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Abstract

This paper presents a novel framework for visual ob-

ject recognition using infinite-dimensional covariance op-

erators of input features, in the paradigm of kernel methods

on infinite-dimensional Riemannian manifolds. Our formu-

lation provides a rich representation of image features by

exploiting their non-linear correlations, using the power of

kernel methods and Riemannian geometry. Theoretically,

we provide an approximate formulation for the Log-Hilbert-

Schmidt distance between covariance operators that is effi-

cient to compute and scalable to large datasets. Empiri-

cally, we apply our framework to the task of image classifi-

cation on eight different, challenging datasets. In almost all

cases, the results obtained outperform other state of the art

methods, demonstrating the competitiveness and potential

of our framework.

1. Introduction

Covariance descriptors are a powerful image representa-

tion approach in computer vision. In this approach, an im-

age is compactly represented by a covariance matrix encod-

ing correlations between different features extracted from

that image. This representation has been demonstrated to

work very well in numerous vision tasks, including tracking

[24], object detection and classification [31, 30], and image

retrieval [7]. Covariance descriptors, properly regularized if

necessary, are symmetric positive definite (SPD) matrices,

which do not form a vector subspace of Euclidean space

under the standard matrix addition and scalar multiplica-

tion operations, but form a Riemannian manifold. The op-

timal measure of similarity between covariance descriptors

is thus not the Euclidean distance, but a metric that captures

this manifold structure. One of the most commonly used

Riemannian metrics in the literature is the Log-Euclidean

metric developed by [1]. This is a so-called bi-invariant
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Figure 1. Model of the proposed framework

Riemannian metric under which the manifold is flat, that is

having zero curvature. Therefore, it is efficient to compute

and can be used to define many positive definite kernels,

allowing kernel methods to be applied directly on the man-

ifold. This latter property has been exploited successfully

in various recent work in vision [15, 19]. However, a major

limitation of covariance matrices is that they only capture

linear correlations between input features.

In this work, we propose to use infinite-dimensional co-

variance operators as image representations. These are co-

variance matrices of infinite-dimensional features, which

are induced implicitly when a positive definite kernel (K1 in

Fig. 1), such as the Gaussian kernel, is applied to the orig-

inal image features. These covariance operators capture in

particular non-linear correlations between the original in-

put features. Each image is then represented by one such

covariance operator.

For tasks such as image classification, we require the no-

tion of distance between image representations, which in

this case means the distance between the corresponding co-

variance operators. It is known that covariance operators,

properly regularized, lie on the infinite-dimensional Rie-

mannian manifold of positive definite operators [17]. On

this manifold, the generalization of the Log-Euclidean met-

ric is the Log-Hilbert-Schmidt (Log-HS) metric [21]. Hav-

ing computed the Log-HS distances between the covariance

operators, another positive definite kernel (K2 in Fig. 1) can

be computed using these distances and used as input to a
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kernel classifier, e.g. SVM.

In essence, the above two steps, namely image represen-

tation by covariance operators and kernel classification, to-

gether make up a two-layer kernel machine. The kernel K1

in the first layer, with the low-level image features as input,

induces covariance operators which capture non-linear cor-

relations between these features. The kernel K2 in the sec-

ond layer, with the Log-HS distances between covariance

operators as input, allows the application of kernel meth-

ods, e.g. SVM, to these operators. The result of this double

kernelization process is a more powerful representation that

can better capture the expressiveness of the image features

by exploiting both the power of kernel methods and the Rie-

mannian manifold setting of covariance operators.

However, as with many kernel methods, one drawback

of the original Log-HS metric formulation in [21] is that it

tends not scale well to large datasets.

To carry out the above kernelization efficiently, we de-

velop the following novel mathematical and computational

framework. In this paper, we propose an approximate Log-

HS distance formulation. This is done by approximating the

implicit infinite-dimensional covariance operators above by

explicit finite-dimensional covariance matrices, which are

computed using explicit approximate feature maps of the

original kernel (K1 in Fig. 1). We demonstrate that the ap-

proximate Log-HS distance is substantially faster to com-

pute than the true Log-HS distance, with relatively little loss

in the performance of the resulting algorithm. The main the-

oretical contribution of the present work is the mathemati-

cal derivation and justification of the approximate Log-HS

distance, which goes beyond that for kernel approximation.

In summary, the novel contributions of our work are

the following. Mathematically and computationally, we

present an approximate formulation for the Log-HS dis-

tance between covariance operators that is substantially

faster to compute than the original formulation in [21] and

that is scalable to large datasets, while substantially main-

taining an effective discriminating capability. Empirically,

we apply our framework to the task of visual object recog-

nition, using eight challenging, publicly available datatsets,

ranging from Fish, Virus, and Texture to Scene recognition.

On these datasets, our proposed method compares very fa-

vorably with previous state of the art methods in terms of

classification accuracy and especially in computational effi-

ciency, demonstrating the competitiveness and potential of

our framework.

Related work. Infinite-dimensional covariance opera-

tors of low-level features have been applied to the task of

image classification recently by [21], which formulated the

Log-HS metric, and by [14], which used the formulation

for Bregman divergences proposed in [35]. While they

both work very well, these methods tend to be computa-

tionally intensive and not scalable to large datasets. There

exists a large literature on large-scale kernel approximation,

which focuses on approximating either the feature maps or

the kernel matrices [25, 34, 27], but not on the covariance

operators. Approximate affine-invariant distances between

covariance operators for image classification have recently

been considered in [12]. However, the affine-invariant dis-

tance cannot be used to define positive definite kernels [15]

and, as we show in Sec. 3, this approximation approach is

not scalable to large datasets.

Organization. We give an overview of the Riemannian

distances between finite-dimensional covariance matrices

and their generalizations to infinite-dimensional covariance

operators in Sec. 2. The core of the paper is Sec. 3, in which

we present our approximate Log-HS distance formulation,

using two methods for computing approximate feature maps

and covariance operators. Empirical results on the task of

visual object recognition, using eight different datasets, are

reported in Sec. 4. Proofs for all mathematical results are

given in the Supplementary Material.

2. Distances between covariance matrices and

covariance operators

2.1. Riemannian manifold of SPD matrices

Let n ∈ N be fixed. Covariance matrices of size
n × n, properly regularized if necessary, are instances
of the set Sym++(n) of SPD matrices, which forms a
finite-dimensional Riemannian manifold, see e.g. [2, 23].
The most commonly encountered Riemannian metric on
Sym++(n) is the affine-invariant metric, in which the
geodesic distance between two SPD matrices A and B is

daiE(A,B) = || log(A−1/2BA−1/2)||F , (1)

where F denotes the Frobenius norm, which for A =
(aij)

n
i,j=1 is given by ||A||2F =

∑n

i,j=1 a
2
ij , and log denotes

the principal matrix logarithm. From a practical perspec-
tive, the distance (1) tends to be computationally intensive
for large scale datasets. This motivated the development of
the Log-Euclidean metric framework of [1], in which the
geodesic distance between A and B is given by

dlogE(A,B) = || log(A)− log(B)||F , (2)

This distance is faster to compute than the distance (1),

particularly when computing all pairwise distances on a

large set of SPD matrices. Furthermore, the Log-Euclidean

metric can be used to define many positive definite ker-

nels, such as the Gaussian kernel, which is not possible us-

ing the affine-invariant metric [15]. We wish to emphasize

that the Log-Euclidean metric is itself a Riemannian met-

ric on Sym++(n), a so-called bi-invariant metric, which

is a fact not always discussed in recent theoretical work

in computer vision, e.g. [13]. This metric arises from

the commutative Lie group structure of Sym++(n), namely

A⊙B = exp(log(A) + log(B)), introduced by [1], where

the corresponding geodesic curves and the geodesic dis-

tance (2) are derived. In fact, for two commuting matri-
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ces A and B, the Log-Euclidean and affine-invariant dis-

tances are identical, i.e. dlogE(A,B) = daiE(A,B). One

can see that in Eq. (2), the SPD structure of A and B

is encoded via the principal matrix logarithm, which is

given by log(A) = Udiag(log λ1, . . . , log λn)U
T , where

A = Udiag(λ1, . . . , λn)U
T is the spectral decomposition

for A (note that if A has a negative eigenvalue, the princi-

pal logarithm is not defined). In contrast, the standard Eu-

clidean distance ||A−B||F is defined solely in terms of the

entries of A − B, without reflecting any structure in A and

B. Consequently, even though Sym++(n) has zero curva-

ture under the Log-Euclidean metric, the geodesic distance

(2) nevertheless captures better the geometry of Sym++(n)

than the Euclidean distance ||A − B||F . This has also been

consistently demonstrated empirically, see e.g [1, 15].
The SPD matrices considered in the current work are

covariance matrices of features extracted from input data.
Specifically, let X ⊂ R

n. Let x = [x1, . . . , xm] be a data
matrix sampled from X , where m is the number of obser-
vations. In the setting of the current work, there is one such
matrix for each image, namely the matrix of low-level fea-
tures sampled at (a subset of) the pixels in the image. Each
image is then represented by the n× n covariance matrix

Cx =
1

m
xJmx

T : Rn → R
n, (3)

where Jm is the centering matrix, defined by Jm = Im −
1
m
1m1

T
m with 1m = (1, . . . , 1)T ∈ R

m.
In practice, Cx is generally only positive semi-definite

and thus to apply the Riemannian structure of Sym++(n),
it is often necessary to consider the regularized version
(Cx + γIn) for some γ > 0. For two covariance matrices
Cx and Cy, we therefore consider the distance between the
regularized versions (Cx + γI) and (Cy + μI), given by

dlogE = || log(Cx + γIn)− log(Cy + μIn)||F , (4)

for some regularization parameters γ > 0, μ > 0.

2.2. Infinite-dimensional covariance operators

The covariance matrix Cx only measures the linear cor-

relations between the features in the input data. A powerful

method to capture non-linear input correlations is by (i) first

mapping the original input features into a high dimensional

feature space H, using an implicit nonlinear feature map in-

duced by a positive definite kernel; (ii) then computing the

covariance operators in the feature space H.
Specifically, let X be an arbitrary non-empty set. Let

x = [x1, . . . , xm] be a data matrix sampled from X , where
m ∈ N is the number of observations. Let K be a pos-
itive definite kernel on X × X and HK its induced re-
producing kernel Hilbert space (RKHS). Let H be any
feature space for K, which we assume to be a separa-
ble Hilbert space, with the corresponding feature map Φ :
X → H, so that K(x, y) = 〈Φ(x),Φ(y)〉H for all pairs
(x, y) ∈ X × X . For concreteness, we can identify H with
the RKHS HK , or with the space of square summable se-
quences ℓ2 = {(ak)k∈N :

∑∞
k=1 |ak|2 < ∞}. The feature

map Φ gives the (potentially infinite) mapped data matrix
Φ(x) = [Φ(x1), . . . ,Φ(xm)] of size dim(H) × m in the fea-
ture space H. The corresponding covariance operator for
Φ(x) is defined to be

CΦ(x) =
1

m
Φ(x)JmΦ(x)T : H → H, (5)

which can be considered as a (potentially infinite) matrix

of size dim(H) × dim(H). If X = R
n and K(x, y) = 〈x, y〉,

then CΦ(x) = Cx as in (3).
Infinite-dimensional affine-invariant metric. As in the

finite-dimensional case, we need to consider the regular-
ized covariance operator (CΦ(x) + γIH), γ > 0, which lies
on the infinite-dimensional manifold Σ(H) of positive def-
inite operators on H. Let A : H → H be a bounded lin-
ear operator and A∗ be its adjoint operator. We recall that
A : H → H is said to be a Hilbert-Schmidt operator, de-
noted by A ∈ HS(H), if

||A||2HS = tr(A∗A) =
∞
∑

k=1

λk(A
∗A) < ∞, (6)

where || ||HS denotes the Hilbert-Schmidt norm, the
infinite-dimensional generalization of the Frobenius norm,
and {λk(A

∗A)}∞k=1 denotes the set of eigenvalues of A∗A.
By the formulation of [17, 22], the infinite-dimensional
affine-invariant distance daiHS between (CΦ(x) + γI) and
(CΦ(y) + μI) is given by

daiHS[(CΦ(x) + γI), (CΦ(y) + μI)] (7)

= || log[(CΦ(x) + γI)−1/2(CΦ(y) + μI)(CΦ(x) + γI)−1/2]||eHS,

with the extended Hilbert-Schmidt norm || ||eHS given by

||A+ γI||2eHS = ||A||2HS + γ2.

Log-Hilbert-Schmidt metric. The generalization of the
Log-Euclidean metric to the infinite-dimensional manifold
Σ(H) has recently been formulated by [21]. In this metric,
termed Log-Hilbert-Schmidt metric, or Log-HS for short,
the distance dlogHS[(CΦ(x) + γIH), (CΦ(y) + μIH)] between
(CΦ(x) + γIH) and (CΦ(y) + μIH) is given by

dlogHS[(CΦ(x) + γIH), (CΦ(y) + μIH)] (8)

= || log(CΦ(x) + γIH)− log(CΦ(y) + μIH)||eHS,

which has a closed form in terms of the corresponding

Gram matrices (we refer to [21] for the explicit expression).

Regularization. The form of regularization (A + γI),
γ > 0, which is often empirically necessary to ensure pos-

itive definiteness in the case dim(H) < ∞, is always nec-

essary, both theoretically and empirically, when dim(H) =
∞, since in this case log(A), with A being a covariance

operator, is always unbounded (see [17, 21, 22]).

As in the finite-dimensional case, two key advantages

of the Log-HS distance dlogHS over the affine-invariant dis-

tance daiHS are: (i) the dlogHS distance is faster to compute

than the daiHS distance; (ii) it is straightforward to define

many commonly used positive definite kernels, such as the

Gaussian kernel, using the dlogHS distance, which is not the

case with the daiHS distance. These advantages are fully

exploited in the current work.
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In the next section, we describe how to approximate For-

mula (8) to compute the pairwise distances on a set of data

matrices {xi}
N
i=1 when N and m are large.

3. Approximate Log-HS Distance

While kernel methods are powerful in learning non-

linear structures in data, they tend not to scale well, in terms

of computational complexity, to large datasets, which are

common in vision problems such as object recognition and

fine-grained categorization. In the typical kernel learning

setting, the feature map Φ is high-dimensional (and often

infinite-dimensional, as in the case of the Gaussian kernel)

and thus is only used implicitly. Instead, exact kernel meth-

ods carry out computations using Gram matrices and thus

their computational complexities depend on the sizes of the

Gram matrices, which become very large for large datasets.
A commonly used approach that has emerged recently

to reduce the computational cost of kernel methods is to
compute an explicit approximate feature map Φ̂D : X →
R

D, where D is finite and D << dim(H), so that

〈Φ̂D(x), Φ̂D(y)〉RD = K̂D(x, y) ≈ K(x, y), with (9)

lim
D→∞

K̂D(x, y) = K(x, y) ∀(x, y) ∈ X × X . (10)

The approximate feature map Φ̂D is then used directly in

the learning algorithms instead of the Gram matrices.

In our setting, we use the approximate feature maps

to compute the corresponding finite-dimensional approx-

imate covariance operators. The Log-Euclidean distance

between the approximate operators is then used as the ap-

proximate version of Log-HS distance between the infinite-

dimensional covariance operators. Thus we are not inter-

ested in the approximate kernel values K̂D(x, y) per se, but

the approximate covariance operators and the correspond-

ing approximate Log-HS distance. The mathematical justifi-

cation for the latter goes beyond that for kernel approxima-

tion and is the main theoretical contribution of this work.

In fact, as we show in Theorems 1 and 2 below, Eq. (10),

which guarantees the convergence of the approximate ker-

nel value to the true kernel value, is not sufficient to guar-

antee the convergence of the approximate Log-HS distance

to the true Log-HS distance as D → ∞. This convergence

is non-trivial and requires further assumptions, which are

practically realizable.
Approximate covariance operator and approximate

Log-HS distance. With the approximate feature map

Φ̂D, we have the corresponding data matrix Φ̂D(x) =

[Φ̂D(x1), . . . , Φ̂D(xm)] of size D × m, and the approxi-
mate covariance operator has the form

CΦ̂D(x) =
1

m
Φ̂D(x)JmΦ̂D(x)T : RD → R

D, (11)

which is a matrix of size D ×D, instead of the potentially

infinite matrix CΦ(x) of size dim(H)× dim(H).
We then consider the following as an approximate ver-

sion of the Log-HS distance given in Formula (8):

∥

∥

∥
log

(

CΦ̂D(x) + γID
)

− log
(

CΦ̂D(y) + μID
)
∥

∥

∥

F
. (12)

Key theoretical question. We need to determine whether
Formula (12) is truly a finite-dimensional approximation of
Formula (8), in the sense that

lim
D→∞

∥

∥

∥
log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + μID)

∥

∥

∥

F

= || log(CΦ(x) + γIH)− log(CΦ(y) + μIH)||eHS. (13)

The answer to this question is the main mathematical con-

tribution of the current paper. It turns out that in general,

this is not possible. This is because the infinite-dimensional

Log-HS distance is generally not obtainable as a limit of the

finite-dimensional Log-Euclidean distance as the dimension

approaches infinity [21]. More precisely, we have

Theorem 1 Assume that γ �= µ, γ > 0, µ > 0. Then

lim
D→∞

∥

∥

∥
log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + μID)

∥

∥

∥

F
= ∞.

The infinite limit in Theorem 1 stands in sharp contrast

to that of Eq. (10) on the approximability of the kernel

value K(x, y) itself, which is satisfied by both approxima-

tion schemes based on Fourier features presented below.

In practice, however, it is reasonable to assume that we

can use the same regularization parameter for both CΦ̂D(x)

and CΦ̂D(y), that is to set γ = μ. In this setting, we obtain

the necessary convergence, as follows.

Theorem 2 Assume that γ = µ > 0. Then

lim
D→∞

∥

∥

∥
log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + γID)

∥

∥

∥

F

= || log(CΦ(x) + γIH)− log(CΦ(y) + γIH)||eHS. (14)

In light of Theorems 1 and 2, subsequently we employ

the same regularization parameter γ > 0 to compute approx-

imate Log-HS distances between all regularized operators

(CΦ̂D(x) + γID). In this work, we employ two methods for

computing the approximate feature map Φ̂D, namely Ran-

dom Fourier features [25] and Quasi-random Fourier fea-

tures [34], presented in the following section.

3.1. Fourier feature maps

Random Fourier feature maps. This is the approach
in [25] for computing approximate feature maps of shift-
invariant kernels. Let K : Rn × R

n → R be a kernel of the
form K(x, y) = k(x−y) for some positive definite function k
on R

n. By Bochner’s Theorem [26], there is a finite positive
measure ρ on R

n such that

k(x− y) =

∫

Rn

e−i〈ω,x−y〉dρ(ω) (15)

=

∫

Rn

ρ(ω)φω(x)φω(y)dω, where φω(x) = e−i〈ω,x〉.

Without loss of generality, we can assume that ρ is a proba-
bility measure on R

n, so that K(x, y) = Eω∼ρ[φω(x)φω(y)].
By symmetry, K(x, y) = 1

2
[K(x, y)+K(y, x)], so that by the

relation 1
2
[e−i〈ω,x−y〉 + ei〈ω,x−y〉] = cos(〈ω, x− y〉) we have
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K(x, y) =

∫

Rn

cos(〈ω, x− y〉)ρ(ω)dω. (16)

To approximate K(x, y), we can sample D points {ωj}Dj=1

from the distribution ρ and compute the empirical version

K̂D(x, y) =
1

D

D
∑

j=1

cos(〈ωj , x− y〉) D→∞−−−−→ K(x, y) (17)

almost surely by the law of large numbers. Let W =
(ω1, . . . , ωD) be a matrix of size n × D, with each col-
umn ωj ∈ R

n randomly sampled according to ρ. Moti-
vated by the cosine addition formula, cos(〈ωj , x − y〉) =
cos〈ωj , x〉 cos〈ωj , y〉+ sin〈ωj , x〉 sin〈ωj , y〉, we define

cos(WTx) = (cos〈ωj , x〉)Dj=1, (18)

sin(WTx) = (sin〈ωj , x〉)Dj=1. (19)

The desired approximate feature map is the concatenation

Φ̂D(x) =
1√
D

(cos(WTx); sin(WTx)) ∈ R
2D, (20)

with 〈Φ̂D(x), Φ̂D(y)〉 = K̂D(x, y). In the case of the Gaus-

sian kernel K(x, y) = e
−

||x−y||2

σ2 (used in the experiments in
Sec. 4), we have

ρ(ω) =
(σ

√
π)n

(2π)n
e−

σ2||ω||2

4 ∼ N
(

0,
2

σ2

)

. (21)

Quasi-random Fourier feature maps. The Random

Fourier feature maps above arise from the Monte-Carlo ap-

proximation of the kernel K expressed as the integral in

Eq. (15), using a random set of points ωj’s sampled ac-

cording to the distribution ρ. An alternative approach, pro-

posed by [34], employs Quasi-Monte Carlo integration [9],

in which the ωj’s are deterministic points arising from a

low-discrepancy sequence in [0, 1]n. We describe this ap-

proach in detail in the Supplementary Material.

3.2. New positive definite kernels using approximate
Log-HS distances

In our framework, starting with a shift-invariant kernel

K1 in Fig. 1, we compute the approximate feature map

Φ̂D(x) using the methods in Sec. 3.1 and the correspond-

ing approximate covariance operators using Eq. (11). The

approximate Log-HS distances between these approximate

covariance operators are then computed using Eq. (12).
With the approximate Log-HS distances, we can define

a new positive definite kernel (K2 in Fig. 1), for example

exp(−|| log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + γID)||pF /σ2),

(22)

for 0 < p ≤ 2, with p = 2 giving the Gaussian kernel and

p = 1 giving the Laplacian kernel. This new kernel can then

be used in a classifier, e.g. SVM. The complete pipeline for

our framework is summarized in Algorithm 1.

3.3. Computational complexity

We present here the computational analysis of the pro-
posed approximation in Eq. (12) as well as the comparison

with the approximate affine-invariant distance proposed by
[12], according to the formula
∥

∥

∥
log[(CΦ̂D(x) + γI)−1/2(CΦ̂D(y) + μI)(CΦ̂D(x) + γI)−1/2]

∥

∥

∥

F
.

(23)

The main computational cost in Eq. (12) is the SVD for

(CΦ̂D(x) + γI) and (CΦ̂D(y) + μI), which takes time O(D3).

At first glance, the computational complexity for the ap-

proximate affine-invariant distance in Eq. (23), which con-

sists of a matrix square root and inversion, two matrix mul-

tiplications and an SVD, is also O(D3). However, computa-

tionally, the key difference between Eq. (12) and Eq. (23) is

that in Eq. (12), (CΦ̂D(x)+γI) and (CΦ̂D(y)+μI) are uncou-

pled, whereas in Eq. (23), they are coupled. Thus if we have

N data matrices {x1, . . . ,xN}, to compute their pairwise

approximate Log-HS distances using Eq. (12), we need to

compute an SVD for each (CΦ̂D(xi)
+ γI), with time com-

plexity O(ND3). On the other hand, to compute their pair-

wise approximate affine-invariant distances using Eq. (23),

we need to compute an SVD for each pair (CΦ̂D(xi)
+ γI),

(CΦ̂D(xj)
+ γI), with time complexity O(N2D3). Thus the

approximation of the Log-HS distance is O(N) times faster

than the approximation of the affine-invariance distance.

We also note that for N pairs of data matrices, the

computational complexity of the exact Log-HS formulation

[21] and the RKHS Bregman divergences [14] is of order

O(N2m3). Thus for D < m and N large, the approxi-

mate Log-HS formulation will be much more efficient to

compute than both the exact Log-HS and the RKHS Breg-

man divergences (see the actual running time comparison

between the approximate and exact Log-HS formulations

in the experiments below).

Input: Set of images.

Output: Kernel matrix (used as input to a classifier, e.g.

SVM).

Parameters: Kernels K1, K2, regularization parameters

γ = μ > 0, approximate feature dimension D.

Procedure:

1. For each image, extract a data matrix x = [x1, . . . , xm]
of low-level features from m pixels.

2. For each image, compute the approximate feature maps

Φ̂D(xi), 1 ≤ i ≤ m, associated to kernel K1, according

to Eq. (20), and the corresponding approximate

covariance operator CΦ̂D(x), according to Eq. (11).

3. For each pair of images, compute the approximate

Log-HS distance between the corresponding covariance

operators, according to Eq. (12).

4. Using kernel K2, compute a kernel matrix using the

above approximate Log-HS distance, e.g. according to

Eq. (22).

Algorithm 1: Summary of the proposed method.

Further comparison with [12]. In [12], the authors pro-

posed two methods: (i) Nearest Neighbor using effectively
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the approximate affine-invariant distance given in Eq.(23)

with γ = μ = 0 and (ii) the CDL algorithm using the rep-

resentation log(CΦ̂D(x)). Both of these methods require the

assumption that CΦ̂D(x) is positive definite, which is never

guaranteed. In fact, when D > m, CΦ̂D
(x) is always rank-

deficient and neither its inverse nor log can be computed.

Thus neither the CDL nor the approximate affine-invariant

distance can be used. Theoretically, since it does not em-

ploy any regularization, the approximate affine-invariant

distance in [12] will not approach the exact affine-invariant

distance ([17, 22]) for large D, which always requires reg-

ularization (see Sec. 2.2).

4. Experimental results

In this section, we show the performance of the proposed

method compared with other state-of-the-art approaches on

eight image classification datasets. In all the datasets, we

used the same features and experimental protocols of the

compared state-of-the-art approaches (see details below).

The following methods were evaluated: LogE, using the

Log-Euclidean metric, Stein, using the Stein (also called

Jensen-Bregman LogDet) divergence [7], Log-HS, using the

Log-HS metric [21] induced by the Gaussian kernel (K1 in

Fig. 1, but only on the Fish dataset, see below), and Approx

LogHS and QApprox LogHS induced by the Gaussian ker-

nel, using the proposed random Fourier and Quasi-random

Fourier approximation methods in Sec. 3, respectively. For

a good trade-off between speed and accuracy, we set the

approximate feature dimension D = 200 (Eq. 20) for Ap-

prox LogHS and QApprox LogHS (more details below). Ex-

cept with Stein, all experiments used LIBSVM [6] for clas-

sification, with the Gaussian kernel defined on top of the

corresponding metric (K2 in Fig. 1). For Stein, since the

corresponding Gaussian kernel is generally not guaranteed

to be positive definite [28], we used the Nearest Neighbor

approach as in [7]. We also compared the above meth-

ods with CDL [32], one of the state-of-the-art approaches

in covariance-based learning. On the Fish dataset, we also

carried out experiments with the Euclidean (E) and Hilbert-

Schmidt (HS) metrics to demonstrate the advantage of the

Riemannian geometric framework1. The performance is

evaluated in terms of classification accuracy (more details

below). All parameters were chosen by cross-validation.
For each image, at the pixel location (x, y), the following

image features were extracted (the actual features vary be-
tween the different datasets, since for fairness we followed
the same protocols of the methods we compared with)

F (x, y) =[x, y, I(x, y), |Ix|, |Iy|, |Ixx|, |Iyy|,
R(x, y), G(x, y), B(x, y), |G(o,s)

x,y |] (24)

where I, Ix, Iy, Ixx, Iyy denote the intensity and its first-

and second-order derivatives, respectively, R,G, and B de-

1Due to lack of space, the experimental results for the E and HS metrics

on the other datasets will be reported in the longer version of the paper.

Figure 2. Sample images for datasets used in this work. From top

to bottom: Fish Recognition [3], Virus Classification [16], KTH-

TIPS2b Material [5], Texture [4, 8], ETHZ [10], UIUC [20], Tiny-

Graz03 [33], and ETH80 [18].

note the color values, and Go,s
x,y denotes the Gabor filter at

orientation o and scale s.

4.1. Datasets

The Fish recognition dataset [3] contains 27, 370 fish

images acquired from live video. There are altogether 23
classes of fish and the number of images per class ranges

from 21 to 12, 112, with a mean resolution of 150 × 120
pixels. The significant variations in color, pose and illumi-

nation inside each class make this dataset very challenging.

We conducted two different experiments on this dataset, us-

ing the R,G,B features from Eq. (24), as in [21]. The first

experiment (named Exp1) is a small scale experiment which

used the same protocol and the 10 splits provided by [21],

consisting altogether of 345 images, divided in 115 images

for training (5 per class) and 230 images for testing (10 per

class) . We analyzed the performances of Approx LogHS

and QApprox LogHS with respect to the original Log-HS

metric formulation of [21]. Furthermore, we compared the

computational cost and running time of the two approxi-

mate versions with respect to [21]. In the second experiment

(named Exp2), the entire Fish dataset was used to show the

scalability of the proposed method. We note that this ex-

periment was not carried out using the exact Log-HS metric

due to its high computational cost in terms of memory and

speed. In this case, since the number of testing samples are

different between the classes, the classification performance

is evaluated using the Average Precision (AP) measure, a

standard metric used by the PASCAL challenge [11].

The Virus Classification dataset [16] contains 15 dif-

ferent virus classes. Each class has 100 images of size
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41 × 41. For this dataset, following [14], we employed the

25-dimensional feature vector consisting of the intensity, 4
gradients, and 20 Gabor filters in Eq. (24) at 4 orientations

and 5 scales. We used the 10 splits provided by the authors

in a leave-one-out manner, i.e. 9 splits for training and 1
split as query, repeating the procedure 10 times.

The KTH-TIPS2b Material dataset [5] contains im-

ages of 11 materials captured under 4 illuminations, in 3
poses and at 9 scales, giving 108 images for each sample

in a category, with 4 samples per material. For each cate-

gory, we trained on 3 samples and tested on the remaining

sample. For this dataset, following [14], we extracted the

23-dimensional feature consisting of the R,G,B values and

20 Gabor filters in Eq. (24) at 4 orientations and 5 scales.

The Texture dataset for our experiments was created by

combining 111 texture images of the Brodatz dataset [4] and

61 of the CURET dataset [8], as done in [7]. Unfortunately,

we were not able to reproduce the experiments in [7] since

the exact protocols, i.e. the number of patches extracted

from each image and the number of training/testing images,

were not specified. We therefore carried out a similar exper-

iment by extracting 150 patches of size 20 × 20 from each

image, taking 140 as training and 10 as testing, repeating

the entire procedure 10 times. For this dataset, we extracted

the 5-dimensional feature vector [x, y, I, |Ix|, |Iy|] as in [7].

For person re-identification, we used two sequences of

the ETHZ dataset [10]. SEQ. #1 contains 83 pedestrians

in 4, 857 images. SEQ. #2 contains 35 pedestrians in 1, 936

images. As in [14], we used 10 images from each subject

for training and the rest for testing. Following [14], we

extracted the 17-dimensional feature vector consisting of

[x, y,R,G,B] and the first- and second-order color deriva-

tives, i.e. [| ∂r
∂x

|, | ∂r
∂y

|, | ∂2r
∂x2 |, | ∂

2r
∂y2 |], for r = R,G,B. The per-

formance was evaluated using the Average Precision metric.

The UIUC dataset [20] contains 18 different material

categories collected in the wild, with a total of 216 images.

Following [12], we extracted the 19-dimensional vector

consisting of 3 colors, 4 gradients, and 12 Gabor filters in

Eq.(24) at 4 orientations and 3 scales. As in [12], we split

the database into training and test sets by randomly assign-

ing half of the images of each class to the training set and

testing on the rest. This process was repeated 10 times.

The TinyGraz03 dataset [33] contains 1148 indoor and

outdoor scenes with an image resolution of 32 × 32 pix-

els. The images are divided in 20 classes with at least 40
samples per class. We used the recommended train/test

split provided by the authors. For this dataset, following

[12], at each pixel we extracted the 7-dimensional feature

vector [|Ix|, |Iy|, |Ixx|, |Iyy|, R,G,B] from Eq. (24). This

dataset is highly challenging and the correct recognition rate

achieved by humans is only 30% [33].

The ETH80 dataset [18] contains images of eight ob-

ject categories: apples, cows, cups, dogs, horses, pears,

tomatoes, and cars. Each category includes ten object sub-

categories (e.g. various dogs) in 41 orientations, result-

ing in 410 images per category. We randomly chose 21

images for training and the rest for testing, repeating the

procedure 10 times. For this dataset, following [15], at

each pixel we extracted the 5-dimensional feature vector

[x, y, I(x, y), |Ix|, |Iy|] from Eq. (24).

Method Accuracy Exp1 Accuracy Exp2

Approx

LogHS
53.91%(±4.34) 56.2%(±2.2)

QApprox

LogHS
54.30%(±3.44) 57.70%(±1.8)

LogHS [21] 56.74%(±2.87) N/A

HS 50.17%(±2.17%) 52.49%(±2.26%)
LogE 42.70%(±3.45) 46.20%(±1.9)

E 26.87%(±3.52%) 28.18%(±1.72%)
Stein [7] 43.95%(±4.48) 40.83%(±7.5)
CDL [32] 41.70%(±3.60) 42.8%(±2.0)

Table 1. Results on the Fish dataset [3] in terms of classification

accuracy. Two different experiments were conducted: Exp1 com-

pares Approx LogHS and QApprox LogHS with respect to the orig-

inal Log-HS metric on the reduced dataset. For Exp2, the results

are reported for the whole dataset.

4.2. Analysis and discussion of results

Classification performance compared with exact

Log-HS metric. First of all, we ran a comparative ex-

periment on a subset of the Fish dataset [3], as in [21], to

analyze the performances of the Approx LogHS and QAp-

prox LogHS formulations with respect to the original Log-

HS formulation of [21]. For this dataset, we show results

obtained using R,G,B features as in [21] with all methods.

Column two of Tab.1 shows the mean and standard devia-

tion values for the classification accuracies computed over

all 10 random splits. The first important observation we

note is that Approx LogHS and QApprox LogHS gave results

(first and second rows) which are comparable with those us-

ing the Log-HS metric and substantially better than other

methods, namely LogE, Stein, and CDL. Furthermore, the

Riemannian distance LogE substantially outperforms the

Euclidean distance E, and similarly LogHS, Approx LogHS,

and QApprox LogHS all outperform the Hilbert-Schmidt

distance HS. This clearly demonstrates the advantage of the

Riemannian geometric framework.

Running time compared with exact Log-HS metric.

Most importantly, Approx LogHS and QApprox LogHS in-

cur much smaller computation costs compared to Log-HS.

In fact, using MATLAB on an Intel Xeon E5-2650, 2.60

GHz PC, we obtained a speed up of 30× with QApprox

LogHS (Train: 6.7sec. Test: 18sec.) and more than 50× with

Approx LogHS (Train: 3.6sec. Test: 9.9sec.) with respect

to the baseline Log-HS (Train: 175.7sec. Test: 565.1sec.).

Because of this substantial speed up in running time, sub-

sequently we focused solely on the performance of Approx

LogHS and QApprox LogHS for all the other datasets.
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Method
Virus KTH-TIPS2b Texture ETHZRe-ID UIUC TinyGraz03 ETH80

Acc % Acc % Acc % Acc-Seq1 % Acc-Seq2 % Acc % Acc % Acc %

Approx

LogHS

81.5%
(±2.1)

83.6%
(±5.4)

76.9%
(±0.5)

92.0%
(±0.3)

93.2%
(±0.5)

50.1%
(±3.7)

60%
95.0%
(±0.5)

QApprox

LogHS

76.5%
(±3.2)

83.46%
(±5.6)

76.4%
(±0.6)

91.9%
(±0.5)

93.0%
(±0.5)

44.7%
(±3.6)

57%
94.9%
(±0.6)

LogE
71.9%
(±4.0)

74.1%
(±7.4)

52.9%
(±0.8)

89.9%
(±0.2)

91.9%
(±0.4)

37.8%
(±2.6)

40%
71.1%
(±1.0)

Stein [7]
49.7%
(±4.8)

73.1%
(±8.0)

38.4%
(±0.7)

89.6%
(±0.8)

90.9%
(±0.2)

27.9%
(±1.7)

24%
67.5%
(±0.4)

CDL [32]
69.5%
(±3.1)

76.3%
(±5.11)

53.8%
(±0.5)

86.8%
(±0.6)

88.8%
(±1.2)

36.3%
(±2.0)

41%
56.0%
(±0.6)

SoA
82.5%
(±2.9)

[12]
80.1%
(±4.6)

[14] N/A
90.2%
(±1.0)

[14]
91.4%
(±0.8)

[14]
47.4%
(±3.1)

[12]
57%
[12]

83.6%
(±6.1)

[29]

Table 2. Best results obtained on seven different datasets in terms of classification accuracy. The first two rows represent the proposed

method using the two-layer kernel machine using Approx LogHS and QApprox LogHS with Gaussian SVM. The last row represents the

state-of-the-art results on each dataset.

With this computational speed-up, we next ran a sec-

ond experiment (third column) using the whole Fish dataset.

The classification accuracy shows an improvement of 10%
and 11.5% for Approx LogHS and QApprox LogHS, respec-

tively, with respect to LogE and an improvement of 15.4%
and 16.9% with respect to the Stein divergence [7].

Comparison against other state of the art (SoA)

methods. Table 2 shows the results of the proposed method

(first two rows) on seven different datasets in comparison

with the respective state-of-the-art results. The best re-

sult [12] reported for the Virus dataset is an accuracy of

82.5% (last row). Our classification accuracy is slightly

lower than this result but it outperforms all the other com-

petitors (LogE, Stein and CDL, by 9.6%, 31.8%, and 12%,

respectively). Our results on the KTH-TIPS2b Material

dataset improves the state of the art [14] by 3.5% (third col-

umn). The accuracy of the proposed method on the Tex-

ture dataset (forth column) is 23.1% higher of the best of

the other competitors. The fifth and sixth columns of Table

2 report the results on two sequences of the ETHZRe-ID

dataset. In this case, we obtained an improvement of 1.8%
over the state-of-the-art [14]. Regarding the UIUC and the

TinyGraz03 datasets, the improvement over the previous re-

sults of [12], is 2.7% and 3%, respectively. Our method out-

performs the recent state of the art [29] also on the ETH80

dataset with an improvement of 11.4%.

These improvements in classification accuracies all

demonstrate the effectiveness of our proposed method.

More importantly, we emphasize that our approximate Log-

HS formulations are much more computationally efficient

than both the RKHS Bregman divergences in [14] and the

approximate affine-invariant distance used in [12], as dis-

cussed in Sec. 3.3.

Increasing the approximate feature dimension. We

also carried out a set of experiments to show that the classifi-

cation accuracy improves when increasing the approximate

feature dimension D in Eq. (20), as expected. We tested this

on the TinyGraz03 dataset, with D = 200, 400, 1000, with

the results reported in Tab. 3. However, as also expected,

Method D = 200 D = 400 D = 1000

Approx LogHS
57%
3.8s

59%
20.5s

60%
240.4s

QApproxLogHS
55%
5.6s

58%
26.7s

59%
271.7s

Table 3. Results on the TinyGraz03 dataset [33] with increasing

values of the approximate feature dimension D. We also reported

the training time in seconds below each accuracy.

the improvement in classification accuracy comes at a larger

computational cost. In fact, the training time for D = 1000
is 63 and 48 times slower than D = 200 for Approx LogHS

and QApprox LogHS, respectively. In other words, there is

a very large computational speed up factor from D = 1000
to D = 200 with a very low drop in accuracy.

5. Conclusion, discussion, and future work

In this paper, we have presented a novel mathematical

and computational framework for visual object recognition

using infinite-dimensional covariance operators of image

features, in the paradigm of kernel methods and Riemannian

geometry. Our approximate Log-HS distance formulation

is substantially faster to compute than the original Log-HS,

with relatively little loss in classification accuracy, and is

scalable to large datasets. Empirically, our framework com-

pares very favorably with previous state of the art methods

in terms of classification accuracy and especially in compu-

tational complexity.

As ongoing work, we are investigating the direction of

replacing low-level hand-crafted features used in our cur-

rent experiments with feature learning techniques, such as

convolutional networks. Preliminary experiments on the

Fish dataset show that we obtain an improvement of approx-

imately 15% by using convolutional features in combination

with the proposed approximate Log-HS distance formula-

tion. We will report the full results in a future work.
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