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Abstract

Most deep architectures for image classification–even

those that are trained to classify a large number of diverse

categories–learn shared image representations with a sin-

gle model. Intuitively, however, categories that are more

similar should share more information than those that are

very different. While hierarchical deep networks address

this problem by learning separate features for subsets of

related categories, current implementations require simpli-

fied models using fixed architectures specified via heuris-

tic clustering methods. Instead, we propose Blockout, a

method for regularization and model selection that simulta-

neously learns both the model architecture and parameters.

A generalization of Dropout, our approach gives a novel

parametrization of hierarchical architectures that allows

for structure learning via back-propagation. To demon-

strate its utility, we evaluate Blockout on the CIFAR and Im-

ageNet datasets, demonstrating improved classification ac-

curacy, better regularization performance, faster training,

and the clear emergence of hierarchical network structures.

1. Introduction

Multi-class classification is an important problem in vi-

sual understanding with applications ranging from image

retrieval to robot navigation. Due to the vast space of vari-

ability, the seemingly simple task of identifying the sub-

ject of a photograph is extremely difficult. While once re-

stricted to small label sets and constrained image domains,

recent advances in deep neural networks have allowed im-

age recognition to be applied to real-world collections of

photographs. Effective image classification with thousands

of labels and datasets with millions of images are now com-

monplace. However, as classification tasks become more

involved, larger networks with more capacity are required,

emphasizing the importance of careful model selection.

While much manual engineering effort has been dedicated

to the task of designing deep architectures that are able to ef-

fectively generalize from available training data, model se-

lection is typically performed using subjective heuristics by

experienced practitioners. Furthermore, an appropriate ar-

(a) (b) (c)

Figure 1: Example deep network architectures for multi-class

classification that can be learned using Blockout. Input and output

nodes are shown in green, groups of layers are shown in blue, and

arrows indicate connections between them. (a) Traditional archi-

tectures make use of a combined model that computes a single fea-

ture vector for predicting a large number of diverse categories. (b)

Hierarchical architectures instead partition the output categories

into clusters and learn separate, high-level feature vectors for each

of them. (c) Unlike previous approaches, Blockout allows for end-

to-end learning of more complex hierarchical architectures.

chitecture is closely tied to the dataset on which it is trained,

so this work often must be repeated for each new applica-

tion. Ideally, model selection should be performed automat-

ically, allowing the architecture to adapt to training data. As

a step towards this goal, we propose an automated, end-to-

end system for model selection within the class of hierar-

chical deep networks, which have demonstrated excellent

performance on large-scale image classification tasks.

Deep neural networks are known to be organized such

that specificity increases with depth [15, 29]. Lower layers

tend to represent general, low-level image features like lines

and edges while higher layers encode higher-level concepts

like object parts or even objects themselves [4]. Most clas-

sification architectures make use of a single shared model

with a flat logistic loss layer. Intuitively, however, cate-

gories that are more similar should share more information

than those that are very different.

One solution is to train independent fine-grained models

for these subsets of related labels. This results in special-

ized features that are tuned to differentiating between sub-

tle visual differences between similar categories. However,

this is often infeasible due to limited training examples. On

the other hand, a combined model for classifying many cat-

egories is able to use information common to all training

images to learn shared, low-level representations.
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Ideally, then, model architectures should be hierarchical.

Low-level representations should be shared while higher

layers should be separated out and connected only to subsets

of classes, allowing for efficient information sharing and

reduced training data requirements. However, this raises

an obvious question of model selection: which hierarchi-

cal architecture is best? Figure 1 visualizes some potential

candidates. Design choices include: the number and loca-

tions of branches, the allocation of nodes to each branch,

and the clustering of classes in the final layer. Previous ap-

proaches to hierarchical deep networks (e.g. [28, 27]) have

simplified this question by fixing the base architecture and

using heuristic clustering methods for separating the classes

into groups. While class similarity may provide an effective

heuristic for model selection, it is not guaranteed to actually

improve performance and ignores important factors such as

heterogeneous classification difficulty.

To achieve automatic model selection in hierarchical

deep networks, we introduce Blockout, an approach for si-

multaneously learning both the model architecture and pa-

rameters. This allows for more complex hierarchical archi-

tectures specifically tuned to the data without requiring a

separate procedure for model selection, which would likely

be infeasible due to the vast search space of possible archi-

tectures. Inspired by Dropout [9], Blockout can be viewed

as a technique for stochastic regularization that adheres to

hierarchically-structured model architectures. Importantly,

its hyper-parameters (analogous to node Dropout probabil-

ities) are represented such that they can be learned using

simple back-propagation. Thus, Blockout performs a re-

laxed form of model selection by effectively learning an

ensemble of hierarchical networks, i.e. the distribution of

hierarchical architectures over which to average during in-

ference. Despite the additional parameters, the represen-

tational power of Blockout is exactly the same as a stan-

dard layer and can be parametrized as such during infer-

ence. Surprisingly, however, the resulting network is able

to achieve improved performance, as demonstrated experi-

mentally on standard image classification datasets.

In summary, we make the following contributions:

(1) a novel parametrization of hierarchical deep networks,

(2) stochastic regularization analogous to Dropout that ef-

fectively averages over all models within this class of hier-

archical architectures, (3) an approach for learning the regu-

larization parameters allowing for architectures that dynam-

ically adapt to the data throughout training, and (4) quanti-

tative and qualitative analyses, including substantial perfor-

mance gains over baseline models.

2. Related Work

Despite the long history of deep neural networks in com-

puter vision [14], the modern incarnation of “deep learning”

is a relatively recent phenomenon that began with empirical

success in the task of image recognition [13] on the Ima-

geNet dataset [17]. Since then, tactful architecture modi-

fications have yielded a steady stream of further improve-

ments [30, 23], even surpassing human performance [8].

In addition to general classification of arbitrary images,

deep learning has also made a significant impact on fine-

grained recognition within constrained domains [3, 11, 16].

In these cases, deep neural networks are trained (often

alongside additional annotations or segmentations of parts)

to recognize subtle differences between similar categories,

e.g. bird species. However, these methods are often lim-

ited by the availability of training data as they typically

require expert annotations for ground truth labels. Some

approaches have alleviated this problem by pre-training on

large collections of general images and then fine-tuning on

smaller, domain-specific datasets [16].

Attempts have also been made to incorporate informa-

tion from a known hierarchy to improve prediction perfor-

mance without requiring architecture changes. For exam-

ple, [5] replaced the flat softmax classification layer with

a probabilistic graphical model that respects given relation-

ships between labels. Other methods for incorporating label

structure are summarized in [24]. However, they typically

rely on fixed, manually-specified hierarchies, which could

contain errors and result in biases that reduce performance.

Hierarchical deep networks [27, 28] attempt to address

these issues by learning multi-task models with shared

lower layers and parallel, domain-specific higher layers

for predicting different subsets of categories. While these

methods address one component of model selection by

learning clusters of output categories, other architectural

hyper-parameters such as the location of branches and the

relative allocation of nodes between them must still be spec-

ified prior to training.

The most common approach for model selection in

deep learning is simply searching over the space of hyper-

parameters [2]. Unfortunately, because training and infer-

ence in deep networks are computationally expensive, this

is often impractical. While costs can sometimes be reduced

(e.g. by taking advantage of the behavior of some network

architectures with random weights [18]), they still require

training and evaluating a large number of models. Bayesian

optimization approaches [20] attempt to perform this search

more efficiently, but they are still typically applied only to

smaller models with few hyper-parameters. Alternatively,

[1] proposed a theoretically-justified approach to learning

a deep network with a layer-wise strategy that automati-

cally selects the appropriate number of nodes during train-

ing. However, it is unclear how it would perform on large-

scale image classification benchmarks.

A parallel but related task to model selection is regu-

larization. A network with too much capacity (e.g. with

too many parameters) can easily overfit without sufficient
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training data, resulting in poor generalization performance.

While the size of the model could be reduced, an eas-

ier and often more effective approach is to use regulariza-

tion. Common methods include imposing constraints on the

weights (e.g. through convolution or weight decay), rescal-

ing or whitening internal representations for better condi-

tioning [6, 10], or randomly perturbing activations for im-

proved robustness and better generalizability [9, 26, 25].

3. Deep Neural Networks

Deep neural networks are layered nonlinear functions

f : Rd → R
p that take d-dimensional images as input and

output p-dimensional predictions. They have been found

to be very successful for image classification, most likely

due to the complexity of the class of representable func-

tions along with their ability to effectively and efficiently

make use of very large sets of training data.

Most deep neural networks are simply compositions of

alternating linear and nonlinear functions. More concretely,

consider a deep network with m layers. Each layer consists

of a linear transformation gj(x) = Wjx parametrized by

Wj followed by a fixed nonlinear function aj(x), e.g. a

nonlinear activation or a pooling operator. Altogether, the

full neural network can be represented as:

f = am ◦ gm ◦ am−1 ◦ gm−1 ◦ · · · ◦ a1 ◦ g1 (1)

Similarly, hierarchical deep networks can be expressed with

a separate function f for each subset of outputs where some

intermediate representations aj are shared, i.e. they can be

used as the inputs to multiple layers.

The set of all model parameters W = {Wj} can be

learned from a dataset of n training images xi and corre-

sponding ground-truth label vectors yi using standard em-

pirical risk minimization with a loss function L (e.g. soft-

max) that measures the discrepancy between yi and the net-

work predictions f(xi;W), as shown in Equation 2:

argmin
W

1

n

n∑

i=1

L
(
yi, f(xi;W)

)
s.t. {Wj ∈ Sj} (2)

Learning is typically accomplished through stochastic gra-

dient descent, where the gradients of intermediate layers are

computed using back-propagation.

Consistent with their name, deep neural networks typi-

cally consist of many layers that produce high-dimensional

intermediate representations, resulting in an extremely large

number of parameters to be learned. To prevent overfitting,

regularization is typically employed through constraint sets

Sj on the parameter matrices. The most common and ef-

fective form of regularization is convolution, which takes

advantage of the local correlations of images and essen-

tially restricts that the weight matrices contain shared pa-

rameters with a specific Toeplitz structure, resulting in far

(a) (b) (c)

Figure 2: An illustration of the equivalence between single layers

with block-structured parameter matrices (top) and parallel layers

over subsets of nodes (bottom). Solid boxes indicate groups of

nodes, dotted boxes represent the corresponding parameter ma-

trices (where zero values are shown in black), and colors indi-

cate cluster membership. (a) Independence between layers can

be achieved when nodes only belong to a single cluster. When

nodes belong to multiple clusters, hierarchical connections such

as merging (b) and branching (c) can be achieved.

fewer free parameters to learn. Other examples of regu-

larization include weight decay, which penalizes the norm

of the weights, and Dropout, which has been shown (under

certain assumptions) to indirectly impose a penalty function

through stochastic perturbations of the internal network ac-

tivations [25]. Blockout employs a similar form of stochas-

tic regularization with the additional restriction that the pa-

rameter matrices be block-structured leading to hierarchical

network architectures.

4. Hierarchical Network Parametrization

Blockout is based on the observation that parallel, in-

dependent layers can be equivalently expressed as a single

combined layer with a block-structured weight matrix (up to

a permutation of its rows and columns), as visualized in Fig-

ure 2. Thus, enforcing that the learned weight matrix have

this type of structure during training automatically separates

the input and output nodes into independent branches of a

hierarchical architecture.

This can be parametrized by assigning each node to any

number of k clusters and masking out parameters if their

corresponding input and output nodes do not belong to the

same cluster, thus restricting the information that can be

shared between nodes. Here, k represents the maximum

number of blocks in the parameter matrix or, equivalently,

the maximum number of independent branches in the net-

work. Though simple, this parametrization can encode a

wide range of hierarchical structures, as shown in Figure 3.

More formally, we mask the parameter corresponding to

sth input node and the tth output node as follows in Equa-

tion 3, where w̃t,s is the original, unconstrained parameter
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(a) Parallel (b) Dropout (c) Dropout (d) Branch (e) Merge

Figure 3: A summary of the types of basic high-level architec-

ture components that can be represented with Blockout. For each

(a-e), a single layer is shown where groups nodes are shown as

solid boxes, cluster assignments as colors, and connections within

clusters as arrows. These connections allow for a rich space of

potential model architectures.

value and I(s ∈ Cl) equals one if node s belongs to cluster

l and zero otherwise:

wt,s =
1

k

k∑

l=1

I(s ∈ Cl)I(t ∈ Cl)w̃s,t (3)

This encodes the desired behavior that a parameter be

nonzero only if its corresponding input and output nodes

belong to the same class while restricting that the mask be

between zero and one. Let Cj ∈ {0, 1}
dj×k

be a binary in-

dicator matrix containing these cluster membership assign-

ments for each of the dj nodes in the output of the jth layer.

In other words, Cj(s, l) = I(s ∈ Cl). A full mask can then

be constructed as 1
k
CjC

⊺

j−1 where the block-structured pa-

rameter matrix is the element-wise product of an uncon-

strained parameter matrix W̃j and this mask. This class

of hierarchical architectures can be summarized by the con-

straint set in Equation 4, where ⊙ indicates the element-

wise Hadamard product.

Sj =

{
Wj : Wj =

1

k
W̃j ⊙CjC

⊺

j−1

}
(4)

These constraints act as a regularizer that enforces the pa-

rameter matrices to be block-structured with potentially

many parameters set explicitly to zero. Ideally, we seek

to learn the hierarchical structure during training, which is

equivalent to learning the cluster membership assignments

Cj . However, because they are binary variables, learning

them directly would be difficult. To address this problem,

we instead take an approach akin to stochastic regulariza-

tion approaches like Dropout: we treat cluster membership

assignments as Bernoulli random variables and draw a dif-

ferent hierarchical architecture at each training iteration.

5. Stochastic Regularization

Stochastic regularization techniques are simple but ef-

fective approaches for reducing overfitting in deep networks

by injecting noise into the intermediate activations or pa-

rameters during training. Examples include Dropout [9],

which randomly sets activations to zero, and DropCon-

(a) Dropout (b) Blockout (c) DropConnect

Figure 4: Example parameter masks that can be achieved with (a)

Dropout, (b) Blockout, and (c) DropConnect. Note that Dropout

and Blockout give block-structured, low-rank masks up to a per-

mutation of the rows and columns while DropConnect is structure-

less, masking each parameter value independently.

nect [26], which randomly sets parameter values to zero.

Dropout [9] works by setting node activations to zero

with a certain probability at each training iteration. Infer-

ence is accomplished by replacing each activation with its

expected value, which amounts to rescaling by the Dropout

probability. This procedure approximates an ensemble of

different models from the class of network architectures

containing all possible subsets of nodes, where the Dropout

probability determines the weight given to each architecture

in this implicit model average. For example, with a high

Dropout probability, models with fewer nodes are more

likely to be selected during training. In general, Dropout

results in improved generalization performance by prevent-

ing the coadaptation of features.

Similarly, DropConnect [26] randomly sets parameter

values to zero, which drops connections between nodes in-

stead of the node activations themselves. During inference,

a moment-matching procedure is used to better approximate

an average over model architectures. Again, the success of

this approach can be explained through its approximation

of an ensemble within a much larger class of architectures:

those that contain all possible combinations of connections

between nodes in the network.

Blockout can be seen as another example of stochas-

tic regularization that approximates an ensemble of mod-

els from the class of hierarchical architectures introduced

in Section 4. Structured noise is introduced by randomly

selecting cluster assignments Cj corresponding to different

hierarchical architectures at each iteration during training.

We first consider the case of a single fixed probability p that

each node belongs to each of the clusters, but in Section 6

we show how separate cluster probabilities can be learned

for each node.

During inference, we take an approach similar to

Dropout and approximate an ensemble of hierarchical archi-

tectures using an implicit average with weights determined

by the cluster probabilities. This again amounts to simply

rescaling the parameter values by the expected value of the

parameter mask: p2.

Also note that Dropout can be interpreted as implic-

itly applying a random mask M that sets parameters cor-

responding to the dropped inputs and outputs to zero. If

we reorder the input and output dimensions and permute
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the rows and columns of the weight matrix accordingly, the

result is a single block of non-zero parameters, as shown

in Figure 4a. This is very similar to the block-structured

masks that can be explicitly represented with Blockout, as

shown in Figure 4b. In fact, Dropout is equivalent to Block-

out with k = 1 where dropped nodes correspond to those

that do not belong to the single cluster. In this case, the

resulting mask is a rank-one matrix. Similarly, the explicit

parameter masks in DropConnect (shown in Figure 4c) are

full-rank and can be equivalently represented by Blockout

when the number of clusters is equal to the number of nodes

in a layer. This allows each node to potentially belong to its

own independent cluster resulting in a full-rank mask.

The full intuition behind why stochastic regularization

approaches work and how best to select regularization

hyper-parameters (e.g. Dropout probability) is lacking. On

the other hand, Blockout gives a much clearer motivation:

we assume that the output categories are hierarchically re-

lated, and so we approximate an ensemble only over hier-

archical architectures. Furthermore, in Section 6 we show

how the cluster probabilities for each node can be learned

from data allowing for the interpretation of Blockout as

model selection within this class of architectures.

6. Learning Hierarchies via Back-Propagation

The key difference between Blockout and other stochas-

tic regularization techniques is that its hyper-parameters can

be learned from data using simple back-propagation. To

accomplish this, we replace the fixed, shared cluster prob-

ability p with learnable parameters Pj ∈ [0, 1]
dj×k

whose

elements represent the probability that each node belongs to

each cluster. Essentially, they are relaxations of the binary

cluster assignments Cj that can take on any value between

zero and one and are implemented as real-valued variables

followed by element-wise logistic activations. At each iter-

ation of training, hard binary cluster assignments are drawn

from Bernoulli distributions parametrized by these proba-

bilities, i.e. Cj ∼ B(1,Pj).
During training, the forward computations are performed

using random masked weight matrices from the set in Equa-

tion 4 for a different hierarchical architecture at each iter-

ation. During inference, we again average over the clus-

ter assignments to approximate an ensemble of hierarchical

architectures. Since the cluster probabilities Pj are now

different for each node, we must rescale each parameter

accordingly. Specifically, the adjusted weight matrix used

during inference is:

E

[
1

k
W̃j ⊙CjC

⊺

j−1

]
=

1

k
W̃j ⊙PjP

⊺

j−1 (5)

Note that this leads to the same computation as that of the

training forward pass except with Pj instead of Cj . Thus,

during inference, we simply skip the random cluster assign-

ment step and use the soft clustering probabilities directly.

The masked parameter matrix is represented as a func-

tion of three variables: the unconstrained weight matrix

W̃j , the input cluster assignments Cj−1, and the output

cluster assignments Cj . As such, gradients can be passed

to all of them following the typical back-propagation algo-

rithm. Specifically, updating Wj (e.g. using stochastic gra-

dient descent) requires computation of the gradient of the

loss function with respect to those parameters. Using the

expression of a deep neural network as a composition of

functions from Equation 1, this can be expressed using the

chain rule as follows:

∂L

∂Wj

=
∂L

∂am

∂am

∂gm

· · ·
∂gj+1

∂aj

∂aj

∂gj

∂gj

Wj

= δj
∂gj

Wj

(6)

where δ is the product of all gradients from the loss func-

tion backwards down to the jth layer. Using simple linear

algebra, the gradients with respect to a layer’s input (i.e. the

previous layers activations aj−1) are:

∂gj

∂aj−1
= Wj =

1

k
W̃j ⊙CjC

⊺

j−1 (7)

Similarly, the gradients with respect to all components of

the weight matrix are computed as:

∂L

∂Wj

= δja
⊺

j−1,
∂L

∂W̃j

=
1

k

∂L

∂Wj

⊙CjC
⊺

j−1, (8)

∂L

∂Cj

=
1

k

[
W̃j ⊙

∂L

∂Wj

]⊺
Cj−1 +

1

k

[
W̃j+1 ⊙

∂L

∂Wj+1

]
Cj+1

Note that the cluster assignments for a set of nodes Cj

are shared between the two adjacent Blockout layers and

hence its gradient contains components from each, acting

as an additional form of regularization.

Recall that our goal is to learn the cluster probabilities

Pj that parametrize the cluster assignment random vari-

ables Cj . Thus, to update the cluster probabilities, we sim-

ply use the cluster assignment gradients after masking them

so that the gradients of unselected clusters are zero:

∂L

∂Pj

=
∂L

∂Cj

⊙Cj (9)

This is similar to the technique used when back-propagating

gradients through a Dropout layer. Finally, to update the

real-valued cluster parameters, these gradients are then

back-propagated through the logistic activation layer. The

full training process is summarized in Algorithm 1.

Modifying Equation 2, our final optimization problem

can thus be written as follows:

argmin
W̃,P

1

n

n∑

i=1

EC∼B(1,P)L
(
yi, f(xi;W)

)

s.t. Wj =
1

k
W̃j ⊙CjC

⊺

j−1

(10)
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Algorithm 1 Blockout Training Iteration

Input: Mini-batch of training images {xi}
B

i=1, parameters

from previous iteration W̃
(t−1)
j ,P

(t−1)
j

Output: Updated parameters W̃
(t)
j ,P

(t)
j

Forward Pass:

• Draw cluster assignments: Cj ∼ B(1,P
(t−1)
j )

• Mask parameters: Wj =
1
k
W̃

(t−1)
j ⊙CjC

⊺

j−1

• Compute predictions: ŷi = f(xi;Wj)

• Evaluate empirical risk: 1
B

∑B

i=1 L
(
yi, ŷi

)

Backward Pass:

• Compute gradients according to Equations 8 and 9.

• Update parameters W̃
(t)
j ,P

(t)
j accordingly.

For our implementation, the cluster probabilities Pj are

initialized to 0.5. Throughout training, there are a number

of possible outcomes: (1) The probabilities could diverge,

some towards one and others towards zero. This would re-

sult in a fixed clustering of nodes, giving high confidence

to a particular learned hierarchical structure. (2) Alterna-

tively, the gradients could be uninformative, averaging to

zero and leading to unchanged probabilities. This could in-

dicate that hierarchical architectures are helpful for regular-

ization, but the particular grouping of nodes is arbitrary. (3)

The probabilities could also all increase towards one, pos-

sibly demonstrating that hierarchical architectures are not

beneficial and better performance could be achieved with

single, fully-connected layers.

7. Experimental Results

To evaluate our approach, we apply Blockout to the stan-

dard image classification datasets CIFAR [12] and Ima-

geNet [17]. As baselines, we use variations of the Incep-

tion architecture [23]. Specifically, for ImageNet we use

the same model described in [10], and for CIFAR we use a

compacted version of this model with fewer layers and pa-

rameters. We also follow the same training details described

in [10] with standard data augmentation. These models

have been hand-engineered to achieve very good, near state-

of-the-art performance by themselves. Thus, our intention

is to show how the addition of Blockout layers can eas-

ily improve performance without involved hyper-parameter

tuning. Furthermore, we show that Blockout does indeed

learn hierarchical network structures resulting in higher pre-

diction accuracy and faster training.

Inception architectures are composed of multiple lay-

ers of parallel convolutional operations directly followed

by softmax classification. However, it has been shown

that fully-connected layers before classification act as a

form of orderless pooling [16] and have been used exten-

sively [13, 30, 19] demonstrating improved model capac-

ity leading to better performance. Thus, we add two fully-

(a) (b) (c)

Figure 5: Block diagrams of the models compared in our exper-

iments. (a) As baselines, we use variants of the Inception con-

volutional neural network architecture [23]. (b) For comparison,

we add an average pooling layer to reduce the bottleneck size fol-

lowed by two fully-connected layers (potentially with Dropout)

before the softmax classifier. (c) Our model replaces the last two

FC layers with Blockout layers of the same size.

connected layers after the convolutional layers of our base

architectures. Because our baselines already have high net-

work capacity, doing this naively can lead to extreme over-

fitting and reduced performance, even with standard reg-

ularization techniques such as Dropout. However, using

Blockout prevents this overfitting and leads to substantial

performance improvements with a wide range of hyper-

parameter choices. The architectures compared in our ex-

periments are shown in Figure 5.

To demonstrate the effectiveness of the different com-

ponents of Blockout, we compare three variations of our

proposed model. The first, indicated by (soft, learned) in

the following experiments, omits random cluster selection

by skipping the Bernoulli sampling step. This effectively

removes the stochastic regularization effect of Blockout, in-

stead using the relaxed soft clustering assignments directly

by setting Cj = Pj . Without explicit zero-valued param-

eters, the same number of effective parameters are learned

as with ordinary fully-connected layers, which could still

potentially lead to over-fitting. However, the additional reg-

ularization provided by the shared cluster parameters often

mitigates this, still resulting in improved performance. The

second (hard, fixed) uses randomized hard cluster assign-

ment during training, but uses fixed cluster probabilities of

0.5 instead of back-propagating gradients as described in

Section 6. This shows the effects of stochastic regulariza-

tion within the class of hierarchical architectures. Finally,

the third (hard, learned) is our full proposed model.

7.1. CIFAR­100

CIFAR-100 is a challenging dataset comprising of 60k

32x32 color images (50k for training and 10k for testing)

equally divided into 100 classes [12]. Table 1 shows the

performance of our model with 6 clusters and 512 nodes in

each fully-connected layer. We compare against the base-

line Inception model, the baseline with fully-connected lay-
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Table 1: Cifar-100 Test Accuracy. Left: Comparison with base-

line methods. Right: Variable clusters with 512 nodes (top) and

variable nodes with 6 clusters (bottom).

Method Acc. (%)

Baseline 61.56

Baseline + FC 62.66

Baseline + FC + Dropout 64.32

Blockout (soft, learned) 63.57

Blockout (hard, fixed) 65.62

Blockout (hard, learned) 65.66

Clusters Acc. (%)

2 64.54

4 65.93

6 65.66

Nodes Acc. (%)

512 65.66

1024 66.69

2048 66.71
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Figure 6: The convergence of our models in comparison to the

baselines on the CIFAR-100 dataset, showing accuracy on the (a)

training and (b) testing sets throughout training. Note that Block-

out converges in about half the time as Dropout while still achiev-

ing a higher final accuracy.

ers, and the baseline with fully-connected layers followed

by 30% Dropout. Figure 6 shows the accuracy of these

models throughout training, demonstrating faster conver-

gence in comparison to Dropout. Table 1 also compares our

full Blockout model (hard, learned) with a variety of hyper-

parameter selections, including the number of hidden nodes

in each fully-connected layer and the number of clusters.

The best performance achieved by our method gave an

accuracy of 66.71% with 6 clusters and 2048 nodes, show-

ing a significant improvement over the baseline accuracy.

Also note that, while other stochastic regularization meth-

ods like Dropout can still overfit if there are too many pa-

rameters or the Dropout probability is not set correctly,

Blockout seems to adapt so that adding more nodes never

reduces accuracy. Despite its minimal engineering effort,

the results are comparable to state-of-the-art methods (e.g.

68.8% with [7], 67.76% with [22], 66.29% with [21], etc.)

7.2. ImageNet

ImageNet is the standard dataset for large-scale image

classification [17]. We use the version of the dataset from

the Imagenet Large Scale Visual Recognition Challenge

(ILSVRC 2012), which has 1000 object categories, 1.2 mil-

lion training images, and 50k validation images. Table 2

shows the top-1 prediction performance of our model with

6 clusters and 4096 nodes in each fully-connected layer. We

compare to the baseline, the baseline with fully-connected

layers, and the baseline with fully-connected layers fol-

lowed by 50% Dropout. Because the baseline model was

already carefully tuned to maximize performance on Ima-

Table 2: ImageNet Evaluation Accuracy. Left: Comparison

with baseline methods. Right: Variable clusters with 4096 nodes

(top) and variable nodes with 6 clusters (bottom).

Method Acc. (%)

Baseline 73.431

Baseline + FC 68.06

Baseline + FC + Dropout 73.88

Blockout (soft, learned) 72.43

Blockout (hard, fixed) 74.44

Blockout (hard, learned) 74.83

Clusters Acc. (%)

2 73.78

6 74.83

15 74.19

Nodes Acc. (%)

1024 74.16

2048 74.47

4096 74.83

8192 74.95
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(c) Hard Clustering, 1024 Nodes

Figure 7: A visualization of the distributions of each layer’s clus-

ter probabilities Pj throughout training on the ImageNet dataset.

The iteration number varies along the x-axis with probability along

the y-axis. Warmer colors indicate a higher density of cluster

probabilities at a given iteration while the black line shows their

median. With hard clustering, there is a clear separation towards

higher confidence cluster assignments, especially in later layers.

geNet, adding fully-connected layers resulted in significant

overfitting that could not be overcome with Dropout. How-

ever, Blockout was able to effectively remove these effects

giving an improved final maximum performance of 74.95%.

Figure 7 shows the distribution of the learned cluster

probabilities throughout training. Without random cluster

selection, soft clustering causes all probabilities to increase

towards one, which could indicate overfitting to the training

data. On the other hand, stochastic regularization with hard

clustering results in diverging probabilities giving higher

confidence cluster membership assignments. This effect is

1This is the accuracy of our implementation of the model in [10], which

reported a maximum accuracy of 74.8%. This discrepancy is most likely

due to a different learning rate decay schedule.
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Figure 8: (Top) A visualization of the node cluster probabilities

Pj projected to two dimensions using PCA for models with (a)

4096 nodes and (b) 1024 nodes. Dots indicate nodes while color

indicates the cluster with the highest probability. Some example

output categories (1-4) are also shown. (Bottom) The associated

categories along with sample images. Despite the somewhat non-

intuitive structure, there are clear, consistent groupings of nodes,

especially in later layers and with fewer nodes.

also more prevalent in higher layers, agreeing with our intu-

ition that more information should be shared in lower layers.

Figure 8 visualizes the k-dimensional cluster probabil-

ity vectors for each node by projecting them to two di-

mensions using PCA. Because nodes can belong to mul-

tiple clusters with varying relative frequencies, the cluster

probabilities can be interpreted as embeddings where nodes

with similar probabilities indicate computations following

similar paths in the hierarchical architecture. Again note

that earlier layers tend to be less separated, especially with

higher network capacity, allowing for more information to

be shared between clusters. In addition, because this im-

plicit node embedding is a side effect of maximizing pre-

diction accuracy, the resulting clusters are less interpretable

than an explicit clustering based on category or image sim-

ilarity. For example, while nearly indistinguishable classes

such as “great white shark” and “tiger shark” do share very

similar cluster probabilities, so does the visually dissimilar

and seemingly unrelated class “drum.” Furthermore, while

one might expect “hammerhead shark” to be close to the

other sharks, it actually belongs to a completely different

set of clusters. Despite this, the final cluster probabilities

do seem to be fairly consistent across different choices of

hyper-parameters. This could indicate that the node clus-

ters are indeed a function of the training data, but incorpo-

rate more information than just visual similarity.

Figure 9 shows the expected number of clusters assigned

to each output category. Again, notice the consistency

across different hyper-parameter selections. While the me-
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(b) Hard Clustering, 1024 Nodes
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Figure 9: (Top) The expected number of clusters assigned to each

of the ImageNet output categories for (a) 4096 nodes and (b) 1024

nodes. The solid black line shows the median number of clusters

while the dotted black lines show the 25th and 75th percentiles.

Also shown are 3 example categories with a relatively high ex-

pected number of clusters. (Bottom) Sample images from the in-

dicated categories, showing classification challenges such as cam-

ouflage, varied background appearance, and small relative size.

dian number of clusters is around 1.5, some categories be-

long to close to 3 with many more parameters used in their

predictions. These could correspond to categories that are

more difficult to predict, perhaps due to natural camouflage

(e.g. “zebra”), large variations in background appearance,

or the small relative size of the subject (e.g. “rock beauty”

and “monarch butterfly”).

8. Conclusion

Blockout is a novel generalization of stochastic regular-

ization with parameters that can be learned during train-

ing, essentially allowing for automatic model selection

within a class of hierarchical network structures. While

our approach is not guaranteed to learn exact block-

structured weight matrices, we demonstrated experimen-

tally that Blockout consistently converges to an implicit

clustering of the output categories with branches sharing

similar representations. While further work is required to

completely understand and interpret the learned clusters,

Blockout results in substantial improvements in prediction

accuracy and faster convergence in comparison to baseline

methods. As a first step towards fully-automatic model se-

lection, Blockout emphasizes the importance of the careful

parametrization of deep network architectures and should

inspire a family of similar approaches adapted to other ap-

plication domains.
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