agree with the aligned ground image

segmentation projected to the aerial image. Towards this

goal, we define 5 features for each of our road regions, each

counting the amount of softmax output for the given class:

φground(tk, y
j
i , y

j
i−1) = G(tk, y

j
i+1)− G(tk, y

j
i )

Note that via the integral accumulator the 3-way potential

decomposes into pairwise terms G(t, y). In this case we
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Aerial Ground
Figure 6. Left: The ground road detection with red projected into the aerial image after alignment and road layout estimation. Right:

The semantic lanes projected back into the aligned ground image. These scenes are all challenging with parallel roads, parking spots and

intersections. The bottom image is especially difficult since it is an urban pedestrian area. Note that the aerial and ground images were

taken with several years difference in different seasons. Pink is road, blue is sidewalk and yellow marks parking spots.

only need 5 integral accumulators per ground image.

Ground alignment smoothness: This potential encodes

the fact that two consecutive alignments should be similar.

φgsm(tk, tk+1) = |tk − tk+1|

This assumes that GPS+IMU have smooth errors and no

outliers.

3.2. Inference via Block Coordinate Descent (BCD)

Inference in our model can be performed by minimizing

the energy function:

y∗, t∗ = argmin
y,t

E(y, t,xA,xM ,xG)

with E(y, t,xA,xM ,xG) defined as in Eq. (1). Unfortu-

nately, inference in our model is NP-hard, as our graphi-

cal model contains many loops. We thus take advantage of

block coordinate descent to perform efficient inference. We

refer the reader to Alg. 1 and Fig. 2 for inference steps.

Our block coordinate descent algorithm (BCD) alter-

nates by doing inference in the direction along the road,

doing inference in the direction perpendicular to the road

and aligning the ground and aerial images. Note that when

a road is not connected to a parallel road, the second step

results in a graphical model with 15 variables, while when

there are k parallel roads, this involves doing inference over

a graphical model with 15k variables. Note also that in or-

der to minimize the same objective, each of these iterations

is performing conditional inference, and the pairwise po-

tentials involving variables that are not optimized collapse

to unaries.

3.3. Training with S­SVM

We employ structured SVM (S-SVM) [24] to learn the

weights of the aerial unaries and the smoothness in our

model. In particular, we use the parallel cutting plane im-

plementation of [18]. We employ a combination of two

loss functions. The first is a truncated L2 loss: ℓdata =
min(||yji − ŷji ||

2, 100m2), encouraging our prediction yji to

be close to the ground truth ŷji . We compute ŷji by perform-

ing inference in our model with features computed from the

ground truth annotation (segmentation). The second loss

term encourages smoothness of the prediction along the
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Algorithm 1 Block coordinate descent inference (BCD).

1: Set all alignments t = 0, and initialize y by minimizing

Eq. (1) ignoring the along road smoothness.

2: repeat

3: for for all yj do

4: Minimize Eq. (1) along the road w.r.t yj , holding

the rest fixed.

5: end for

6: for all yi at one segment of the road do

7: Minimize Eq. (1) w.r.t yi, holding the rest fixed.

8: end for

9: for all t variables do

10: Minimize Eq. (1) w.r.t t, holding y fixed.

11: end for

12: until no energy reduction or max number iterations

road, ℓsm = |yji − yj+1
i |. Note that the geometrical con-

straints in our model are either 0 or ∞ and are not trained.

4. Experiments

We collected a new dataset which we call Air-Ground-

KITTI, which is composed of both ground images from

the KITTI tracking benchmark [8] and newly acquired or-

thorectified aerial images over the same area. We neglected

the KITTI sequences where the car is mostly static, result-

ing in 20 KITTI sequences for a total of 7603 ground stereo

images. We annotated every 30th ground image with 4

semantic classes (parking, sidewalk, road, building). The

aerial images were acquired by a DSLR camera mounted

on an airplane and projected on the earth surface with 9
cm/pixel Ground Sampling Distance (GSD). We split the

data into 10 training and 10 test aerial image/KITTI se-

quences, with special care to avoid overlaps in the aerial im-

ages. We manually annotated the aerial images with 4 cat-

egories (parking, sidewalk, road, building) as closed poly-

gons and the lane markings as polylines. This took 70h of

annotation, at a mean of 21h/km2, the area is 3.23 km2.

To perform fine-grained segmentation using both aerial

and ground images, we estimate a homography that trans-

forms the ground plane in KITTI to the UTM coordinate

system based on the KITTI’s GPS+IMU measurements and

the camera calibration. We assign each ground image to

the closest parallel road segment. Our model then refines

this estimate in the direction perpendicular to each road seg-

ment. We process every 5th ground image in the sequence.

As metrics for the fine-grained segmentation we calcu-

late the pixelwise Intersection over Union (IoU), Precision,

Recall and F1 metrics for three classes (i.e. road, parking,

sidewalk). Note that we only measure the areas laying in

the area of interest (i.e. ±15m around the road map center-

line). We consider two parallel roads overlapping over the

same area as a serious error. To reflect this, we handle these

(a) (b)

(c) (d)

(e) (f)
Figure 7. It is hard to estimate the number of lanes if there are

no lane markings. (a) Our method, (b) Oracle (i.e., our method

with ground truth potentials). (c) The OnlyLane model without the

parallel constraint allows the road to ”jump” to the nearby parallel

road. (d) The parallel constraints of LaneRoadParallel prevents

this from happing. (e) Dense, urban pedestrian streets are difficult

to estimate. (f) Our model is not intended for intersections, as it

does not reason about turn lanes.

areas as if they were background. The metrics in Table 1

are calculated according to this.

For the roads, we additionally compute whether we have

estimated the correct number of lanes. This is measured as

the average ℓ1 error in terms of number of lanes (EN). Note

that if there are no lane markings, estimating the number of

lanes is very difficult. Fig. 7 (a-b) shows this difficulty.

In our experiments, we compare our approach to the

state-of-the-art method of [12], which uses OSMs to es-

timate road width. We also tested different model con-

figurations for our approach. We refer to Lane as a

model that employs Aerial semantics, Aerial Edges, Road

collapse constraints, Lane size constraint and Centerline

prior energy terms. Inference is done independently for

each road segment via dynamic programming along the

yj = yj1, · · · , y
j
15 chains. We refer by LaneParallel to a

model where we additionally include the constraint between

nearby parallel road. We refer by LaneRoad as a model that

contains all the potentials in Lane plus smoothness along the

road. We apply BCD inference by alternating between the

chains perpendicular to the road (the lanes) and along the

roads (segments). We refer by LaneRoadParallel a model

that contains all potentials but the ground. Finally, Ground

contains all potentials. We evaluate this case only where

ground images are available.
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Model
Average Road Sidewalk Parking

IoU F1 IoU F1 Pr. R. EN IoU F1 Pr. R. IoU F1 Pr. R.

Mattyus et al. [12] - - 62.1 76.4 68.0 87.0 - - - - - - - - -

[12] Deep Un* - - 64.4 78.4 66.7 94.7 - - - - - - - - -

Lane 43.6 59.6 61.9 76.5 82.8 71.0 0.730 31.8 48.3 67.2 37.7 37.0 54.1 58.5 50.3

LaneParallel 44.8 60.3 66.5 79.9 85.0 75.4 0.543 31.6 48.0 69.8 36.6 36.1 53.1 70.8 42.4

LaneRoad 45.4 61.6 61.9 76.4 82.7 71.0 0.707 38.3 55.4 62.4 49.7 36.1 53.1 52.2 54.1

LaneRoadParallel 48.6 64.3 68.0 80.9 83.5 78.5 0.555 39.5 56.6 63.5 51.1 38.4 55.5 63.8 49.1

LaneRoadParallel** 41.9 58.5 54.9 70.9 86.9 59.9 0.559 34.9 51.7 68.7 41.5 35.8 52.7 69.9 42.3

Full** 42.0 58.6 55.3 71.2 86.8 60.4 0.556 34.9 51.7 68.7 41.5 35.8 52.7 69.9 42.3

Table 1. Performance for the semantic classes (i.e. road, parking spot, sidewalk) with various models and the two baselines. The values are

in %, except EN which is the average road lane number l1 error with respect to the oracle. * Marks the method of [12] with our deep road

classifier. The last two rows marked with ** evaluate only over areas where ground images are also available.

GPS+IMU [m] Ours [m]

Alignment error 1.67 0.57

Table 2. Ground to air image misalignment based on the camera

calibrations (GPS+IMU) and after our alignment measured in me-

ters. Using ±4 meter interval.

Comparison to the state-of-the-art: As shown in Ta-

ble 1, our method outperforms [12] in almost all metrics,

even when we apply our deep features instead of their road

classifier in their method. Furthermore, we retrieve more

semantic categories such as sidewalk, individual road lanes

and parking. The constraint between parallel roads is im-

portant to achieve good results on roads. Without it, our

model cannot outperform [12], which has this constraint.

Deep semantic features in aerial Images: We show the

performance of our Deep Network in Fig. 4. Note that it is

much better than the road classifier of [12].

Alignment between aerial and ground images: As

shown in Table 2 and Fig. 3 reasoning about the alignment

between ground and aerial images while doing fine-grained

segmentation improves the alignment significantly.

Qualitative Results: We visualize our results when using

only aerial images in Fig. 5, and when using joint aerial

and ground reasoning in Fig. 6. Our approach is able to

estimate well the lanes, sidewalk and parking as well as the

alignment between the ground and the aerial images.

Ablation studies: As shown in Table 1, the metrics for

different versions of our model are fairly similar, however

qualitatively, as we add more potentials, the results get bet-

ter. This is illustrated in Fig. 7 (c), where the OnlyLane

model moves the middle road to a parallel road resulting in

a noncontinuous structure. In contrast, the LaneRoadParal-

lel model prevents overlaps and favors smoothness, see the

Fig. 7 (d). Including the ground images only slightly im-

proves performance. We believe this could be overcome by

using stronger features in the ground images, i.e., leverag-

ing the full 3D point cloud, not just the ground plane. Note

that since our approach gives us very precise alignments be-

tween the ground and the aerial images it could be used to

enhance OSM with object locations, e.g. traffic signs.

Inference time: Inference in our full model takes 6 sec-

onds per km of road, with a single thread on a laptop com-

puter. Note that BCD can easily be parallelized.

Limitations: Our model is designed for individual roads

and it does not reason about turning lanes connecting dif-

ferent roads at intersections (see Fig. 7 (f)). Dealing with

such scenarios is part of our future work. Semantic seg-

mentation from aerial images reasons mainly about the vis-

ible parts of the street. Therefore covered areas (e.g. by

building, bridges, trees) can be a problem. However, when

ground images are available, our approach can handle this

problem. Our aerial images were acquired in early spring,

and thus trees occluding the roads is not a big problem.

5. Conclusion

We proposed an approach to enhance existing freely

available maps with fine grained segmentation categories

such as parking spots and sidewalk, as well as the number

and location of road lanes. Towards this goal, we proposed

an efficient method that produces very accurate estimates

by performing joint inference over both, monocular aerial

imagery captured by a plane and ground images taken from

a stereo pair mounted on top of a car. We have demon-

strated the effectiveness of our approach on a new dataset

which enhances KITTI with aerial images taken with a cam-

era mounted on an airplane and flying around the city of

Karlsruhe. In the future, we plan to reason about other fine

grained categories such as traffic signs in order to further

enhance the maps. As our method reasons about the accu-

rate alignment between the map and the ground images, we

envision its use for precise, lane-wise self localization of the

vehicle on the road.
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