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Abstract

Learned confidence measures gain increasing impor-

tance for outlier removal and quality improvement in stereo

vision. However, acquiring the necessary training data is

typically a tedious and time consuming task that involves

manual interaction, active sensing devices and/or synthetic

scenes. To overcome this problem, we propose a new, flexi-

ble, and scalable way for generating training data that only

requires a set of stereo images as input. The key idea of

our approach is to use different view points for reason-

ing about contradictions and consistencies between multi-

ple depth maps generated with the same stereo algorithm.

This enables us to generate a huge amount of training data

in a fully automated manner. Among other experiments,

we demonstrate the potential of our approach by boost-

ing the performance of three learned confidence measures

on the KITTI2012 dataset by simply training them on a

vast amount of automatically generated training data rather

than a limited amount of laser ground truth data.

1. Introduction

Many works have demonstrated that machine learning

can be greatly beneficial for stereo vision [23, 31, 36, 24,

10]. All these works have one thing in common:

They require training data – the more the better.

Previous approaches used three main sources of training

data. The first source is manual labeling. While this is the

traditional approach in the fields of classification and seg-

mentation (e.g. [5, 33, 29]), it requires hundreds of man-

hours even in 2D. Because the task becomes even more

taxing in 3D, only very few manually labeled datasets ex-

ist in this domain (e.g. [18]). The second source is syn-

thetic data generation [2, 24]. Unfortunately, pure synthetic

data generation has not yet reached the level where it gen-

eralizes to natural images without an extreme modeling ef-
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Figure 1. Our approach automatically detects and classifies con-

tradictions and consistencies between multiple depth maps to gen-

erate labeled training images, which can be used for training con-

fidence measures. From top to bottom: RGB input images, depth

maps created with a query stereo algorithm (here [26]), label im-

ages based on laser ground truth [7] and our automatically gener-

ated label images. In the label images, green stands for positive

samples, red for negative and blue is ignored during training.

fort. The third source is to record ground truth data with

active depth sensors, which is currently the most popular

source [32, 7, 21, 27]. If a projector based setup is used [27],

the ground truth can achieve a very high accuracy, but the

data acquisition takes a lot of time and is restricted to indoor

scenes. For outdoor scenes the method of choice is typically

the use of a laser scanner [32, 7, 21]. Aside from requiring a

non-trivial registration between the laser reconstruction and

the recorded images, this method is also subject to a range

of assumptions itself. This fact makes a manual removal of

obviously incorrect ground truth data necessary for outdoor

datasets [7, 21]. Some approaches, like [21], combine these

three sources. They combine active sensing with synthetic

car models and manual annotation to increase the quality of

ground truth data.
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None of these methods is easily portable to very spe-

cific application areas such as under water reconstruction or

3D reconstruction with micro aerial vehicles. Furthermore,

none of these methods shows good scaling properties in the

sense of required man-hours per training data.

This motivated us to propose a novel way of generat-

ing training data without a synthetic model, active devices

or manual interaction. Instead of explicitly generating a

ground truth, we compare multiple depth maps of the same

scene obtained with the same stereo approach with each

other and thus collect positive and negative training data.

As input we require a set of stereo images observing a

static scene from multiple viewing angles. After computing

the relative poses and generating depth maps, we evaluate

which parts of the depth maps can likely be trusted, which

parts contradict each other and for which parts we simply

do not have enough information available to make this deci-

sion. This results in a set of partially labeled images, similar

to ground truth, which can be used for training (see Fig. 1).

For the evaluation of our method we use three pub-

licly available datasets, which are namely the multi-view

stereo dataset of Strecha et al. [32], the Middlebury2014

dataset [27] and the KITTI2012 stereo dataset [7]. On these

datasets we demonstrate that the performance of learned

confidence measures can be boosted by simply training

them on large amounts of domain specific training data,

which our approach can cheaply provide.

2. Related Work

To the best of our knowledge, we are the first to ap-

proach the topic of stereo training data generation in a self-

supervised manner. In order to demonstrate the usefulness

of our groundtruth generation, we show that existing stereo

vision approaches, which already have been evaluated on

one or more of the afore mentioned stereo datasets, can also

be successfully trained on our generated data.

Thus, we first give a short overview of the most relevant

learning based stereo approaches. While most approaches

pose the problem of learning reconstruction errors as a bi-

nary classification problem (correct matches/depth values

versus incorrect matches/depth values), Kong and Tao [17]

propose to use an additional class for failures due to fore-

ground fattening. Using these predicted class probabilities

they adjust the initial matching cost. Peris et al. [24] train

a multi-class Linear Discriminant Analysis (LDA) classi-

fier to compute disparities together with a confidence map.

Žbontar and LeCun [36] improve the matching cost compu-

tation by learning a similarity measure between small image

patches using a convolutional neural network.

The approaches mentioned above are very specific in

their formulation, but many other works use a so called

”confidence measure” as a basis for improving the stereo

output. A confidence measure should predict the likelihood

of a depth value being correct and is typically computed

using image intensities, disparity values and/or matching

costs. Some surveys about confidence measures are avail-

able in [16, 3, 4]. In the simplest way a confidence mea-

sure can be used to remove very likely wrong measure-

ments from the depth map. This process is called sparsi-

fication. The most common way for sparsification without

training is the left-right consistency check [16]. While this

check already detects many outliers, it cannot detect errors

caused by a systematic problem of an approach (e.g. fore-

ground fattening). Haeusler et al. [10] showed that ensem-

ble learning of many different features with random deci-

sion forests can significantly improve the sparsification per-

formance. Note that confidence measures are also learned

in similar fashion in the domain of optical flow, e.g. [20, 6].

Spyropoulos et al. [31] used the confidence prediction as

a soft-constraint in a Markov random field to improve the

stereo output. In the very recent work of Park and Yoon [23]

the confidence prediction is used to modulate the match-

ing cost of a semi-global matcher [15] and thus increase

its performance. As the performance of the above men-

tioned approaches depends on how well the confidence of

a measurement can be predicted, the area under the sparsifi-

cation curve is one of the most important evaluation criteria

in this domain [10, 23]. Hence, we found that this crite-

rion is ideally suited to benchmark the quality of our train-

ing data generation, aside from comparing it directly to the

ground truth. In our experiments, we use three recent ap-

proaches [10, 31, 23] that compute confidence measures and

analyze the change of performance depending on the used

training data (laser ground truth vs. automatically generated

training data) on the KITTI2012 dataset [7].

Aside from stereo vision, there exist some works that

deal with learning the matchability of features. Some of

these works [1, 34, 11] use ground truth data collected

by [1]. To generate the ground truth data they use the

dense multi-view stereo reconstruction algorithm provided

by Goesele et al. [9] and trust this approach to be accurate

enough. The problem with applying this approach to dense

stereo is that a learning algorithm will try to tune its out-

put to reproduce any systematic error made by [9]. Philbin

et al. [25] use SIFT [19] nearest-neighbors together with

a RANSAC verification to generate negative and positive

training data, whereas Simonyan et al. [30] first compute a

homography between images using SIFT and RANSAC and

then establish region correspondences using the homogra-

phy. Hartmann et al. [14] learn the matchability of SIFT fea-

tures by collecting features that survive the matching stage

and those which are rejected as positive and negative train-

ing data. All of these approaches focus on a specific type of

sparse feature and do not generalize well to dense stereo.
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Figure 2. Fully Automatic Training Data Generation.

3. Fully Automatic Training Data Generation

The core idea of our training data generation

approach is to relax the aim from labeling each

pixel as correct/incorrect to labeling them as self-

consistent/contradicting. We use the word self-consistent

in the sense that depth maps generated with the same

algorithm from different view points shall not contradict

each other through free space violation or occlusion. Note

that the use of different view points is important as the

errors in depth maps are in general strongly correlated, if

they are generated from the same view point with the same

stereo algorithm. In this work we use the observation that

this correlation is small when the relative observation angle

between two depth maps is large to reduce the influence

of systematic errors. The basic steps of our approach are

visualized in Fig. 2.

As input our approach requires a set of stereo images

with known poses. First, we execute the query algorithm,

which yields a set of depth maps (Setup). Then we assess

which parts of a depth map are supported by other depth

maps with a significantly different observation angle (Stage

1). In the next stage (Stage 2), we then use this support to

influence the voting process. In the final stage (Stage 3),

we detect outliers which were missed in the previous stage

using an augmented depth map. In the remainder of this

section, we describe all involved steps in more detail.

3.1. Stage 1: Support Assessment

Given many depth maps of the same scene, we want to

separate parts of the scene where many depth maps agree on

the structure (consistent parts) from those where they either

disagree or we simply do not have enough view points to

rule out systematic errors.

In performing this separation, we have to account for two

problems. The first problem is that if the camera poses of

two stereo pairs are too similar, the depth maps will very

likely contain the same systematic error. To remedy this sit-

uation, we try to decrease the error correlation in using dif-

ferent observation angles. The second problem originates

from the finite precision of cameras, which introduces a

query camera 

reference camera 

Figure 3. Consistency Voting. There are three possibilities for vot-

ing. A positive vote (center) is only cast if the reference measure-

ment is within the uncertainty boundary of the query measurement.

A negative vote is either cast if a reference measurement would

block the line of sight of the query camera (left) or the other way

around (right).

depth uncertainty. This means that a measurement with a

high uncertainty is not well suited for determining whether

a measurement with a lower uncertainty is correct or not.

To estimate this uncertainty we use the model proposed

by [12]. This model allows us to compute a covariance

matrix for each 3D point corresponding to a depth value

through first-order backward covariance propagation under

the assumption of isotropic Gaussian image noise, which is

explained in more detail in [13].

As we aim to produce 2D label images, we address this

problem on a per-pixel basis. So for each pixel of a depth

map, we first collect the support of other depth maps. A

reference depth map is only allowed to express its support

for the 3D point pquery associated with a query pixel if it

fulfills the following two criteria.

First, the viewpoints shall be sufficiently different. We

define that a viewpoint is different enough if the observa-

tion angle difference between two stereo pairs is sufficiently

large ( αdiff > αmin). We compute this observation angle

as αdiff = ∡(−−−−−→pquerycref,
−−−−−−−→
pquerycquery), where cx is the mean

camera center of a stereo pair.

Second, the reference measurement shall be within a

fixed theoretical tolerance σmax of the query measurement.

For this evaluation we use the Mahalanobis distance based

on the covariance matrix with the smaller uncertainty (ei-

ther reference or query).

In order to avoid being too much biased by a single ob-

servation direction, a 3D point fulfilling these criteria is not

directly allowed to vote, but instead can activate its corre-

sponding bin depending on the observation angle. We use

angular bins of αmin degree, where each activated bin in-

creases the support for the query point by one.

3.2. Stage 2: Consistency Voting

The basic idea of this stage is to let all depth maps vote

for the (in)consistency of a query depth map. Similar to

works in depth map fusion (e.g. [22]), negative votes are

cast by free space violations and occlusions and positive

votes are cast by measurements which are sufficiently close

to each other (see Fig. 3). Opposed to fusion approaches, we

aim for a completely different output. While works in depth
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map fusion try to improve/fuse the depth map, we only aim

to decide which parts of the depth map cause contradictions

and which parts are sufficiently consistent. Furthermore,

we have to reduce the influence of systematic errors in the

voting scheme, which we achieve with the support of a ref-

erence measurement computed in the previous stage. In par-

ticular this means that only parts which have a support from

at least one significantly different observation angle are eli-

gible for voting.

The proposed voting scheme looks as follows. For cast-

ing a positive vote v+ a reference measurement has to ful-

fill two properties. First, it shall be more accurate than

the query measurement. We evaluate this property with the

largest Eigen value of the corresponding covariance matrix.

Second, the reference measurement has to be within a fixed

theoretical tolerance of σmax of the query measurement. For

this evaluation we use the Mahalanobis distance based on

the covariance matrix of the query 3D point. We define a

positive vote as:

v+ =
√

iref · supportref (1)

where iref is the smallest Eigen value of the Fisher infor-

mation matrix of the reference 3D point. This means that

measurements with a low theoretic uncertainty get a higher

voting strength, as
√
iref = 1/

√
uref, where uref is the largest

Eigen value of the covariance matrix and hence
√
uref can

be interpreted as the standard deviation along the axis of the

highest uncertainty.

For casting a negative vote a reference measurement has

to fulfill three properties. First, it also has to be more ac-

curate than the query measurement. Second, it has to be

outside the fixed theoretical tolerance of σmax. Third, it has

to cause a free space violation or occlusion as depicted in

Fig. 3. In a free space violation, a reference measurement

would block the line of sight of a query measurement (left

side in Fig. 3), whereas the other way around would cause

an occlusion (right side in Fig. 3). If these properties are

met, a negative vote is cast:

v− = −
√

iref · supportref (2)

For each pixel in the query depth map the votes are col-

lected. The label of a pixel with more than zero votes is then

set depending on the sign of the final sum of votes.

3.3. Stage 3: Outlier Detection

In the previous step, we only allowed measurements with

a minimal support from a different observation angle to vote

and only then if they are more accurate than the query mea-

surement. This restriction is necessary because otherwise

the training data would contain a great percentage of incor-

rectly labeled samples, i.e. false positives (consistent but in-

correct) and false negatives (inconsistent but correct). How-

ever, this also causes many regions to be missed in which

absolutely no consensus can be reached, because they only

contain outliers (e.g. top left corner in Fig. 5). In this stage,

we aim to detect these outliers for enhancing our negative

training data.

First, we label trivial outliers which either lie behind the

camera or do not project into the second stereo camera. For

the remaining unlabeled regions we compare the depth val-

ues of the query camera to a specially augmented depth

map. Our procedure for obtaining this augmented depth

map is inspired by the stability-based depth map fusion pro-

posed by Merrell et al. [22]. The main difference is that we

do not aim for high performance or even the perfect depth

map, but a depth map which rather prefers lower depth val-

ues which are sufficiently plausible. We found that under-

estimating the depth values helps us to keep the number of

false negatives (inconsistent but correct) low, while at the

same time allowing us to recover many true negatives (in-

consistent and incorrect). Further, we avoid any smoothness

assumptions to preserve fine objects.

For computing the augmented depth map, we collect all

depth values of the other depth maps that would project into

a pixel of the query image. Then we sort these depth val-

ues and search for the closest depth value which obtains a

positive score in a voting scheme. This voting scheme is

very similar to the one proposed in the previous stage, but

many more depth values will end up with a positive score

although they are incorrect.

There are 4 differences to the other voting scheme: (1)

Every depth map can vote (without accuracy restrictions),

(2) the border between consistent and contradicting vote is

set to (1/
√
uquery + 1/

√
uref) · σmax, (3) supportref = 1 for

all measurements and (4) a depth value has to obtain at least

three votes to be considered valid. If no such depth value is

found, the original depth is kept.

Using the augmented depth map, we now treat a depth

value as a negative sample if the following two criteria are

met. First, the query depth value has to be smaller than the

depth value of the augmented depth map. Second, the dif-

ference between those two depth values has to be larger than

σmax · 1/
√
uaugmented, where uaugmented stands for the largest

Eigen value of the covariance matrix of the augmented mea-

surement if we pretend that it is only visible from the query

stereo pair. The final training data is then a combination of

the negative samples from this stage with the positive and

negative training samples from the previous stage.

4. Experiments

In our experiments, we use three publicly available

datasets, which are namely the KITTI2012 dataset [7],

the Middlebury2014 dataset [27], and the Strecha fountain

dataset [32].

The main focus of our experiments is on the KITTI2012

dataset [7] because it is well-suited to demonstrate our ap-
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proach and has already been used before for the evalu-

ation of confidence prediction algorithms [10, 23]. The

KITTI2012 dataset does not only let us evaluate the cov-

erage and accuracy of our approach, but also lets us high-

light the usefulness of our approach in boosting the perfor-

mance of confidence prediction approaches by simply train-

ing them on the automatically generated training data.

4.1. General Setup

For all experiments we used the same set of parameters.

The parameter αmin (= 10◦) can be used to adjust the trade-

off between coverage and label error. As a general rule,

we can say that if one increases this parameter, the false

positive rate becomes lower, but at the same time the label

coverage decreases as well. The parameter σmax (= 2) can

be used to express desired accuracy of a query algorithm as

a multiple of the σ bound.

As query algorithms, we use two different stereo al-

gorithms. The first algorithm is a Semi-Global Match-

ing (SGM) [15] implementation by Rothermel et al. [26]

which uses the census transform for computing the match-

ing cost. As a second algorithm we chose the recently pro-

posed Slanted Plane Smoothing (SPS) approach of Yam-

aguchi et al. [35]. We chose this approach because it shows

a very good performance on the KITTI datasets [7, 21], and

gives a completely different output than a SGM (piece-wise

planar super pixels vs. unrestricted transitions).

For analyzing the benefit of our approach for learning,

we have chosen three different recent approaches [10, 31,

23] which are based on confidence prediction. All three

approaches use random forests for the confidence predic-

tion, which made it possible to reimplement them in a com-

mon framework. The difference between the approaches

lies in which hand-crafted features they feed to the ran-

dom forest. Ensemble learning [10] uses the peak ratio,

entropy of disparities, perturbation, left-right disparity dif-

ference, horizontal gradient, disparity map variance, dispar-

ity ambiguity, zero mean sum of absolute differences and

the local SGM energy, which results through considera-

tion of multiple scales in a feature vector of 23 dimensions.

Ground Control Point (GCP) learning [31] uses eight fea-

tures, which are the matching cost, distance to border, max-

imum margin, attainable maximum likelihood, left-right

consistency, left-right difference, distance to discontinuity

and difference with median disparity. Park et al. [23] use a

feature vector with 22 dimensions, which contains the peak

ratio, naive peak ratio, matching score, maximum margin,

winner margin, maximum likelihood, perturbation, negative

entropy, left-right difference, local curvatures, local vari-

ance of disparity values, distance to discontinuity, median

deviations of disparities, left-right consistency, magnitude

of image gradient and the distance to border.

For the implementation we used the publicly available
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Figure 4. Sparsification curves for sequence 102 of the KITTI

training dataset. We display all combinations of query algorithm

(SGM [26] and SPS [35]), confidence prediction algorithm (En-

semble [10], GCP [31], Park [23]) and training data (Laser and

Ours). As a baseline method we also show the Left-Right dispar-

ity Difference (LRD).

random forest framework of Schulter at al. [28]. For train-

ing the forest we used the same settings in all our experi-

ments. We used 20 trees with a maximum depth of 20 and a

minimum leaf size of 100. For choosing a split function we

use the standard entropy and draw 2000 random samples

per node and 500 random thresholds per feature channel.

For every training setup we balanced the dataset on image

basis. This means that every image contributed as many

positive training examples as negative examples. For the fi-

nal evaluation, we always considered the complete image.

For obtaining the pose estimation on the KITTI2012 dataset

we use [8].

4.2. KITTI Dataset

We use the KITTI2012 dataset [7] to evaluate three prop-

erties of our ground truth generation, which are namely ac-

curacy, coverage and training performance. The first two,

we obtain by comparing our automatically generated label

images to label images produced with the laser ground truth

provided for the training dataset. For the SGM [26] data we

reach an accuracy of 97.3% (STD: 1.4%) at an average cov-

erage of the laser ground truth of 47.8% (STD: 11.8%). For

the SPS [35] data we obtain an accuracy of 95.3% (STD:

5.7%) at an average coverage of 48.6% (STD: 13.4%). Note

that the coverage mostly depends on the camera motion.
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Figure 5. Qualitative results for sequence 102 of the KITTI training dataset. In the first column we show the depth maps of SGM [26] and

SPS [35] together with the RGB input image. The second column shows the resulting label images once produced with the laser ground

truth (Laser) and once with our approach (Ours). Note that our approach only assigns a positive label to parts of the scene that are observed

under significantly different view points (the car is making a turn to the left in the sequence). The remaining 3 columns show the confidence

prediction output of Ensemble [10], GCP [31] and Park [23] once trained on Laser and once on Ours. The confidence ranges from low

(black) to high (white). Note the confidence prediction is much smoother for Ours and contains less artifacts (especially for GCP).

The ideal case to demonstrate our approach would be a cir-

cular motion around an object, whereas no motion will re-

sult in no labeled images. As the KITTI dataset contains

some sequences with very little motion, this results in a high

standard deviation of the coverage.

While accuracy and coverage are relevant, the much

more interesting factor is how well the data is suited for

training an algorithm. To analyze this factor, we bench-

mark the change of the confidence prediction performance

of three recent confidence prediction approaches, which we

further refer to as Ensemble [10], GCP [31] and Park [23].

For benchmarking this performance we evaluate the Area

Under the Sparsification Curve (AUSC) as in [16, 10, 23].

A sparsification curve plots the bad pixel rate over the spar-

sification factor. For drawing the curve the pixels are sorted

by confidence values and always the lowest values are re-

moved. The AUSC is a very good indicator for the predic-

tion performance of a confidence measure. Sparsification

curves for frame 102 of the dataset are shown in Fig. 4,

while further sparsification curves can be found in the sup-

plementary material.

For training on the laser ground truth, we follow the eval-

uation protocol of [10, 23]. This means that we select the

frames 43, 71, 82, 87, 94, 120, 122 and 180 of the KITTI

training dataset for training. The labels correct/incorrect

are set by comparing the query depth maps with the laser

ground truth using the standard three pixel disparity thresh-

old. Further on, we will mark a confidence measure trained

on this data with the suffix ”Laser”. As our approach re-

quires multiple images that view the same scene, we use

the 195 sequences of 21 stereo pairs of the KITTI testing

dataset for automatically generating our label images. Fur-

ther on, we will mark a confidence measure trained on this

data with the suffix ”Ours”. Example label images can be

found in Fig. 5 and the supplementary material. For testing

we once again follow the protocol of [10, 23] and evaluate

the confidence prediction on the KITTI training dataset mi-

nus the eight sequences that were used for training on the

laser ground truth. Thus, there is no overlap between train-

ing and testing for Laser as well as Ours. Also note that

Ours has not seen a single ground truth laser scan. In train-

ing, we used all available training samples from the laser

ground truth and roughly ten times this number from our

automatically generated data. Note that this is less than one

percent of all available training data. With this setup our

implementation used ∼20GB of memory for training.

In Fig. 6 we show the mean, minimum and maximum

AUSC values of the three confidence prediction algorithms

for all combinations of query algorithm and training data. In

Tab. 1 we show the AUSC for each approach divided by the

optimal AUSC over all evaluated sequences of the KITTI

dataset. In all cases, using our training data resulted in a

performance boost. In some cases the AUSC even dropped

by 10%. A visual comparison of the difference in the confi-

dence prediction can be found in Fig. 5 and the supplemen-

tary material. Note that our training data leads to a smoother

confidence prediction with significantly fewer artifacts.

As a matter of completeness, we executed our training

data generation only on the eight same sequences that were

used for training Laser. One has to note that the coverage of

our approach depends on the camera motion and one of the

sequences (180) contains no useful motion, which leaves

our approach with 7 sequences. Using only this limited

amount of training data, the AUSC increased by ∼10% for

all approaches compared to using the 195 testing sequences.

This is not surprising, as each of our training images can be

considered as weaker compared to the laser ground truth,

in the sense that consistency alone cannot uncover all er-

rors and that the coverage of our labeling depends on the

camera motion. But this experiment clearly shows that us-

ing ten times more ”weak” training samples, which can be

cheaply generated with our method, still leads to a better

performance than fewer ”strong” training samples.
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Figure 6. Mean, minimum and maximum AUSC values over the

three confidence prediction algorithms (Ensemble [10], GCP [31],

Park [23]) for all frames of the KITTI training dataset minus the

eight frames used for training. We display all combinations of

query algorithm (SGM [26] and SPS [35]) and training data (Laser

and Ours). The frames were sorted according to mean AUSC value

of Ours. As a baseline method we also show the Left-Right dis-

parity Difference (LRD). Note that Ours (red) is lower than Laser

(blue) in most cases. For SGM, all approaches perform always

better than LRD if they are trained on Ours, while if they are

trained on Laser they sometimes perform worse (e.g. 142). For

SPS stereo, the number of severe errors is significantly higher for

Laser than for Ours (compare blue versus red peaks above 160).

LRD Ens.[10] Park[23] GCP[31]

SGM-Laser 2.81 1.97 1.93 2.50

SGM-Ours 2.81 1.95 1.92 2.45

Reduction - 0.94% 0.78% 2.02%

SPS-Laser 7.60 5.86 6.23 8.28

SPS-Ours 7.60 5.43 5.61 7.95

Reduction - 7.28% 9.93% 3.98%

Table 1. Area under the sparsification curve divided by opti-

mal area on the KITTI dataset. We display all combinations

of query algorithm (SGM [26] and SPS [35]), confidence pre-

diction algorithm (Ensemble [10], GCP [31], Park [23]) and

training data (Laser and Ours). The reduction is computed as

1−AUSCOurs/AUSCLaser .

4.3. Middlebury Dataset

The Middlebury2014 [27] dataset contains a set of 23

high resolution stereo pairs for which known camera cal-

ibration parameters and ground truth disparity maps ob-

tained with a structured light scanner are available. The set

is divided into 10 stereo pairs for training and additional 13

stereo pairs that we used for testing. The images in the Mid-

dlebury dataset all show static indoor scenes with varying

difficulties including repetitive structures, occlusions, wiry
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Figure 7. Area under the Sparsification Curve (AUSC) values

for all 13 frames of the additional Middlebury dataset. The

frames were sorted according to the optimal area under the curve

value. We display all combinations of query algorithm (SGM [26]

and SPS [35]), confidence prediction algorithm (Ensemble [10],

GCP [31], Park [23]) and training data (Kitti [7] and Middle [27]).

As a baseline method we also show the Left-Right disparity Dif-

ference (LRD). Note that the red symbols (Middle) are in many

cases drastically lower than their blue counter parts (Kitti).

LRD Ens.[10] Park[23] GCP[31]

SGM-Kitti 2.10 1.24 1.25 1.78

SGM-Middle 2.10 1.19 1.20 1.50

Reduction - 3.29% 3.30% 15.86%

SPS-Kitti 1.41 1.48 1.81 2.05

SPS-Middle 1.41 1.39 1.42 1.44

Reduction - 6.32% 21.63% 29.82%

Table 2. Area under the sparsification curve divided by optimal

area on the Middlebury dataset. We display all combinations of

query algorithm (SGM [26] and SPS [35]), confidence prediction

algorithm (Ensemble [10], GCP [31], Park [23]) and training data

(Kitti [7] and Middle [27]). The reduction is computed as 1 −
AUSCMiddle/AUSCKitti.

objects as well as untextured areas.

Due to the limitation that only stereo pairs and no multi-

view sequences are provided, we are not able to evaluate

the accuracy performance of our ground truth generation.

But we can still evaluate the performance of the confidence

measures previously learned on the KITTI to evaluate their

generalization performance from outdoor to indoor scenes.

Figure 7 shows the resulting AUSC curve for SGM [26] and

SPS [35], respectively. In Tab. 2 we show the AUSC over

the optimal values.

For all combinations of query algorithm and confidence

prediction approach, training on the Middlebury increased

the performance compared to training on the KITTI and

evaluating on the Middlebury. The percentage of area re-

duction strongly depends on the used confidence prediction

approach. We assume that the large variation in area reduc-

tion (3%-30%) is caused by features which are very setup

specific (e.g. distance to border). Despite the large reduc-

tion variation, all approaches benefit from training on the
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Figure 8. Sparsification curves for testing stereo pair on the

Strecha fountain dataset. We display all combinations of confi-

dence prediction algorithm (Ensemble [10], GCP [31], Park [23])

and training data (Kitti [7], Middle [27] and Ours) for the SGM

output [26]. As a baseline method we also show the Left-Right

disparity Difference (LRD).

Middlebury rather than the KITTI. This means that tuning

towards a special setup can make a large difference in per-

formance.

4.4. Strecha Dataset

To further demonstrate the value of our approach, we an-

alyze the sparsification performance in a completely differ-

ent setup. For this experiment we used the multi-view stereo

dataset of Strecha et al. [32]. This dataset provides images

together with camera poses and two ground truth meshes.

From the two available meshes, the Herz-Jesu mesh is a

good example that also active sensors have their limitations.

In this mesh all the thin structures (hand rails and bars) are

simply missing. As these errors would cause problems in

the evaluation, we only used the second dataset (Fountain),

which does not contain any thin structures. This dataset

consists of 11 images aligned to the ground truth mesh. For

this experiment we split the images into a training set con-

taining 3 image pairs and a test set with 2 image pairs. The

training pairs are made of images 0+1, 4+5 and 8+9 and the

testing pairs of 2+3 and 6+7. Each pair was then rectified

using [26]. As the SPS implementation [35] failed to pro-

duce any reasonable output on this kind of data, we limit

this experiment to the SGM [26] reconstruction.

In this setup our ground truth generation reached an

accuracy of 95.1% (STD: 2.6%) at a coverage 30.4%

LRD Ens.[10] Park[23] GCP[31]

Kitti RA 2.12 1.81 1.91 3.54

Middle RA 2.12 1.43 1.59 2.60

Ours RA 2.12 1.40 1.51 2.01

Kitti Red - 22.34% 21.04% 45.30%

Middle Red - 1.86% 5.02% 23.53%

Table 3. Area under the sparsification curve divided by optimal

area (Relative Area RA) on the Strecha fountain dataset. We dis-

play all combinations of confidence prediction algorithm (Ensem-

ble [10], GCP [31], Park [23]) and training data (Kitti [7], Mid-

dle [27] and Ours) for the SGM output [26]. The reduction is

computed as 1 − AUSCx/AUSCOurs for each confidence pre-

diction approach.

(STD: 5.0%). In Fig. 8 we show the resulting two sparsi-

fication curves and the AUSC reduction statistics in Tab. 3.

All combinations of query algorithms and confidence pre-

diction approaches performed better trained on the Middle-

bury than on the KITTI. In all cases the performance was

further increased by tuning them specifically to this scene

in using our automatically generated training data.

5. Conclusion

In this paper we present a novel way to train confidence

prediction approaches for stereo vision in a cheap and scal-

able manner. We collect positive and negative training data

by analyzing the consistency between depthmaps that ob-

serve the same physical scene. Consistency is a necessary

but not sufficient criterion for correctness. On the one hand,

this means that consistency is perfectly suited for unveiling

incorrect depth values and thus to collect negative training

data. On the other hand, it can never be guaranteed that

all incorrect depth values are detected through consistency

alone, as they can be consistent and incorrect at the same

time. To keep the number of incorrect samples in the pos-

itive training data low, we only consider parts of the scene

which have been viewed from significantly different obser-

vation angles for the generation of positive training data. In

our experiments, we demonstrate that the resulting training

data can be a great benefit for learning-based confidence

prediction. On the KITTI2012 dataset, the amount and di-

versity of our training data allowed us to improve the av-

erage confidence prediction performance of three different

approaches by 1 to 10% without changing the algorithms

themselves. Further, we demonstrated that all three confi-

dence prediction approaches can significantly benefit from

learning application specific properties. With our approach,

these specific properties can be learned at low cost; even

for applications, such as aerial or under water robotics, that

typically lack ground truth data.
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