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Abstract

Structured support vector machine (SSVM) based meth-

ods have demonstrated encouraging performance in recent

object tracking benchmarks. However, the complex and ex-

pensive optimization limits their deployment in real-world

applications. In this paper, we present a simple yet effi-

cient dual linear SSVM (DLSSVM) algorithm to enable fast

learning and execution during tracking. By analyzing the

dual variables, we propose a primal classifier update for-

mula where the learning step size is computed in closed

form. This online learning method significantly improves

the robustness of the proposed linear SSVM with lower com-

putational cost. Second, we approximate the intersection

kernel for feature representations with an explicit feature

map to further improve tracking performance. Finally, we

extend the proposed DLSSVM tracker with multi-scale es-

timation to address the “drift” problem. Experimental re-

sults on large benchmark datasets with 50 and 100 video

sequences show that the proposed DLSSVM tracking algo-

rithm achieves state-of-the-art performance.

1. Introduction

Object tracking aims to estimate the locations of a tar-

get in an image sequence. It can be applied to numerous

tasks such as human-computer interaction, traffic monitor-

ing, action analysis and video surveillance [34, 5, 26]. The

main issue of object tracking is the incapability to account

for large appearance variations due to viewpoint changes,

occlusions, deformations and fast motions.

Existing object tracking algorithms can be broadly cat-

egorized as either generative or discriminative. Generative

tracking algorithms [6, 22, 16, 17, 24] typically learn an ap-

pearance model to represent a target and use the model to

search for interesting regions in the next frame with min-

imal reconstruction error. Instead of constructing a model

to represent the appearance of a target, discriminative ap-

proaches [1, 2, 30, 3, 23, 11, 8, 33] consider the tracking

problem as a classification or regression problem of finding

the decision boundary that best separates the target from the

background. In recent years, the tracking-by-detection ap-

proach has attracted more attention due to its strength to

deal with targets undergoing large appearance variations.

Numerous classification algorithms such as support vec-

tor machines [1], boosting [2, 30], multiple instance learn-

ing [3] and random forests [23, 11] have been used in recent

tracking-by-detection methods. However, the goal of binary

classifiers is not seamlessly aligned with the one of object

trackers due to the structured output space of tracking. To

overcome this problem, Hare et al. [8] propose a kernelized

Structured SVM (Struck) for object tracking. The Struck

method treats object tracking as a structured output pre-

diction problem that admits a consistent target representa-

tion for both learning and detection. Especially, in a recent

tracking benchmark studies [18, 31, 32], Struck [8] shows

the state-of-the-art performance.

However, the high complexity of optimization and detec-

tion processes for Struck [8] with nonlinear kernels limits

its usage of high dimension features. It is critical to track-

ing performance because object representation with high

dimensional features can model the target better than low

dimensional ones. For example, KCF [10] greatly out-

performs its original version CSK [9] by only replacing

the low dimensional image feature with high dimensional

HOG feature. On the other hand, the primal SSVM can be

learned efficiently with linear kernels, which is very useful

for fast training and detection even if it uses high dimen-

sional features to represent the target. However, existing

sub-gradients methods [25, 21] are sensitive to the step size

when applied to online tasks. Therefore, it is of great in-

terest to design a proper SSVM tracking algorithm that can

run sufficiently fast with high dimensional features.
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In this work, we propose a simple but effective dual lin-

ear SSVM (DLSSVM) tracking algorithm to solve these

problems. First, we formulate object tracking as a linear

SSVM detection problem to enable fast model updates in its

primal form. By analyzing the relationship between the dual

and primal variables, we present a closed form solution to

compute the step size of the model update, which is critical

for the tracking performance of linear SSVMs. Second, to

exploit nonlinear kernels while maintaining the linearity of

the proposed SSVM, we approximate the nonlinear kernels

with explicit feature maps. Third, to overcome the drifting

problem caused by large scale changes, we extend the pro-

posed tracker with multi-scale estimation. Experiments on

benchmark datasets [31, 32] of 50 and 100 image sequences

show that the DLSSVM tracker achieves the state-of-the-art

performance.

The main contributions of this work are summarized as

follows: First, a dual linear SSVM classifier is derived

in closed form, which is faster to train and evaluate than

non-linear classifiers and this important technique consti-

tutes the basis of this work. Second, with explicit feature

maps, the proposed DLSSVM tracker can exploit high di-

mensional linear features to better represent objects for vi-

sual tracking than non-linear SSVM methods in terms of

speed and accuracy. Third, the multi-scale estimation fur-

ther improves the performance by accounting for the large

scale changes during tracking.

2. Preliminaries

In this section we briefly introduce the structured SVM

formulation of the tracking-by-detection approach before

presenting the proposed algorithm.

2.1. Tracking­by­Detection

The tracking-by-detection method learns an online clas-

sifier to distinguish a target from its local background. We

review its main components and discuss the difference be-

tween traditional binary discriminative classifiers and struc-

tured SVMs. For the ease of illustration, we use the same

notations as [8] in the following. Let pt denote the object

central location at frame t, y is a relative transform accord-

ing to location pt. We represent a new position by pt ◦ y

where ◦ is a transformation operator (e.g., displacement,

Euclidean or affine transform). At the image location pt ◦ y,

we extract image patches x
pt◦y
t . Let h(·) be a learned clas-

sifier and r be the radius of a search space Y that contains

all candidate locations.

Assume that we have the initial discriminative classi-

fier according to the first frame. First, we crop out a set

of image patches x
pt−1

◦y

t from search space Y with ra-

dius ‖y‖ ≤ r and compute feature vectors. Second, we

use the discriminative classifier to update tracker location

y∗ = argmaxy∈Y h(xt
pt−1

◦y) and obtain the location

pt = pt−1 ◦ y∗ in the current frame. Third, members of the

sample set xt
pt◦Y are cropped out around the current track-

ing position pt to update the discriminative classifier. For a

binary classifier [2, 3, 38], the image patches xt
pt◦Y are di-

vided into two groups, whose labels are respectively +1 and

-1. For the structured SVM based classifier [8], the label of

sample xt is structured, i.e., the candidate positions y of the

target. Finally, the discriminative classifier is updated with

the newly arrived samples.

2.2. Structured SVM

In structured prediction, the goal is to predict a structured

output y ∈ Y for a given input x ∈ X where y can be

arbitrary output for different problems. In our tracker, y is

defined as a bounding box. The feature vector Φ(x, y) is a

function defined over a pair of input and output (x, y) which

encodes the relevant information. We learn a discriminative

classifier with parameter w defined by

y∗ = argmax
y∈Y

h(x,y,w) (1)

where h(x,y,w) = w⊤Φ(x,y) and w can be learned

in a large-margin framework from a sample set of

{(x1, y1), . . . , (xn, yn)} by solving the following global op-

timization problem:

min
w

1

2
‖w‖2 + c

n
∑

i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i, ∀y 6= yi : 〈w,Ψi(y)〉 ≥ L(yi, y)− ξi

(2)

where Ψi(y) = Φ(xi, yi) − Φ(xi, y) and L(yi, y) denotes

the task-dependent structured error of predicted output y in-

stead of the observed output yi. The slack variable ξi mea-

sures the surrogate loss for the i-th data point and c is the

regularization parameter. The loss function expresses a finer

distinction between yi and y, which plays an important role

in the structured SVM. Similar to the Struck method [8],

we choose to base the loss function on the bounding box

overlap rate

L(yi, y) = 1− sopt(yi, y) (3)

where s◦pt(yi, y) =
(pt◦yi)∩(pt◦y)
(pt◦yi)∪(pt◦y) . The Lagrange dual of the

above n-slack formulation is given by

min
α≥0

f(α):=
1

2
‖
∑

i,y 6=yi

αi,yΨi(y)‖
2−

∑

i,y 6=yi

L(yi, y)αi,y (4a)

s.t. ∀i, ∀y 6= yi : αi,y ≥ 0 (4b)

∀i :
∑

y6=yi

αi,y ≤ c (4c)

In the dual structured SVM, the discriminative classifier can

be defined as w =
∑

i,y6=yi
αi,yΨi(y).
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Struck  and our DLSSVM

Update a pair of dual 
coefficients 0 and m
related to y0 and ym by 
Algorithm 1 in [9]

Update one dual 
cofficient k related to  
yk by Eq.(6)

1 2

k m

1 2

k m

1 2

k m

1 2

k m

1 2

k

0 m

k

0

0 0

0 0

m

Figure 1. Comparing optimization processes for the Struck [8] and DLSSVM methods. (a) First, both SSVM trackers crop structured

samples around the tracking result in each frame. Each structured output of each sample has a dual coefficient α. (b) Second, a selected

sample is used to update its dual coefficients related to different structured outputs, i.e. support vectors. The Struck [8] and DLSSVM

methods use different optimization schemes to update it. (c) Third, a pair of dual variables need to be carefully chosen and optimized in

the Struck [8] method while only one dual variable is selected by a simple method and then updated in the proposed DLSSVM algorithm.

2.3. SSVM Based Tracking Analysis

Although dual SSVMs with non-linear kernels usually

perform better than ones with linear kernels for tracking,

the training and detection processes are more complex. As

a result, if a non-linear kernel is used in the SSVM for ob-

ject tracking, we cannot obtain the classifier parameter w

explicitly so that the object detection can be only evaluated

in the kernel space with a high computational cost.

The Struck method [8] uses low-dimensional features

(192-dimensional Haar-like features) to represent target for

reducing the computational cost. The sequential minimal

optimization (SMO) [19] used by the Struck method [8] has

a high computational cost as well because it requires find-

ing a violation pair for each update and its convergence rate

does not scale well with the size of the output space [39].

To alleviate the computational issue with non-linear ker-

nels, we use a linear SSVM as the discriminative classifier

w because it can be obtained explicitly. The use of linear

kernels could accommodate high dimensional features for

target representation and at the same time maintains a rel-

atively low computational load for both training and detec-

tion. In terms of representation power, we note that the ex-

plicit feature map [27] can approximate non-linear kernels

for non-linear decision efficiently and effectively.

3. Proposed Dual Linear SSVM Tracker

In this section, we first present our algorithm to effi-

ciently solve a dual SSVM with linear kernels. Next, we use

an unary representation [15] to approximate the intersection

kernel for modeling object appearance, which improves the

performance of the proposed DLSSVM tracker. Finally, we

present the proposed tracking algorithm via our online dual

linear SSVM optimization process. Figure 1 summarizes

the differences between the Struck and DLSSVM methods.

3.1. Dual Linear SSVM Optimization

We present an online learning algorithm to train a dual

linear SSVM for object tracking. We follow the basic dual

coordinate descent (DCD) [20] optimization process for the

dual SSVM and consider (4a) as a multivariate function

with respect to dual coefficients αi,y.

Optimization with closed form solution. In the DCD ap-

proach, the basic process is that in each iteration only one

sample is optimized. For a sample k, the DCD method first

selects one violated variable with maximum error as,

y∗
k = argmax

y∈Yk

L(y, yk)− w⊤Ψk(y) (5)

Note that we keep the primal classifier w for efficient model

evaluation during tracking.

To estimate αk,y∗
k
, we first compute the derivative of (4a)

with respect to αk,y∗
k

(which is related to structured output

y∗k) and set it to zero. As a result, the new coefficient α′
k,y∗

k

is given by

α′
k,y∗

k
=

L(yk, y∗k)

‖Ψk(y∗k)‖
2
−

∑

i,y6=yi
(αi,yΨ

⊤
i (y)− αk,y∗

k
Ψ⊤

k (y
∗
k))Ψk(y

∗
k)

‖Ψk(y∗k)‖
2

According to w =
∑

i,y6=yi
αi,yΨi(y), we obtain a sim-

ple αk,y∗
k

update formula (6) for the above equation,

α′
k,y∗

k
= αk,y∗

k
+

L(yk, y∗k)− w⊤Ψk(y
∗
k)

‖Ψk(y∗k)‖
2

(6)
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With the constraint in (4c), we have α′
k,y∗ ∈ [0, c −

∑

y6=y∗ αk,y]. Therefore, the second term on the right hand

side of (6), which defines the increment of the dual coeffi-

cient by

γ =
L(yk, y∗k)− w⊤Ψk(y

∗)

‖Ψk(y∗)‖2
(7)

is normalized as γ ∈ [−αk,y∗ , c−
∑

y αk,y].
Note that in (5) and (6) we use a linear kernel to explicitly

compute the primal parameters w. Compared to non-linear

kernels, where w is implicitly represented by the sum of all

dual coefficients multiplying kernel transformation of sup-

port vectors, the primal classifier only requires simple vec-

tor inner products which leads to much less complex train-

ing and detection. After optimizing one sample, we obtain

the updated primal classifier immediately,

w = w + γΨk(y
∗) (8)

In (8) the update of w is similar to the sub-gradient de-

scent (SSG) [21] method [25]. However, the SSG method

is sensitive to the step size γ. Our update step size is de-

rived in closed form in the dual space. It takes advantage

of the DCD optimization with linear kernels and offers fast

convergence guarantee [20]. Therefore, after each iteration,

we obtain immediately the explicit classifier, which is sub-

sequently used for the next update.

After learning the discriminative classifier w, we carry

out object detection for the frame at time t using learned w

via the simple matrix operation defined by

y∗ = argmax
y∈Y

w⊤Ψt(y).

The structured output y∗ with maximum response is consid-

ered as the object location.

The DCD optimization [20] used by this work is sim-

pler than the SMO optimization technique [19] in the Struck

tracker [8]. In our method we only pick up one violation

variable each iteration and update its support vector coeffi-

cient while the SMO [19] method needs to carefully find

a pair of violated variables and update their coefficients.

Compared to Struck [8], the process to update and maintain

support vectors is simpler as it needs to only optimize one

dual coefficient at each step. The main difference between

the Struck [8] and DLSSVM methods is shown in Figure 1.

Budget of support vectors. The number of support vec-

tors in the SSVM increases gradually over time and a

fixed amount is maintained for memory efficiency. In our

method, the number of support vectors does not increase the

complexity of the training process because it is only used to

control the number of samples, which is different from the

Struck method [8].

As each dual coefficient is relatively independent in our

linear SSVM optimization, we remove the support vector

with the smallest norm, which is irrelevant to other support

vectors. When the number of support vectors in the SSVM

detector exceeds the budget, we remove one according to

the following formula,

α∗ = argmin
αi,y∈α

‖αi,yΨi(xi, y)‖2 (9)

where αi,y is the coefficient of the support vector Ψi(xi, y)
of sample xi.

3.2. Explicit Feature Map for Non­Linear Kernels

We employ an image kernel between pairs of the patches

cropped from a frame x at location y for the proposed

DLSSVM tracker,

Kimage(x, y, x̄, ȳ) = K(xp◦y, x̄p̄◦ȳ) (10)

For each patch, we normalize it to about 400 pixels and em-

ploy the feature representation in the MEEM method [36]

based on the CIE Lab color space. In addition, we apply the

non-parametric local rank transform (LRT) [35] to the light-

ness channel to increase invariance to illumination change.

We denote zi as the feature vector of one image patch

consisting of Lab and LRT channels, and measure the simi-

larity of two image patches using an intersection kernel.

K(xp◦y, x̄p̄◦ȳ) = K(zi, zj) =
∑

k

min(zki , zkj ), (11)

where k is the k-th element of feature vector zi. To obtain

the primal classifier w in our DLSSVM formulation, we use

the explicit feature map Ψ(xp◦y) for the intersection kernel.

As an additive kernel, the explicit feature map can be ap-

proximated by the unary representation [15].

Let N denote the number of discrete levels, U(n) de-

note the unary representation of the integer n, e.g., U(3) =
{1, 1, 1, 0, 0, 0} when N = 6, and R(·) denote the round-

ing function. The unary representation of the feature zk is

defined by

φ(zk) =

√

1

N
U(R(Nzk)) (12)

Based on this unary representation [15], the intersection

kernel can be approximated by

∑

k

min(zki , zkj ) ≈
∑

k

< φ(zki ), φ(z
k
i ) > (13)

such that Ψ(xp◦y) ≈ [φ(z1i ), φ(z
2
i ), . . . , φ(z

k
i ), . . .].

We set the quantization number N = 4 for color se-

quences. For grayscale sequences, since the color channels

are not available, we set the quantization number N = 8 for

more accurate approximation of the intersection kernel.

For the dimension of features, the original features of

color image include four channels (Lab+LRT). Using unary
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Figure 2. Main steps of the proposed DLSSVM tracker. (a) First,

we crop structured samples around the tracking results of the pre-

vious frame. (b) Second, we update the discriminative classi-

fier via dual linear SSVM optimization. Note that the explicitly

discriminative classifier is very important for object tracking to

rapidly train and detect. (c) We apply the updated classifier to de-

tect the object in the current frame.

representation with the quantization number N=4, we have

400*4*4=6400 dimensional vectors. For gray image, its

original features includes two channels (Gray+LRT). Using

unary representation with the quantization number N=8, we

also get 400*2*8=6400 dimensional vectors. In contrast,

the Struck [8] with a non-linear Gaussian kernel only uses

192 dimensional feature vectors due to computational loads.

3.3. Multi­scale Estimation

It is difficult for tracking methods with a fixed scale

representation to deal with target objects undergoing large

scale changes. To alleviate the drifting problem caused by

large scale changes, we extend the DLSSVM method with a

multiple scale estimation. In this work, we use DLSSVMs

at three different scales in parallel, and use the maximum

responses as the tracking results.

3.4. Tracking Algorithm

We follow a common optimization strategy [20, 4] to im-

plement our tracking algorithm. Figure 2 show the main

steps of the proposed DLSSVM tracker, and the details are

presented in Algorithm 1.

Especially, because both search region and discrimina-

tive classifier w actually belong to image features (Fig-

ure 2b), we can use the Fast Fourier Transform (FFT) al-

gorithm to speed up the detection process. However, it is

difficult for Struck [8] because it only gets implicitly dis-

criminative classifier.

4. Experimental Results

We first discuss the experimental setup, dataset, and eval-

uation metrics, and then present two sets of experiments:

• Analysis of proposed DLSSVM and related SSVM

trackers;

• Comparisons with state-of-the-art trackers.

Algorithm 1: DLSSVM tracking algorithm

input : Initial discriminative learner w = 0 and

initial object location p0.

Output: Tracking result location pi of each frame.

repeat
1. Estimate change in object location.

yt = argmaxy∈Y w⊤x
pt−1

◦y

t

pt = pt−1 ◦ yt
2. Crop samples Xt = x

pt◦y
t from current frame

and append it to end of dataset.

3. Update DLSSVM discriminative classifier.

Get the number n of samples data.

For j = 1 : n1

i = n− ⌊((j − 1) ∗ n/n1)⌋
Select a sample Xi from sample set X.

According to (5), select y∗ from structured

labels Yi of sample Xi.

According to (6), update αi,y∗ corresponding to

y∗.

According to (8), update w.

Maintain support vectors budget based on (9).

Get the number n of samples data.

For p = 1 : n2

i = n− ⌊((p− 1) ∗ n/n2)⌋
Select a sample Xi from sample set X.

According to (5), select y∗ from structured

label Yi of sample Xi with non-zero dual

coefficients .

According to (6), update αi,y∗ corresponding to

y∗.

According to (8), update w.

End For

End For
until End of video sequences;

Note: n1 and n2 are the numbers of iterations of

exploring (external loop) and optimization (internal

loop) [20] [4], and are fixed in all experiments.

More experimental results and videos can be found in

the supplementary material. All the MATLAB source codes

will be made available to the public.

4.1. Experimental Setup

Parameter Setting. For all sequences, we use fixed param-

eter values for fair evaluations. For the SSVM optimization

(2), c is set to 100. We set the budget of support vectors to

100. The search radius for training and detection process is

automatically determined by square root of the target area.

The size of image patch is normalized to 400 pixels accord-

ing to a trade-off between accuracy and speed. For scale es-

timation, we use the conservative scaling pool S={1 0.995,
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Table 1. Characteristics of SSVM trackers. NU means no unary representation for the features

SSVM trackers
closed form kernel feature feature high dimension non-linear discriminative

solution type type dimensions feature decesion classifier

SSG no linear image feature 1600 yes no explicit

Struck yes Gaussian Haar-like 192 no yes implicit

Linear-Struck-NU yes linear image feature 1600 yes no explicit

Linear-Struck yes linear image feature 6400 yes yes explicit

DLSSVM-NU yes linear image feature 1600 yes no explicit

DLSSVM yes linear image feature 6400 yes yes explicit

Table 2. Experimental comparisons of the proposed DLSSVM and related trackers with different parameters settings: B50, B100 and B500

mean the budgets of support vectors are 50, 100 and 500 respectively. The entries in Bold red indicate the best results and the ones in blue

indicate the second best.

SSVM trackers

OPE TRE SRE

Mean FPSprecision success precision success precision success

(20 pixels) (AUC) (20 pixels) (AUC) (20 pixels) (AUC)

DLSSVM-NU 0.794 0.557 0.810 0.581 0.724 0.508 28.88

DLSSVM-B50 0.828 0.587 0.846 0.606 0.780 0.543 10.10

DLSSVM-B100 0.829 0.589 0.856 0.610 0.783 0.545 10.22

DLSSVM-B500 0.826 0.588 0.852 0.609 0.787 0.548 10.37

Scale-DLSSVM 0.861 0.608 0.857 0.615 0.811 0.565 5.40

SSG 0.608 0.443 0.665 0.486 0.584 0.424 46.13

Struck 0.656 0.474 0.707 0.514 0.634 0.449 0.90

Linear-Struck-NU 0.703 0.506 0.751 0.540 0.655 0.462 1.46

Linear-Struck 0.792 0.556 0.824 0.589 0.736 0.515 1.20

1.005}, which is similar to [13].

In our algorithm, we implement the training and detec-

tion process in MATLAB while the feature extraction step

in C++ for runtime performance as in the Multi-Expert En-

tropy Minimization (MEEM) method [36]. It runs at 10 fps

on a desktop computer with Intel i5-2400 CPU (3.10 GHz)

and 6 GB memory.

Dataset. We evaluate the proposed DLSSVM algorithm

on the TB50 [31] and TB100 [32] benchmark datasets.

For detailed analysis, these sequences are annotated with

11 challenging attributes including illumination variation

(IV), scale variation (SV), occlusion (OCC), deformation

(DEF), motion blur (MB), fast motion (FM), in-plane rota-

tion (IPR), out-of plane rotation (OPR), out-of-view (OV),

background clutters (BC) and low resolution (LR).

Evaluation Protocol and Metrics. As suggested in [31],

we evaluate the tracking algorithms using three protocols:

one-pass evaluation (OPE), temporal robustness evaluation

(TRE), and spatial robustness evaluation (SRE) using pre-

cision and success rates. We present the main findings in

this manuscript and more results can be found in the sup-

plementary material.

4.2. Analysis of Proposed DLSSVM and Related
SSVM Trackers

We evaluate the DLSSVM method and the related track-

ers on the TB50 [31] dataset. Table 1 summarizes the char-

acteristics of those SSVM trackers. Table 2 shows the ex-

perimental results of those related SSVM trackers includ-

ing the run-time performance. The mean FPS (frames per

second) is estimated on a long sequence liquor with 1741

frames.

we denote the DLSSVM tracker without the unary rep-

resentation as DLSSVM-NU, and the method using 50,

100 and 500 support vectors as DLSSVM-B50 ,DLSSVM-

B100 and DLSSVM-B500, respectively. The DLSSVM

with multi-scale estimation is denoted as Scale-DLSSVM.

Analysis of DLSSVM tracker. Based on the results of

the DLSSVM-NU and DLSSVM-B100 methods using the

OPE, TRE and SRE protocols, it is clear that the explicit

feature map with the unary representation plays an impor-

tant role in robust object tracking. Overall, the DLSSVM

tracker is insensitive to different numbers of support vectors

(e.g., from 50 to 500). Furthermore, the Scale-DLSSVM

method obtain better accuracies than the DLSSVM scheme

at the expense of lower processing speed. In the follow-

ing, the DLSSVM tracker is referred to the one with 100

support vectors for evaluations against other state-of-the-art

tracking methods, unless specified otherwise.
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Figure 3. Average precision plot (top row) and success plot (bottom row) for the OPE, TRE and SRE on the TB50 [31] dataset. For

presentation clarity, only the top ten trackers with respect to the ranking score are shown in each plot.
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Figure 4. Average precision plot (top row) and success plot (bottom row) for the OPE, TRE and SRE on the TB100 [32] dataset. For

presentation clarity, only the top ten trackers with respect to the ranking score are shown in each plot.

Comparisons with Other SSVM trackers. We first im-

plement a linear SSVM tracker with the sub-gradient opti-

mization method [25], and refer it as the SSG tracker (i.e.,

a baseline SSVM tracker). The learning rate to update clas-

sifiers is manually selected without using the closed form

solution via (7) (i.e.,the step size in the four methods from

the bottom of Table 2 is manually set). As shown in Table 2,

although the SSG tracker uses the same high dimensional
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features as the DLSSVM-NU tracker at a higher processing

rate, the tracking accuracy in all three indices is lower than

that of the Struck [8] method with a small margin.

Second, we implement the original Struck [8] method

and a linear Struck approach in MATLAB for fair compar-

isons. Note that Haar-like feature used by Struck [8] is not

proper for computing the explicit feature map of intersec-

tion kernel so we compare Struck and our method using our

feature representations. In addition, we also evaluate the

performance of the Struck method with a linear kernel with

(Linear-Struck) and without (Linear-Struck-NU) using the

explicit feature map.

For the Struck [8] method, we note that the linear Struck

method with high dimensional features (Linear-Struck-NU)

outperforms the original non-linear kernel Struck in terms

of both accuracy (all metrics) and speed, which suggests

that linear Struck with high dimensional feature is more

proper than Struck with Gaussian kernel for visual track-

ing. The DLSSVM tracker (i.e., DLSSVM-B100) performs

favorably against the Struck [8] and Linear-Struck meth-

ods in accuracy and speed. On the other hand, the exper-

imental comparisons between the SSG, Linear-Struck and

DLSSVM methods in Table 2 indicate that the linear SSVM

classifier with the step size in closed form solution is cru-

cial to robust object tracking. With simpler optimization

process, the proposed DLSSVM tracker performs favorably

against the Struck [8] method using non-linear and linear

kernels in terms of accuracy and speed. It indicates that

DCD optimization [20] used by our DLSSVM is better than

SMO [19, 4] used by Struck [8] for visual tracking.

4.3. Comparisons with State­of­the­Art Trackers

We evaluate the DLSSVM and Scale-DLSSVM track-

ers against the state-of-the-art methods on the TB50 [31]

and TB100 [32] datasets, where the results of 29 trackers

are reported. In addition, we include 6 most recent trackers

for performance evaluation. The HCFT [14] and DLT [28]

methods are developed based on hierarchical features via

deep learning. The STC [37] and KCF [10] schemes are

based correlations filters. Furthermore, the TGPR [7] and

MEEM [36] algorithms are developed based on regression

and multiple trackers. The precision and success rates for

the top ten trackers on the TB50 [31] and TB100 [32]

datasets are presented in Figure 3 and Figure 4.

The KCF tracker [10] exploits circulant matrix compu-

tations and achieves high run-time speed. In addition, the

recent method [13] shows that the performance of the KCF

method can be further improved by a more effective repre-

sentation based on color name attributes [12]. Overall, the

proposed DLSSVM tracker with simple color and spatial

features performs favorably over the KCF method in terms

of accuracy using all metrics.

The MEEM [36] tracking method uses a mixture of ex-

perts based on entropy minimization where a linear SVM

with twin prototypes [29] is used as the base tracker.

The proposed DLSSVM tracker performs well against the

MEEM method in most metrics except the OPE precision.

In addition, the Scale-DLSSVM method with multi-scale

estimation outperforms the MEEM tracker [36] in all met-

rics on both TB-50 and TB-100 datasets.

Compared to deep learning based methods, the proposed

DLSSVM method performs favorably against the DLT [28]

tracker on the TB50[31] and TB100 [32] datasets, and the

Scale-DLSSVM algorithm performs comparably against

the state-of-the-art HCFT [14] method which is based on

both correlation filters and hierarchical convolutional fea-

tures. We note that the proposed DLSSVM and Scale-

DLSSVM methods only use simple image features while

the HCFT method takes advantage of complex hierarchi-

cal convolutional features that requires offline training on a

large dataset. These experimental results show that the dual

linear optimization scheme used by the proposed SSVM

trackers is effective and efficient for robust object tracking.

5. Conclusions

In this paper, we propose an efficient and effective

SSVM formulation for robust object tracking via a dual lin-

ear SSVM optimization method and an explicit feature map.

By using linear kernels, we can easily update the primal

classifier and speed up the algorithm. With the dual SSVM

formulation, we derive a closed form update scheme for the

primal classifier which is critical for robust object tracking.

We approximate intersection kernel with the explicit feature

map to make non-linear decision by our linear SSVM classi-

fier for better performance. The DLSSVM tracking method

is further improved with multi-scale estimation to account

for large scale changes. Experimental results show that the

proposed DLSSVM tracker performs favorably against the

state-of-the-art methods on large benchmark datasets.
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