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Abstract

Automatic detection and classification of dynamic hand

gestures in real-world systems intended for human com-

puter interaction is challenging as: 1) there is a large diver-

sity in how people perform gestures, making detection and

classification difficult; 2) the system must work online in

order to avoid noticeable lag between performing a gesture

and its classification; in fact, a negative lag (classification

before the gesture is finished) is desirable, as feedback to the

user can then be truly instantaneous. In this paper, we ad-

dress these challenges with a recurrent three-dimensional

convolutional neural network that performs simultaneous

detection and classification of dynamic hand gestures from

multi-modal data. We employ connectionist temporal clas-

sification to train the network to predict class labels from in-

progress gestures in unsegmented input streams. In order to

validate our method, we introduce a new challenging multi-

modal dynamic hand gesture dataset captured with depth,

color and stereo-IR sensors. On this challenging dataset,

our gesture recognition system achieves an accuracy of

83.8%, outperforms competing state-of-the-art algorithms,

and approaches human accuracy of 88.4%. Moreover, our

method achieves state-of-the-art performance on SKIG and

ChaLearn2014 benchmarks.

1. Introduction

Hand gestures and gesticulations are a common form of

human communication. It is therefore natural for humans to

use this form of communication to interact with machines

as well. For instance, touch-less human computer inter-

faces can improve comfort and safety in vehicles. Com-

puter vision systems are useful tools in designing such in-

terfaces. Recent work using deep convolutional neural net-

works (CNN) with video sequences has significantly ad-

vanced the accuracy of dynamic hand gesture [22, 23, 25]

and action [13, 34, 37] recognition. CNNs are also useful

for combining multi-modal data inputs [23, 25], a technique

which has proved useful for gesture recognition in challeng-

ing lighting conditions [23, 27].

However, real-world systems for dynamic hand gesture

recognition present numerous open challenges. First, these

systems receive continuous streams of unprocessed visual

data, where gestures from known classes must be simul-

taneously detected and classified. Most prior work, e.g.,

[21, 23, 25, 27], regards gesture segmentation and classifi-

cation separately. Two classifiers, a detection classifier to

distinguish between gesture and no gesture and a recogni-

tion classifier to identify the specific gesture type, are often

trained separately and applied in sequence to the input data

streams. There are two reasons for this: (1) to compensate

for variability in the duration of the gesture and (2) to re-

duce noise due to unknown hand motions in the no gesture

class. However, this limits the system’s accuracy to that of

the upstream detection classifier. Additionally, since both

problems are highly interdependent, it is advantageous to

address them jointly. A similar synergy was shown to be

useful for joint face detection and pose estimation [28].

Second, dynamic hand gestures generally contain three

temporally overlapping phases: preparation, nucleus, and

retraction [8, 14], of which the nucleus is most discrimina-

tive. The other two phases can be quite similar for different

gesture classes and hence less useful or even detrimental to

accurate classification. This motivates designing classifiers

which rely primarily on the nucleus phase.

Finally, humans are acutely perceptive of the response

time of user interfaces, with lags greater than 100 ms per-

ceived as annoying [3, 20]. This presents the challenge of

detecting and classifying gestures immediately upon or be-

fore their completion to provide rapid feedback.

In this paper, we present an algorithm for joint segmenta-

tion and classification of dynamic hand gestures from con-

tinuous depth, color and stereo-IR data streams. Building

on the recent success of CNN classifiers for gesture recog-

nition, we propose a network that employs a recurrent three

dimensional (3D)-CNN with connectionist temporal classi-

fication (CTC) [10]. CTC enables gesture classification to

be based on the nucleus phase of the gesture without requir-

ing explicit pre-segmentation. Furthermore, our network
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addresses the challenge of early detection of gestures, re-

sulting in zero or negative lag, which is a crucial element for

responsive user interfaces. We present a new multi-modal

hand gesture dataset1 with 25 classes for comparing our al-

gorithm against state-of-the-art methods and human subject

performance.

2. Related Work

Many hand-crafted spatio-temporal features for effective

video analysis have been introduced in the area of gesture

and action recognition [33, 36, 39]. They typically capture

shape, appearance, and motion cues via image gradients

and optical flow. Ohn-Bar and Trivedi [27] evaluate sev-

eral global features for automotive gesture recognition. A

number of video classification systems successfully employ

improved dense trajectories [39] and Fisher vector [30] rep-

resentations, which are widely regarded as state-of-the-art

local features and aggregation techniques for video analy-

sis. Features for depth sensors are usually designed accord-

ing to the specific characteristics of the depth data. For in-

stance, random occupancy patterns [40] utilize point clouds

and super normal vectors [42] employ surface normals.

In contrast to hand-crafted features, there is a growing

trend toward feature representations learned by deep neu-

tral networks. Neverova et al. [25] employ CNNs to com-

bine color and depth data from hand regions and upper-body

skeletons to recognize sign language gestures. Molchanov

et al. [22, 23] apply a 3D-CNN on the whole video sequence

and introduce space-time video augmentation techniques to

avoid overfitting. In the context of action recognition, Si-

monyan and Zisserman [34] propose separate CNNs for the

spatial and temporal streams that are late-fused and that ex-

plicitly use optical flow. Tran et al. [37] employ a 3D-CNN

to analyze a series of short video clips and average the net-

work’s responses for all clips. Most previous methods either

employ pre-segmented video sequences or treat detection

and classification as separate problems.

To the best of our knowledge, none of the previous meth-

ods for hand gesture recognition address the problem of

early gesture recognition to achieve the zero or negative lag

necessary for designing effective gesture interfaces. Early

detection techniques have been proposed for classifying fa-

cial expressions and articulated body motion [12, 32], as

well as for predicting future events based on incoming video

streams [15, 16]. The predicted motions in many of these

methods are aided by the appearance of their environments

(i.e., road or parking lot)—something we cannot rely on for

gesture recognition. Recently, connectionist temporal clas-

sification has been shown to be effective for classification of

unsegmented handwriting and speech [9, 10]. We demon-

1https://research.nvidia.com/publication/

online-detection-and-classification-dynamic-

hand-gestures-recurrent-3d-convolutional

Figure 1: Classification of dynamic gestures with

R3DCNN. A gesture video is presented in the form of short

clips Ct to a 3D-CNN for extracting local spatial-temporal

features, ft. These features are input to a recurrent network,

which aggregates transitions across several clips. The re-

current network has a hidden state ht−1, which is computed

from the previous clips. The updated hidden state for the

current clip, ht, is input into a softmax layer to estimate

class-conditional probabilities, st of the various gestures.

During training, CTC is used as the cost function.

strate the applicability of CTC for gesture recognition from

unsegmented video steams.

3. Method

In this section, we describe the architecture and training

of our algorithm for multi-modal dynamic hand gesture de-

tection and classification.

3.1. Network Architecture

We propose a recurrent 3D convolutional neural network

(R3DCNN) for dynamic hand gesture recognition, illus-

trated in Fig. 1. The architecture consists of a deep 3D-CNN

for spatio-temporal feature extraction, a recurrent layer for

global temporal modeling, and a softmax layer for predict-

ing class-conditional gesture probabilities.

We begin by formalizing the operations performed by

the network. We define a video clip as a volume Ct ∈
R

k×ℓ×c×m of m≥ 1 sequential frames with c channels of

size k×ℓ pixels ending at time t. Each clip is transformed

into a feature representation ft by a 3D-CNN F :

F : Rk×ℓ×c×m → R
q,where ft = F(Ct),

by applying spatio-temporal filters to the clip. A recurrent

layer computes a hidden state vector ht ∈ R
d as a func-

tion of the hidden state after the previous clip ht−1 and the

feature representation of the current clip ft:

ht = R(Winft +Whht−1),
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with weight matrices Win ∈ R
d×q and Wh ∈ R

d×d, and

truncated rectified linear unit R : R
d → R

d, R(x) =
min(max(0, x), 4) to limit gradient explosion [29] during

training. Finally, a softmax layer transforms the hidden

state vector ht into class-conditional probabilities st of w
classes:

st = S(Wsht + b),

with weights Ws∈R
w×d, bias b∈R

w, and a softmax func-

tion S : Rw → R
w
[0,1], where [S(x)]i = exi/

∑

k e
xk .

We perform classification by splitting the entire video V
into T clips of length m and computing the set of class-

conditional probabilities S = {s0, s1, ..., sT−1} for each

individual clip. For offline gesture classification, we av-

erage the probabilities of all the clips belonging to a pre-

segmented gesture savg = 1/T
∑

s∈S s, and the predicted

class is ŷ = argmaxi ([s
avg]i), across all gesture classes i.

When predicting online with unsegmented streams, we con-

sider only clip-wise probabilities st.

We combine multiple modalities by avereging the class-

conditional probabilities estimated by the modality-specific

networks. During online operation, we average probabili-

ties across modalities for the current clip only. As an alter-

native to the softmax layer, we additionally consider com-

puting the final classification score with a support vector

machine (SVM) [6] classifier operating on features ft or ht

extracted by the R3DCNN. We average the features across

video clips and normalize by their ℓ2-norms to form a single

representation for the entire video.

3.2. Training

Let X = {V0,V1, ...,VP−1} be a mini-batch of training

examples in the form of weakly-segmented gesture videos

Vi.
2 Each video consists of T clips, making X a set of

N=T ·P clips. Class labels yi are drawn from the alphabet

A to form a vector of class labels y with size |y| = P .

Pre-training the 3D-CNN. We initialize the 3D-CNN

with the C3D network [37] trained on the large-scale Sport-

1M [13] human action recognition dataset. The network has

8 convolutional layers of 3×3×3 filters and 2 fully-connected

layers trained on 16-frame clips. We append a softmax pre-

diction layer to the last fully-connected layer and fine-tune

by back-propagation with negative log-likelihood to predict

gestures classes from individual clips Ci.

Training the full model. After fine-tuning the 3D-

CNN, we train the entire R3DCNN with back-propagation-

through-time (BPTT) [41]. BPTT is equivalent to unrolling

the recurrent layers, transforming them into a multi-layer

feed-forward network, applying standard gradient-based

back-propagation, and averaging the gradients to consoli-

date updates to weights duplicated by unrolling.

2Weakly-segmented videos contain the preparation, nucleus, and re-

traction phases and frames from the no gesture class.

We consider two training cost functions: negative log-

likelihood for the entire video and connectionist temporal

classification (CTC) for online sequences. The negative

log-likelihood function for a mini-batch of videos is:

Lv = −
1

P

P−1
∑

i=0

log
(

p(yi|Vi)
)

,

where p(yi|Vi) = [savg]yi
is the probability of gesture label

yi given gesture video Vi as predicted by R3DCNN.

Connectionist temporal classification. CTC is a cost

function designed for sequence prediction in unsegmented

or weakly segmented input streams [9, 10]. CTC is applied

in this work to identify and correctly label the nucleus of

the gesture, while assigning the no gesture class to the re-

maining clips, addressing the alignment of class labels to

particular clips in the video. In this work we consider only

the CTC forward algorithm.

We extend the dictionary of existing gestures with a no

gesture class: A′ = A ∪ {no gesture}. Consequently,

the softmax layer outputs a class-conditional probability for

this additional no gesture class. Instead of averaging pre-

dictions across clips in a pre-segmented gesture, the net-

work computes the probability of observing a particular

gesture (or no gesture) k at time t in an input sequence X :

p(k, t|X ) = skt ∀t ∈ [0, N).

We define a path π as a possible mapping of the input se-

quence X into a sequence of class labels y. The probability

of observing path π is p(π|X ) =
∏

t s
πt

t , where πt is the

class label predicted at time t in path π.

Paths are mapped into a sequence of event labels y by

operator B as y = B(π), condensing repeated class labels

and removing no gesture labels, e.g., B([−, 1, 2,−,−]) =
B([1, 1,−, 2,−]) = [1, 2], where 1, 2 are actual gesture

classes and “−” is no gesture. Under B, many paths π result

in the same event sequence y. The probability of observing

a particular sequence y given an input sequence X is the

sum of the conditional probabilities of all paths π mapping

to that sequence, B−1(y)={π : B(π) = y}:

p(y|X ) =
∑

π∈B−1(y)

p(π|X ).

Computation of p(y|X ) is simplified by dynamic pro-

graming. First, we create an assistant vector ẏ by adding

a no gesture label before and after each gesture clip in y,

so that ẏ contains |ẏ| = P ′ = 2P + 1 labels. Then, we

compute a forward variable α∈R
N×P where αt(u) is the

combined probability of all mappings of events up to clip t
and event u. The transition function for α is:

αt(u) = s
ẏu

t

(

αt−1(u) + αt−1(u− 1) + βt−1(u− 2)
)

,
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where

βt(u) =

{

αt(u), if ẏu+1 = no gesture and ẏu 6= ẏu+2

0, otherwise

and ẏu denotes the class label of event u. The forward vari-

able is initialized with α0(0) = s
ẏ0

0 , the probability of a

path beginning with ẏ0 = no gesture, and α0(1) = s
ẏ1

0 ,

the probability of a path starting with the first actual event

ẏ1. Since a valid path cannot begin with a later event, we

initialize α0(i) = 0 ∀i > 1. At each time step t > 0, we

consider paths in which the event u is currently active (with

probability s
ẏu

t ) and (1) remains unchanged from the pre-

vious time t − 1 (αt−1(u)), (2) changes from no gesture

to the next actual gesture or vice versa (αt−1(u− 1)), or

(3) transitions from one actual gesture to the next while

skipping no gesture if the two gestures have distinct labels

(βt−1(u− 2)). Finally, any valid path π must end at time

N − 1 with the last actual gesture ẏP ′−1 or with no gesture

ẏP ′ , hence p(y|X ) = αN−1(P
′ − 1) + αN−1(P

′).
Using this computation for p(y|X ), the CTC loss is:

LCTC = − ln(p(y|X )),

expressed in the log domain [9]. While CTC is used as a

training cost function only, it affects the architecture of the

network by adding the extra no gesture class label. For pre-

segmented video classification, we simply remove the no-

gesture output and renormalize probabilities by the ℓ1-norm

after modality fusion.

Learning rule. To optimize the network parameters W
with respect to either of the loss functions we use stochastic

gradient descent (SGD) with a momentum term µ = 0.9.

We update each parameter of the network θ ∈ W at every

back-propagation step i by:

θi = θi−1 + vi − γλθi−1,

vi = µvi−1 − λJ

(〈

δE

δθ

〉

batch

)

,

where λ is the learning rate, 〈 δE
δθ

〉batch is the gradient value

of the chosen cost function E with respect to the parameter

θ averaged over the mini-batch, and γ is the weight decay

parameter. To prevent gradient explosion in the recurrent

layers during training, we apply a soft gradient clipping op-

erator J (·) [29] with a threshold of 10.

Regularization. We apply a number of regularization

techniques to reduce overfitting. We train with weight de-

cay (γ = 0.5%) on all weights in the network. We apply

drop-out [11] to the fully-connected layers of the 3D-CNN

at a rate of p=75%, rescaling the remaining activations by

a factor of 1/(1 − p). Additionally, we find that dropping

feature maps in the convolutional layers improves general-

ization in pre-trained networks. For this, we randomly set

10% of the feature maps of each convolutional layer to 0 and

rescale the activations of the others neurons accordingly.

Implementation. We train our gesture classifier in

Theano [2] with cuDNN3 on an NVIDIA DIGITS DevBox

with four Titan X GPUs.

We fine-tune the 3D-CNN for 16 epochs with an initial

learning rate of λ= 3 ·10−3, reduced by a factor of 10 af-

ter every 4 epochs. Next, we train the R3DCNN end-to-end

for an additional 100 epochs with a constant learning rate of

λ=3·10−4. All network parameters without pre-trained ini-

tializations are randomly sampled from a zero-mean Gaus-

sian distribution with standard deviation 0.01.

Each video of a weakly-segmented gesture is stored with

80 frames of 120×160 pixels. We train with frames of size

112×112 generated by random crops. Videos from the test

set are evaluated with the central crop of each frame. To

increase variability in the training examples, we apply the

following data augmentation steps to each video in addi-

tion to cropping: random spatial rotation (±15◦) and scal-

ing (±20%), temporal scaling (±20%), and jittering (±3
frames). The parameters for each augmentation step are

drawn from a uniform distribution with a specified range.

Since recurrent connections can learn the specific order of

gesture videos in the training set, we randomly permute the

training gesture videos for each training epoch.

We use CNNs pre-trained on three-channel RGB images.

To apply them to one-channel depth or IR images, we sum

the convolutional kernels for the three channels of the first

layer to obtain one kernel. Similarly, to employ the pre-

trained CNN with two-channel inputs (e.g., optical flow),

we remove the third channel of each kernel and rescale the

first two by a factor of 1.5.

For the 3D-CNN, we find that splitting a gesture into

non-overlapping clips of m=8 frames yields the best com-

bination of classification accuracy, computational complex-

ity and prediction latency. To work with clips of size m=8
frames on the C3D network [37] (originally trained with

m=16 frames), we remove temporal pooling after the last

convolutional layer. Since data transfer and inference on

a single 8-frame clip takes less than 30ms on an NVIDIA

Titan X, we can predict at a faster rate than clips are accu-

mulated.

4. Dataset

Recently, several public dynamic gesture datasets have

been introduced [5, 18, 19, 27]. The datasets differ in the

complexity of gestures, the number of subjects and gesture

classes, and the types of sensors used for data collection.

Among them, the Chalearn dataset [5] provides the largest

number of subjects and samples, but its 20 gesture classes,
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derived from the Italian sign language, are quite different

from the set of gestures common for user interfaces. The

VIVA challenge dataset [27] provides driver hand gestures

performed by a small number of subjects (8) against a plain

background and from a single viewpoint.

Given the limitations of existing datasets, to validate

our proposed gesture recognition algorithm, we acquired a

large dataset of 25 gesture types, each intended for human-

computer interfaces and recorded by multiple sensors and

viewpoints. We captured continuous data streams, con-

taining a total of 1532 dynamic hand gestures, indoors in

a car simulator with both bright and dim artificial lighting

(Fig. 2). A total of 20 subjects participated in data collec-

tion, some with two recorded sessions and some with par-

tial sessions. Subjects performed gestures with their right

hand while observing the simulator’s display and control-

ling the steering wheel with their left hand. An interface on

the display prompted subjects to perform each gesture with

an audio description and a 5s sample video of the gesture.

Gestures were prompted in random order with each type re-

quested 3 times over the course of a full session.

Gestures (Fig. 3) include moving either the hand or two

fingers up, down, left or right; clicking with the index fin-

ger; beckoning; opening or shaking the hand; showing the

index finger, or two or three fingers; pushing the hand up,

down, out or in; rotating two fingers clockwise or counter-

clockwise; pushing two fingers forward; closing the hand

twice; and showing “thumb up” or “OK”.

We used the SoftKinetic DS325 sensor to acquire front-

view color and depth videos and a top-mounted DUO 3D

sensor to record a pair of stereo-IR streams. In addition, we

computed dense optical flow [7] from the color stream and

the IR disparity map from the IR-stereo pair [4]. We ran-

domly split the data by subject into training (70%) and test

(30%) sets, resulting in 1050 training and 482 test videos.

5. Results

We analyze the performance of R3DCNN for dynamic

gesture recognition and early detection.

5.1. Offline Gesture Recognition

Modality fusion. We begin by evaluating our proposed

R3DCNN classifier for a variety of input modalities con-

tained in our dataset: color (front view), optical flow from

color (front view), depth (front view), stereo IR (top view),

and IR disparity (top view) (bottom row of Fig. 2). We

train a separate network for each modality and, when fus-

ing modalities, average their class-conditional probability

vectors.3 Table 1 contains the accuracy for various combi-

nations of sensor modalities. Observe that fusing any pair

of sensors improves individual results. In addition, combin-

3Attempts to learn a parameterized fusion layer resulted in overfitting.

Figure 2: Environment for data collection. (Top) Driv-

ing simulator with main monitor displaying simulated driv-

ing scenes and a user interface for prompting gestures, (A)

a SoftKinetic depth camera (DS325) recording depth and

RGB frames, and (B) a DUO 3D camera capturing stereo

IR. Both sensors capture 320×240 pixels at 30 frames per

second. (Bottom) Examples of each modality, from left:

RGB, optical flow, depth, IR-left, and IR-disparity.

Table 1: Comparison of modalities and their combinations.

Sensors Accuracy Combinations

Depth 80.3% X X X X X X X

Optical flow 77.8% X X X X X X X X

Color 74.1% X X X X X X

IR image 63.5% X X X X X X X

IR disparity 57.8% X X X

Fusion Accuracy

66
.2
%

79
.3
%

81
.5
%

82
.0
%

82
.0
%

82
.4
%

82
.6
%

83
.2
%

83
.4
%

8
3
.8
%

ing different modalities of the same sensor (e.g., color and

optical flow) also improves the accuracy. The best gesture

recognition accuracy (83.8%) is observed for the combina-

tion of all modalities.

Comparisons. We compare our approach to state-of-the-

art methods: HOG+HOG2 [27], improved dense trajectories

(iDT) [39], super normal vector (SNV) [42], two-stream

CNNs [34], and convolutional 3D (C3D) [37], as well as

human labeling accuracy.

To compute the HOG+HOG2 [27] descriptors, we re-

sample the videos to 32 frames and tune the parameters

of the SVM classifier via grid search to maximize accu-

racy. For iDT [39], we densely sample and track interest

points at multiple spatial scales, and compute HOG, his-

togram of optical flow (HOF), and motion boundary his-

togram (MBH) descriptors from each track. We employ

Fisher vectors (FV) [30] to aggregate each type of iDT

descriptor using 128 Gaussian components, as well as a

spatio-temporal pyramid [17] of FV to encode the space and

time information.

Among the CNN-based methods, we compare against

the two-stream network for video classification [34], which
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 3: Twenty-five dynamic hand gesture classes. Some gestures were adopted from existing commercial systems [1] or

popular datasets [23, 27]. Each column shows a different gesture class (0−24). The top and bottom rows show the starting

and ending depth frames, respectively, of the nucleus phase for each class. (Note that we did not crop the start and end

frames in the actual training and evaluation data.) Yellow arrows indicate the motion of each hand gesture. (A more detailed

description of each gesture is available in the supplementary video.)

utilizes the pre-trained VGG-Net [35]. We fine-tune its spa-

tial stream with the color modality and the temporal stream

with optical flow, each from our gesture dataset. We also

compare against the C3D [37] method, which is trained with

the Sports-1M [13] dataset and fine-tuned with the color or

depth modalities of our dataset.

Lastly, we evaluate human performance by asking six

subjects to label each of the 482 gesture videos in the test

set after viewing the corresponding front-view SoftKinetic

color video. Prior to the experiment, each subject familiar-

ized themselves with all 25 gesture types. Gestures were

presented in random order to each subject for labelling.

To be consistent with machine classifiers, human subjects

viewed each gesture video only once, but were not restricted

in the time allowed to decide each label.

The results of these comparisons are shown in Ta-

ble 2. Among the individual modalities, the best results

are achieved by depth, followed by optical flow and color.

This could be because the depth sensor is more robust to

indoor lighting change and more easily precludes the noisy

background scene, relative to the color sensor. Optical flow

explicitly encapsulates motion, which is important to recog-

nize dynamic gestures. Unlike the two-stream network with

action classification [34], its accuracy for gesture recogni-

tion is not improved by combining the spatial and tempo-

ral streams. We conjecture that videos for action classifica-

tion can be associated with certain static objects or scenes,

e.g., sports or ceremonies, which is not the case for dy-

namic hand gestures. Although C3D captures both shape

and motion cues in each clip, the temporal relationship be-

tween clips is not considered. Our approach achieves the

best performances in each individual modality and signif-

icantly outperforms other methods with combined modali-

ties, meanwhile it is still below human accuracy (88.4%).

Design choices. We analyze the individual components of

our proposed R3DCNN algorithm (Table 3). First, to un-

derstand the utility of the 3D-CNN we substitute it with a

2D-CNN initialized with the pre-trained 16-layer VGG-Net

Table 2: Comparison of our method to the state-of-the-art

methods and human predictions with various modalities.

Method Modality Accuracy

HOG+HOG2 [27] color 24.5%

Spatial stream CNN [34] color 54.6%

iDT-HOG [39] color 59.1%

C3D [37] color 69.3%

Ours color 74.1%

HOG+HOG2 [27] depth 36.3%

SNV [42] depth 70.7%

C3D [37] depth 78.8%

Ours depth 80.3%

iDT-HOF [39] opt flow 61.8%

Temporal stream CNN [34] opt flow 68.0%

iDT-MBH [39] opt flow 76.8%

Ours opt flow 77.8%

HOG+HOG2 [27] color + depth 36.9%

Two-stream CNNs [34] color + opt flow 65.6%

iDT [39] color + opt flow 73.4%

Ours all 83.8%

Human color 88.4%

Table 3: Comparison of 2D-CNN and 3D-CNN trained with

different architectures on depth or color data. (CTC∗ de-

notes training without drop-out of feature maps.)

Color Depth

2D-CNN 3D-CNN 2D-CNN 3D-CNN

No RNN 55.6% 67.2% 68.1% 73.3%
RNN 57.9% 72.0% 64.7% 79.5%
CTC 65.6% 74.1% 69.1% 80.3%
CTC∗ 59.5% 66.5% 67.0% 75.6%

[35] and train similarly to the 3D-CNN. We also asses the

importance of the recurrent network, the CTC cost func-

tion and feature map drop-out. Classification accuracies for

these experiments are listed in Table 3. When the recurrent
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Table 4: Accuracy of a linear SVM (C = 1) trained on

features extracted from different networks and layers (final

fully-connected layer fc and recurrent layer rnn).

Clip-wise C3D [37] R3DCNN

Modality fc fc rnn

Color 69.3% 73.0% 74.1%
Depth 78.8% 79.9% 80.1%

network is absent, i.e., “No RNN” in Table 3, the CNN is

directly connected to the softmax layer, and the network is

trained with a negative log-likelihood cost function. When

a recurrent layer with d=256 hidden neurons is present, we

train using the negative log-likelihood and CTC cost func-

tions, denoted “RNN” and “CTC” in Table 3, respectively.

We observe consistently superior performance with 3D-

CNN versus 2D-CNN for all sensor types and network con-

figurations. This suggests that local motion information ex-

tracted by the spatio-temporal kernels of the 3D-CNN is

important for dynamic hand gesture recognition. Notice

also that adding global temporal modeling via RNN into the

classifier generally improves accuracy, and the best accu-

racy for all sensors is obtained with the CTC cost function,

regardless of the type of CNN employed.

Finally, we evaluate the effect of feature map drop-out,

which involves randomly setting entire maps to zero while

training. This technique has been shown to provide lit-

tle or no improvement when training from a CNN from

scratch [11]. However, when a network pre-trained on a

larger dataset with more classes is fine -tuned for a smaller

domain with fewer training examples and classes, not all of

the original feature maps are likely to exhibit strong acti-

vations for the the new inputs. This can lead to overfitting

during fine-tuning. The accuracies of the various classifier

architectures, trained with and without feature map drop-

out are denoted by “CTC” and “CTC*” in Table 3, respec-

tively. They show improved accuracy for all modalities and

networks with feature map drop-out, with a greater positive

effect for the 3D-CNN.

Recurrent layer as a regularizer for feature extractors.

Tran et al. [37] perform video classification with a linear

SVM classifier learned on features extracted from the fully

connected layers of the C3D network. Features for each in-

dividual clip are averaged to form a single representation for

the entire video. In Table 4, we compare the performance of

the features extracted from the C3D network fine-tuned on

gesture clips with the features from R3DCNN trained with

CTC on entire gesture videos. Features extracted from each

clip are normalized by the ℓ2-norm. Since R3DCNN con-

nects a C3D architecture to a recurrent network, fc layer

features in both networks are computed by the same archi-

tecture, each with weights fine-tuned for the gesture recog-

nition. However, we observe (columns 1-2, Table 4) that

following fc by a recurrent layer and training on full videos

(R3DCNN) improves the accuracy of the extracted features.

A plausible explanation is that the recurrent layer help the

preceding convolutional network to learn more general fea-

tures. Moreover, features from the recurrent layer when

coupled with an SVM classifier, demonstrate a further im-

provement in performance (column 3, Table 4).

5.2. Early Detection in Online Operation

We now analyze the performance of our method for on-

line gesture detection, including early detection, when ap-

plied to unsegmented input streams and trained with the

CTC cost function. R3DCNN receives input video streams

sequentially as 8-frame clips and outputs class-conditional

probabilities after processing each clip. Generally the nu-

cleus of the gesture spans multiple clips, potentially en-

abling gesture classification before processing all clips.

Online operation. Fig. 4 shows ground truth labels and

network predictions during continuous online operation on

a video sequence collected outside of our previously de-

scribed dataset. The ground truth in the top row shows

the hand-labeled nucleus phase of each gesture. In most

cases, both networks—R3DCNN trained with negative

log-likelihood (“RNN”) and CTC (“CTC”), respectively—

predict the correct class before the gesture ends. How-

ever, the network trained with CTC produces significantly

fewer false positives. The two networks also behave dif-

ferently when the same gesture is performed sequentially,

e.g., observe that three instances of the same gesture occur

at 13−17s and 27−31s. The CTC network yields an indi-

vidual peak for each repetition, whereas RNN merges them

into a single activation.

Detection. To detect the presence of any one of the 25
gestures relative to no gesture, we compare the highest cur-

rent class conditional probability output by R3DCNN to a

threshold τ ∈ [0,1]. When the detection threshold is ex-

ceeded, a classification label is assigned to the most prob-

able class. We evaluate R3DCNN trained with and with-

out CTC on the test set with hand-annotated gesture nuclei.

We compute the area under the curve (AUC) [12] of the

receiver operating characteristic (ROC) curve. The ROC

plots the true positive detection rate (TPR)—when the net-

work fires during the nucleus of a gesture—versus the false

positive rate (FPR)—when the network fires outside of the

nucleus—for a range of threshold values. With the depth

modality, CTC results in better AUC (0.91) versus without

(0.69) due to fewer false positives. With modality fusion

the AUC increases to 0.93.

We also compute the normalized time to detect (NTtD)

[12] at a detection threshold (τ=0.3) with a TPR=88% and

FPR=15%. The distribution of the NTtD values for vari-
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Figure 4: A comparison of the gesture recognition performance of R3DCNN trained with (middle) and without (bottom)

CTC. (The no gesture class is not shown for CTC.) The various colors and line types indicate different gesture classes.
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Figure 5: NTtD and gesture length for different classes.

Static gestures are marked by red bars.

ous gesture types is shown in Fig. 5. The average NTtD

across all classes is 0.56. In general, static gestures require

the largest portion of the nucleus to be seen before classi-

fication, while dynamic gestures are classified on average

within 70% of their completion. Intuitively, the meaning of

a static gesture is clear only when the hand is in the final

position.

5.3. Evaluation on Previously Published Datasets

Finally, we evaluate our method on two benchmark

datasets: SKIG [18], and ChaLearn 2014 [5]. SKIG con-

tains 1080 RGBD hand gesture sequences by 6 subjects col-

lected with a Kinect sensor. There are 10 gesture categories,

each performed with 3 hand postures, 3 backgrounds, and

2 illumination conditions. Table 5 shows classification ac-

curacies, including the state-of-the-art result established by

the MRNN method [26]. Our method outperforms existing

methods both with and without the optical flow modality.

The ChaLearn 2014 dataset contains more than 13K

RGBD videos of 20 upper-body Italian sign language ges-

tures performed by 20 subjects. A comparison of results

is presented in Table 6, including Pigou et al. [31] with

state-of-the-art classification accuracy of 97.2% and Jac-

card score 0.91. On the classification task, our method (with

color, depth and optical flow modalities) outperforms this

method with an accuracy of 98.2%. For early detection on

Table 5: Results for the SKIG RGBD gesture dataset.

Method Modality Accuracy

Liu & Shao [18] color + depth 88.7%

Tung & Ngoc [38] color + depth 96.5%

Ours color + depth 97.7%

MRNN [26] color + depth + optical flow 97.8%

Ours color + depth + optical flow 98.6%

Table 6: Results on the Chalearn 2014 dataset. Accuracy

is reported on pre-segmented videos. (∗The ideal Jaccard

score is computed using ground truth localizations, i.e., the

class prediction is propagated for the ground truth gesture

duration, representing an upper bound on Jaccard score.)

Method Modality Accuracy Jaccard

Neverova et al. [24] color + depth + skeleton - 0.85

Pigou et al. [31] color + depth + skeleton 97.2% 0.91

Our, CTC color 97.4% 0.97∗

Our, CTC depth 93.6% 0.92∗

Our, CTC optical flow 95.0% 0.94∗

Our, RNN color + depth 96.6% 0.96∗

Our, CTC color + depth 97.5% 0.97∗

Our, RNN color + depth + optical flow 97.4% 0.97∗

Our, CTC color + depth + optical flow 98.2% 0.98∗

the color modality, with threshold τ = 0.3 (AUC= 0.98)

we observed: TPR=94.8%, FPR=0.8%, and NTtD=0.41,

meaning our method is able to classify gestures within 41%
of completion, neglecting inference time.

6. Conclusion

In this paper, we proposed a novel recurrent 3D convolu-

tional neural network classifier for dynamic gesture recog-

nition. It supports online gesture classification with zero

or negative lag, effective modality fusion, and training with

weakly segmented videos. These improvements over the

state-of-the-art are demonstrated on a new dataset of dy-

namic hand gestures and other benchmarks.
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