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Abstract

To address the non-stationary property of aging patterns,

age estimation can be cast as an ordinal regression problem.

However, the processes of extracting features and learning

a regression model are often separated and optimized inde-

pendently in previous work. In this paper, we propose an

End-to-End learning approach to address ordinal regres-

sion problems using deep Convolutional Neural Network,

which could simultaneously conduct feature learning and

regression modeling. In particular, an ordinal regression

problem is transformed into a series of binary classifica-

tion sub-problems. And we propose a multiple output CNN

learning algorithm to collectively solve these classification

sub-problems, so that the correlation between these tasks

could be explored. In addition, we publish an Asian Face

Age Dataset (AFAD) containing more than 160K facial im-

ages with precise age ground-truths, which is the largest

public age dataset to date. To the best of our knowledge, this

is the first work to address ordinal regression problems by

using CNN, and achieves the state-of-the-art performance

on both the MORPH and AFAD datasets.

1. Introduction

Human age estimation from face images remains to be an

active research topic, which has many applications, such as

demographics analysis, commercial user management, vi-

sual surveillance [22, 23, 24, 30, 3], and even aging progres-

sion [28]. In previous methods, age estimation is often cast

as a multi-class classification [12][15] or a metric regres-

sion problem [11][15][14]. In a multi-class classification

problem, the class labels are assumed to be independent to

one another. However, the age labels have a strong ordinal

relationship since they form a well-ordered set, which is not

exploited in these multi-class classification methods.

On the other hand, metric regression approaches treat the

age labels as numerical values to utilize such ordinal infor-

mation for age estimation. However, the human face ma-

tures in different ways depending on the person’s age [25].

For example, facial aging effects appear as changes in the

shape of the face during childhood and changes in skin tex-

ture during adulthood. This property makes the random pro-

cess formed by the aging patterns non-stationary in general.

As manifested in [6], learning non-stationary kernels for a

regression problem is usually difficult since it will easily

cause over-fitting in the training process.

Due to the fact that facial aging process is a non-

stationary process, one reliable information we can use

would be the relative order among the age labels in addi-

tion to their exact values. And hence the age estimation

is cast as a ordinal regression problem [4][6][32][20]. For

instance, Cao et al. [4] formulated age estimation as a rank-

ing problem and proposed a novel method based on Rank-

SVM [17].

Recently, to directly utilize the well-studied classifica-

tion algorithms, the ordinal regression problem is trans-

formed into a series of simpler binary classification sub-

problems [10][21]. For example, a reduction framework is

proposed in [21]. For each rank k ∈ {1, 2, · · · ,K − 1} a

binary classifier is trained according to whether the rank of

a sample is larger than k. Then, the rank of a sample is pre-

dicted based on the classification results of the K−1 binary

classifiers on this sample. In [21], the well-tuned SVM clas-

sification algorithm is directly utilized to train those binary

classifiers. A benefit of this kind of methods is that new

generalization bounds for ordinal regression can be easily

derived from known bounds for binary classification.

Inspired by it, we also transform ordinal regression as

a series of binary classification sub-problems in this pa-

per. In particular, the Convolutional Neural Network (CNN)

is used to solve those binary classification sub-problems.

Moreover, our CNN has multiple output layers where each

output layer corresponds to a binary classification task,

called Multiple Output CNN in this paper. Therefore, all

the binary classifiers can be jointly trained in such a CNN.

Since all the tasks share the same mid-level representations

in the CNN, the correlation among distinct tasks could be

explored, which is beneficial to improving the finial perfor-

mance.
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On the other hand, for either the metric regression based

or the ordinal regression based approaches, the processes

of extracting features and learning a regression model is

separated and optimized independently. The most suc-

cessful hand-crafted features for age estimation is the Bio-

inspired Features (BIFs) [15]. Nevertheless, due to the un-

clear mechanism of how humane perceives the different ag-

ing pattern, it is still difficult to design good features for

age estimation. On the contrary, in our approach we can

conduct an End-to-End learning with CNN for age estima-

tion, which could simultaneously optimize feature learning

and regression modeling. As a result, we can automatically

learn better features from facial images, and avoid directly

designing hand-crafted features.

At last, the lack of a large scale age dataset is always

a barrier for pushing the progress of research on age esti-

mation. And most previous algorithmic evaluations were

performed on relatively small datasets, mainly due to the

difficulties in collecting a large dataset with precise human

age ground-truths. The most popular public age datasets

include FG-NET [1] (1002 face images), MORPH I (1690
face images), and MORPH II [26] (55, 608 face images).

Even for the largest dataset MORPH II, its ethnic is very

unbalanced, i.e., more than 96% faces are African and Eu-

ropean, but less than 1% faces from Asian. Thus, the per-

formance of previous methods for age estimation on Asian

faces is still unknown. Besides, a large scale age dataset

is essential for introducing deep learning algorithm such as

CNN to age estimation. In this paper, we publish a new age

dataset called Asian Face Age Dataset (AFAD), which in-

cludes more than 160K Asian facial images and age labels.

Until now, this is the largest public age dataset. Briefly, our

contributions are:

1. We propose to address ordinal regression problems us-

ing End-to-End deep learning methods.

2. We apply it to the task of age estimation, and achieve

state-of-the-art results.

3. A new age dataset is released to the community for age

estimation, which is the largest public dataset to date.

2. Related Work

Age estimation: Most existing methods estimate the age of

face image by two steps: local feature extraction and metric

regression (or multi-class classification). Due to that ge-

ometry and texture features are helpful to distinguish baby,

adult, and senior, many methods were proposed based on

the AAM model [8] since it is a natural tool to simultane-

ously model the shape and texture of facial images [19][12].

The most successful hand-crafted features for age estima-

tion is the Bio-inspired Features (BIFs) [15]. On the other

hand, much attention were paid on the second step: age

classification or regression based on these features. Fu and

Huang [11] applied discriminative manifold learning and

quadratic regression to age estimation. Guo et al. intro-

duced many regression methods to predict the age of face

image, such as SVR [15], PLS [13] and CCA [14].

Recently, to better handle the non-stationary property of

the aging process, ordinal regression is employed for age es-

timation. Yang et al. [32] employ the RankBoost algorithm,

which is a single hyperplane ranker in the feature space, for

age estimation. Chang et al. [5] employ the parallel hyper-

planes model OR-SVM [21] for age estimation, and further

extended it to a more flexible scenario, i.e., several possibly

non-parallel hyperplanes [6].

Although deep learning has achieved success on many

computer vision tasks (e.g., image recognition, and object

detection, etc), there are little works for introducing CNN

to age estimation. Yi et al. [33] firstly proposed to use CNN

for age estimation. However, the proposed CNN is very

shallow, which only contains 4 layers (i.e., 1 convolution

+ 1 pooling + 1 local layer + 1 full connection), and only

a subset of MORPH II (about 10K facial images) is used

to train the shallow CNN. Currently, in [31] a relatively

deeper CNN has been proposed for age estimation. How-

ever, in their work, CNN is only used to extract features,

which is then fed to another regressor for the final age es-

timation. But our approach conducts End-to-End learning

which could better unleash the discriminative power of the

CNN.

Ordinal regression: Most ordinal regression algo-

rithms are modified from well-known classification algo-

rithms [16][9][27]. For instance, Herbrich et al. [16] pro-

posed a method of support vector learning for ordinal re-

gression. In [9], the perceptron ranking (PRank) algorithm

proposed by Crammer and Singer is to generalize the online

perceptron algorithm with multiple thresholds for ordinal

regression. In [27], Shashua and Levin proposed new sup-

port vector machine formulations to handle multiple thresh-

olds.

On the other hand, to directly utilize the well-studied

classification algorithms, the ordinal regression problem is

transferred as a series of simpler binary classification sub-

problems [10][21]. For example, several decision trees are

employed as binary classifiers for ordinal regression in [10].

Recently, Li et al. [21] proposed a framework to reduce an

ordinal regression problem as a set of classification prob-

lems, and employ an SVM to solve the classification prob-

lems.

3. Ordinal Regression with CNN

3.1. Problem Formulation

Let us assume that the i-th image is represented in an

input space xi ∈ X , and there is an outcome space yi ∈
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Y = {r1, r2, · · · , rK} with ordered ranks rK ≻ rK−1 ≻
· · · ≻ r1. The symbol ≻ denotes the ordering between

different ranks. Given training samples D = {xi, yi}Ni=1,

the ordinal regression is to find a mapping from images to

ranks h(·) : X → Y such that — using a predefined cost

c : X × Y → R — the risk functional R(h) is minimized.

In this paper, the cost matrix C [21] is employed to

measure the cost between predicted ranks and ground-truth

ranks. In particular, C is a K × K matrix with Cy,r being

the cost of predicting an example (x, y) as rank r. Natu-

rally, it is assumed that Cy,y = 0 and Cy,r > 0 for r 6= y.

Particularly, the absolute cost matrix, which is defined by

Cy,r = |y − r|, is a popular choice for general ordinal re-

gression problems. Particularly, each age is often treated as

a rank when applying ordinal regression algorithms to age

estimation.

3.2. Our Approach

To directly utilize the well-studied classification algo-

rithms, we transform ordinal regression as a series of bi-

nary classification sub-problems in this paper. In particular,

an ordinal regression problem with K ranks is transformed

into K − 1 simpler binary classification sub-problems. For

each rank rk ∈ {r1, r2, · · · , rK−1}, a binary classifier is

constructed to predict whether the rank of a sample yi is

larger than rk. And then the rank of an unseen sample is

predicted based on the classification results of the K − 1
binary classifiers on this sample.

Specifically, our approach contains three steps: (a) given

the original training data D = {xi, yi}Ni=1, for the k-th bi-

nary classification sub-problem a specific training data is

constructed as Dk = {xi, y
k
i , w

k
i }Ni=1, where the yki ∈

{0, 1} is a binary class label indicating whether the rank

of the i-th sample yi is larger than rk as follows,

yki =

{

1, if(yi > rk)

0, otherwise,
(1)

And the wk
i is the weight for the i-th example, i.e.,

wk
i = |Cy,k − Cy,k+1|. (2)

Since absolute cost matrix is adopted in our approach,

we have ∀(i, k), wk
i = 1. (b) the K − 1 binary classi-

fiers are trained with their corresponding training data. It is

noticed that we adopt one CNN to collectively implement

these binary classifiers in our approach. In particular, our

CNN has a multiple-output structure where each output cor-

responds to a binary classifier. Thus, these binary classifiers

are jointly trained in such a CNN (refers to Sec.3.4); (c) the

Input: training data D = {xi, yi}
N
i=1 and testing images D′ =

{x′

j}
M
j=1

• Loop for k = 1, 2, · · · ,K − 1:

– Build a distinct training data Dk =
{xi, y

k
i , w

k
i }

N
i=1 for the k-th binary classifi-

cation task according to Eq.1 and Eq.2.

• The learning of the multiple output CNN:

– The proposed multiple output CNN is trained with

Dk, (k = 1, 2, · · · ,K − 1) according to the pro-

posed learning algorithm (refers to Sec.3.4).

• For each testing image x
′

j ∈ D′:

– Forward x
′

j to the trained CNN, and get the

K − 1 binary labels fk(x
′

j) ∈ {0, 1}, (t =
1, 2, · · · ,K − 1);

– Predict its rank h(x′

j) with previous binary labels

{fk(x
′

j)}
K−1

k=1
according to Eq.3.

Output: the predicted ranks for testing images {h(x′

j)}
M
j=1.

Figure 1. Our approach for solving ordinal regression with the

multiple output CNN.

rank for an unseen sample x
′ is predicted as follows,

h(x′) = rq (3)

q = 1 +

K−1
∑

k=1

fk(x
′),

where fk(x
′) ∈ {0, 1} is the classification result of the k-th

binary classifier for the sample x
′ (i.e., the k-th output of

our multiple-output CNN). Ideally, these fk(x
′) should be

consistent. However, ensuring the consistency in the train-

ing phase would significantly increase the training complex-

ity. Hence we just apply Eq. 3 without explicitly ensuring

the consistency among the different classifiers as in [21].

The benefits of our approach is two-fold: (1) an ordi-

nal regression problem is solved by using an End-to-End

deep learning method, so that we can automatically learn

better features from facial images and avoid directly design-

ing hand-crafted features. (2) the K − 1 classification sub-

problems are treated as K − 1 tasks, which are simultane-

ously solved with our multiple output CNN. Due to that all

the tasks share the same mid-level representations in such

a CNN, the correlation of distinct tasks could be explored,

which is beneficial to improve the finial performance.

3.3. Architecture of the Multiple Output CNN

As shown in Fig.2, our network consists of 3 convolu-

tional, 3 local response normalization, and 2 max pooling

layers followed by a fully connected layer with 80 neurons.
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Figure 2. The architecture of the proposed Multiple Output CNN

At the input level, aligned face images of size 60 × 60 × 3
are fed to the network as input. It is noted that color face

images are used in this paper, which is different from the

gray images used in [31]. At the first convolutional layer,

20 kernels of size 5×5×3 with stride of 1 pixels is applied

on the input images. And after local response normaliza-

tion and max pooling operations, the feature maps of size

28× 28× 20 are obtained.

The similar operations are conducted at the second and

third convolutional layers with different kernel size (refers

Fig.2 for the details). And then a fully connected layer with

80 neurons is used to generate a mid-level representation.

After that, the network branches out K−1 output layers,

where each output layer contains 2 neurons and corresponds

to a binary classification task. The k-th task is to predict

whether the age of the i-th facial image is larger than the

rank rk. For each task, the softmax normalized cross en-

tropy loss is employed as loss function.

3.4. Learning the Multiple Output CNN

For a CNN with single output, we have N samples

{xi, yi}Ni=1, where xi denotes the i-th image and yi de-

notes the corresponding class label. For binary class label

yi ∈ {0, 1}, it is reasonable to employ cross-entropy as the

loss function,

Es = − 1

N

N
∑

i=1

1{oi = yi}wilog(p(oi|xi,W )), (4)

where oi indicates the output of the CNN for the i-th image,

wi indicates the weight of the i-th image, and W indicates

the parameters of the entire CNN. Let Wl denotes the pa-

rameters of the l-th layer in the CNN, and hence we have

W = {W1,W2, · · · ,WL−1}. The Boolean test 1{·} is 1
if the inner condition is true, and 0 otherwise.

For a CNN with K− 1 outputs, each output corresponds

to a distinct task. All the T = K − 1 tasks (outputs) share

the same N input images {xi}Ni=1, but have different class

Figure 3. The back-propagation procedure for our Multiple Output

CNN

labels {{yti}Ni=1}Tt=1. Let λt denotes the importance coeffi-

cient of the t-th task, the loss function of our multiple output

CNN can be written as

Em = − 1

N

N
∑

i=1

T
∑

t=1

λt1{oti = yti}wt
i log(p(o

t
i|xi,W

t)),

(5)

where oti indicates the output of the t-th task for the i-th

image, wt
i indicates the weight of the i-th image for the t-th

task, and W
t indicate the parameters of the t-th task.

According to the architecture of our multiple output

CNN, each task has a distinct output layer, but all the

tasks share the same intermediate layers. Thus, only the

parameters of the output layers for distinct tasks W
t
L−1

are different from each other, i.e., we have WL−1 =
{W 1

L−1,W
2
L−1, · · · ,W T

L−1}. And the parameters of pre-

vious layers are the same as one another for all the tasks,

i.e., ∀l ∈ {1, · · · , (L − 2)}, W 1
l = W

2
l = · · · = W

T
l =

Wl.

As shown in Fig. 3, the learning procedure of the param-

eters for the output layer WL−1 = {W t
L−1}Tt=1 is simi-

lar to that of a single output CNN. For the t-th task, if the
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(a) female (b) male

Figure 4. Some samples from our AFAD dataset including for 19-year, 23-year, 27-year, 31-year, 35-year, and 39-year old facial photos

for (a) female and (b) male.

cross-entropy loss function is employed, the gradient of the

weight from the j-th neuron in the layer L − 1 to the k-th

neuron in the layer L (i.e., W t
L−1(j, k)) is computed as,

∂Em

∂W t
L−1

(j, k)
= δtL(k)o(j) (6)

δtL(k) = p(ot(k)|xk,W
t
L−1)− 1{ot = yt}, (7)

where o(j) is the output of the j-th neuron in the layer L−1,

and δtL(k) is the error of the k-th neuron in the output layer.

The key is the learning procedure of the parameters for

the penultimate layer. Since each neuron in the penultimate

layer (i.e., layer L−1) is connected to all the neurons in the

output layer (i.e., layer L), the error of the penultimate layer

δL−1 is the integration of all the errors of output layers, as

shown in Fig. 3. Specifically, the gradient of the weight

from the i-th neuron in the layer L− 2 to the j-th neuron in

the layer L− 1 (i.e., WL−2(i, j)) is computed as,

∂Em

∂WL−2(i, j)
= δL−1(k)o(i) (8)

δL−1(j) =

T
∑

t=1

λt
(

∑

k∈Lt

δtL(k)W
t
L−1(j, k)

)

, (9)

where o(i) is the output of i-th neuron in the layer L − 2,

and δL−1(j) is the error of the j-th neuron in the layer L−1.

It is noticed that δL−1(j) is the weighted sum of the errors

of output layers δtL(k) over all the tasks, where the task-

specific weights are λt, (t = 1, · · · , T ).
The learning procedure of the weights for previous layers

(i.e., WL−3,WL−4, · · · ) is the same as the standard learning

procedure of CNN.

4. The AFAD Dataset

We tested our method on the MORPH II Dataset [26].

This dataset contains 55, 608 face images, including 42, 589
African faces (77%), 10, 559 European faces (19%), 1, 769
Hispanic faces (3%), and only 154 Asian faces (0.2%).

Figure 5. The distribution of age and gender for the AFAD dataset.

There are 164, 432 well-labeled photos, including 63, 680 photos

for female as well as 100, 752 photos for male. And the ages range

from 15 to 40.

Ages range from 16 to 77 with a median age of 33. The

average number of images per individual is 4.

Compared to other datasets such as FG-NET [1] (1002
face images) and MORPH I (1690 face images) dataset, the

MORPH II dataset is the largest public dataset for age es-

timation. However, its ethnic is very unbalanced, i.e., less

than 1% Asian faces. Thus, the performance of previous

methods for age estimation on Asian faces is not sufficiently

studied. Therefore, in this paper we collect a new dataset

called Asian Face Age Dataset (AFAD) for age estimation,

which includes more than 160k images and aging labels for

Asian.

Specifically, we build this dataset by collecting facial im-

ages on a particular social network, i.e., RenRen Social Net-

work (RSN) [2]. The RSN is a social network for students

to connect with each other, upload photos, and make com-

ments, etc. It is widely used by Asian students including

middle school, high school, undergraduate, and graduate

students. Even after leaving from school, some people still

access their RSN account to connect with their old class-

mates. So, the age of the RSN user crosses a wide range

from 15- to more than 40-years old, which is beneficial to

building a dataset with a wide aging range.

Moreover, as a user creating an account on the RSN,

he/she is required to provide his/her Data-of-Birth (DoB),
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Table 1. The comparison of age estimation between metric regression and ordinal regression methods. The performance is measured by

the Mean Absolute Error (MAE) metric.

Dataset

Metric Regression Ordinal Regression

BIFs + BIFs + CNN + BIFS + BIFS + Ours

LSVR [15] CCA [14] LSVR [31] OR-SVM [5] OHRank [6] (OR-CNN)

MORPH II 4.31 4.73 5.13 (4.77 in [31]) 4.21 3.82 3.27

AFAD 4.13 4.40 5.56 4.36 3.84 3.34
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BIFs + SVR

BIFs + CCA

BIFs + OR−SVM

Ours (OR−CNN)

Figure 6. The comparison of age estimation with CS metric on

MORPH II dataset

which is utilized by the RSN to recommend classmates or

friends to the user. In addition, there is a special photo al-

bum (i.e., selfie album) for each user to upload his/her selfie

photo to the RSN. Therefore, it is easy to get the ground-

truth age of each selfie photo, i.e., the difference between

the uploading date of the selfie photo and the user’s DoB.

Since the selfie photos are noisy, e.g., some user may

upload other photo as his/her selfie photo (e.g., uploading

a photo of a celebrity, an object, or even a landmark) or

upload a photo taken long time ago, thus we employ some

workers to manually filter out noisy data. At last, we collect

a dataset with 164, 432 well-labeled photos. It consist of

63, 680 photos for female as well as 100, 752 photos for

male, and the ages range from 15 to 40. The distribution of

photo counts for distinct ages are illustrated in Fig. 5. Some

samples are shown in Fig. 4.

5. Experiments

5.1. Preprocessing and Experimental Setting

The preprocessing of the facial image dataset is neces-

sary. First, all images in the datasets are processed by a face

detector [29]. Then the facial landmarks of face images are

localized by AAM [8], and all the facial images are aligned

that the two eyeballs stay at the same image position for

all faces. After that, a region with the size of 64 × 64 is

cropped from the aligned facial images to make the nose

point stays at the center of the cropped images. Moreover,

before being fed to the CNN the images patches with the

0 2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

BIFs + SVR

BIFs + CCA

BIFs + OR−SVM

Ours (OR−CNN)

Figure 7. The comparison of age estimation with CS metric on

AFAD dataset

size of 60× 60 are randomly cropped from the 64× 64 re-

gions, which slightly reduced overfitting when training our

CNN.

Following the experimental setting in [6][7][31], for both

MORPH II and AFAD datasets, we randomly divide the

whole dataset into two parts: one part (i.e., 80% of the

whole data) is used for training, and the other one (i.e., 20%
of the whole data) is used for testing. There is no overlap

between the training and testing data. For statistical analy-

sis, this procedure is done 100 times to evaluate the variance

of MAE.

Besides, our algorithm is implemented based on

Caffe [18], where a new layer is implemented according to

Eq. 8 and Eq. 9. It is noted that the parameters for task

importance λt, (t = 1, · · · , T ) are set according to Eq. 11,

which will be discussed in details at Section. 5.4.1

5.2. Age Estimation

In this section, the performance of age estimation is com-

pared among several methods including metric regression

based and ordinal regression based methods. For each kind

of methods, they can be further categorized into two sub-

categories based on whether they used CNN learning algo-

rithm.

The performance is measured by the Mean Absolute

Error (MAE) metric and the Cumulative Score (CS). The

MAE is calculated using the average of the absolute errors

between the estimated result and the ground truth. The cu-
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mulative score is calculated as follows:

CS(n) = −Kn

K
× 100%, (10)

where K is the total number of test images, and Kn is the

number of testing facial images whose absolute error be-

tween the estimated age and the ground truth age is not

greater than n years.

In particular, we compare with the method in [15] (de-

noted as ‘BIFs + LSVR’) which trains a linear Support Vec-

tor Regression (SVR) on the extracted BIFs features. For

extracting BIFs features, we adopt the similar setting of

8 bands and 4 orientations, which produces features with

more than 4000 dimensions. And the Liblinear software is

used to train the linear SVR, where the L2-regularized L1-

loss is adopted.

We also compare with the method in [14] (denoted as

‘BIFs + CCA’). This is a multi-task learning approach

which can simultaneously predict the age, gender, and race

of a facial image. We evaluate this method to conduct the

3 tasks on the MORPH II dataset. Since the AFAD dataset

only contains Asian faces, we evaluate this method to con-

duct only 2 tasks (i.e., age estimation and gender classifica-

tion) on our AFAD dataset. From Table 1, we can see that

the ‘BIFs + LSVR’ achieves better performance than ‘BIFs

+ CCA’ on both datasets.

The third method [31] (denoted as ‘CNN + LSVR’) is the

first work to develop a relatively deeper CNN (i.e., 3 convo-

lution + 2 pooling + full connection) to address the problem

of age estimation. However, the proposed CNN is only used

to extract features, which is then fed to a regressor (i.e., a

linear SVR regressor) for final age prediction. Thus, it is not

an End-to-End learning method. We have re-implemented

the method in [31], but find out that its MAE on MORPH is

5.13 instead of 4.77 reported in [31], which may be due to

some differences in details.

We also compare with two typical ordinal regression

based methods, denoted as the ‘BIFs + OR-SVM’ [5] and

the ‘BIFs + OHRank’ [6] respectively. Both of them trans-

form an ordinal regression problem as a series of binary

classification sub-problems, which are solved by using a

linear SVM. It is noted that the hyperplanes are restricted

to parallel to each other in [5] but the OHRank [6] allows

some possibly non-parallel hyperplanes.

From Table 1, we have the following conclusions: (1)

the ordinal regression based methods outperform the met-

ric regression based methods in general; (2) more impor-

tantly, the integration of ordinal regression and deep learn-

ing methods could boost the performance significantly. And

our approach achieves the state-of-the-art on both MORPH

II and AFAD datasets.

Figure 8. The architecture of network used in the method of Metric

Regression with CNN (MR-CNN).

Table 2. The comparisons between metric regression and ordinal

regression based methods. The performance is measured by the

Mean Absolute Error (MAE) metric.

Methods MORPH II AFAD

BIFs + OHRank [6] 3.82 3.84
Proposed MR-CNN 3.42 3.51
Proposed OR-CNN 3.27 3.34

5.3. Comparing Metric and Ordinal Regression

Our approach presents an End-to-End CNN learning

method, which transforms ordinal regression into a series

of binary classification sub-problems. So it is still unclear

which factor gives more contributions to the final improve-

ment of performance. To take apart their distinctive contri-

butions, we propose another baseline method, which only

keeps the End-to-End CNN learning part and drops the part

of transforming framework, i.e., it casts age estimation as

a metric regression problem instead of an ordinal regres-

sion problem, and addresses the metric regression problem

with an End-to-End CNN learning algorithm. For clarity,

the baseline method is called Metric Regression with CNN

(MR-CNN), while the proposed approach is called Ordinal

Regression with CNN (OR-CNN).

For the MR-CNN, we need to solve a general metric re-

gression problem with CNN, so we make a little modifica-

tion on the architecture of our multiple-output CNN. Specif-

ically, the fully connected layer is directly connected to one

(the only one) output layer, and previous layers (i.e., three

convolutional, local response normalization, max pooling

layers) are kept. The output layer contains only one neu-

rons, and its output indicates the regressed age for the input

facial image. To train the MR-CNN, the L2-norm loss be-

tween ground-truth age and the regressed age is employed

as the loss function. The architecture of the MR-CNN is

shown in Fig.8.

The comparison between MR-CNN and OR-CNN is

conducted on both the MORPH II and AFAD datasets.

From Table 2, we can find that the OR-CNN outper-

forms MR-CNN on the two datasets. In addition, we have

done some statistical analysis for our OR-CNN model. In

particular, the dataset is randomly split into training and
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Table 3. The analysis of the task importance. The performance is

measured by the Mean Absolute Error (MAE) metric.

Datasets Uniform Data-specific Scheme

MORPH II 3.30 3.27

AFAD 3.41 3.34

testing subsets 100 times for cross-validation. We ob-

tain MAE=3.27 ± 0.02 and MAE=3.34 ± 0.08 on the

MORPH-II and AFAD dataset respectively. Compared with

the OHRank, our analysis shows that the proposed algo-

rithm significantly outperform it at significance level α =
0.01.

Those promising results illustrate that (1) it is neces-

sary to cast age estimation as ordinal regression rather than

a general metric regression problem. Moreover, from the

comparison between the ‘BIFs + OHRank’ and our ‘OR-

CNN’, it is clear that (2) the integration of ordinal regres-

sion and deep learning methods could significantly boost

the performance.

5.4. Discussion

5.4.1 Task importance analysis

In our approach, each task has a specific parameter λt,

which indicates the relative importance among different

tasks. These parameters will affect the error backward prop-

agation for the network training (refers to Eq.9). In our ap-

proach, the importance parameters are set according to the

reliability of classifiers corresponding to different tasks.

In particular, the k-th task corresponds to a binary classi-

fier, which is trained to distinguish samples with rank larger

than k from samples with rank smaller than k. Thus, for the

k-th classifier, the number of samples with ranks nearby k,

e.g., samples with rank {(k − 1), k, (k + 1)}, is more im-

portant than other samples for the training of k-th classifier.

In other words, if more samples are with rank close to k, we

could better train the corresponding classifier, and hence it

is better to give a relatively larger importance to this task.

In practice, we obtain the distribution of sample num-

ber over their ranks, and propose to set the importance pa-

rameters according to this distribution, which is called data-

specific scheme. In other words, we set

λt =

√
Nk

∑K

k=1

√
Nk

, (11)

where Nk is the number of samples with rank k, and N is

the total number of samples.

On the contrary, we also evaluate the performance of our

method when the importance parameters are set as a con-

stant, which is called uniform scheme in this paper. From

Table 3, we can find out that the performance could be

Table 4. The analysis of the image color information. The perfor-

mance is measured by the Mean Absolute Error (MAE) metric.

Datasets Gray Image Color Image

MORPH II 3.42 3.27

AFAD 3.44 3.34

slightly improved by choosing task importance parameters

according to data-specific distributions.

5.4.2 The color information

It is noticed that color face images are directly fed into our

CNN, which is different from previous methods that the

color images are first converted into gray before fed into

CNN [31][33]. In previous methods, it is believed that color

information is unstable and useless for age estimation [33].

To investigate whether the color information is helpful for

age estimation, in this section we try the case of converting

color images into gray images. The performance is com-

pared on both MORPH II and AFAD datasets.

From Table 4, we can find out that color information is

helpful to improve performance of age estimation. It is pos-

sible that our convolutional neural network managed to ex-

tract useful information from color images.

6. Conclusion

In this paper, we have proposed to address ordinal regres-

sion problem by using End-to-End deep learning methods.

In particular, an ordinal regression problem is transformed

into a series of binary classification sub-problems, which

are collectively solved with the proposed multiple output

CNN learning algorithm. We apply it to the task of age es-

timation, and achieve better performance avoiding directly

designing hand-crafted features. In addition, we publish an

Asian Face Age Dataset (AFAD), which is the largest pub-

lic age dataset until now. Our approach is evaluated on two

large scale benchmark datasets and outperforms the state-

of-the-art by a large margin. The promising performance

of our approach demonstrates the potential of applying it

towards other ordinal regression related applications.

7. Acknowledgements

This research was supported partly by the NSFC (Grant Nos. 61432014

and 61402348, and 61503296), the Fundamental Research Funds for the

Central Universities (Grant Nos. BDZ021403 and XJJ2015066), the Pro-

gram for Changjiang Scholars and Innovative Research Team in Univer-

sity of China (No.IRT13088), the Shaanxi Innovative Research Team for

Key Science and Technology (No.2012KCT-02), and China Postdoctoral

Science Foundation (Grant Nos.2014M562374 and 2015M572563). Dr.

Gang Hua is partly supported by NSFC Grant No.61228303.

4927



References

[1] The fg-net aging database. http://sting.cycollege.ac.cy/

alanitis/fgnetaging.html.

[2] Renren social network. http://www.renren.com/.

[3] J. Cai, Z. Zha, W. Zhou, and Q. Tian. Attribute-assisted

reranking for web image retrieval. ACM Multimedia, 2012.

[4] D. Cao, Z. Lei, Z. Zhang, J. Feng, and S. Li. Human age

estimation using ranking svm. CCBR, pages 324–331, 2012.

[5] K. Chang, C. Chen, and Y. Hung. A ranking approach for

human age estimation based on face images. ICPR, 2010.

[6] K. Chang, C. Chen, and Y. Hung. Ordinal hyperplanes ranker

with cost sensitivities for age estimation. CVPR, pages 585–

592, 2011.

[7] K. Chen, S. Gong, T. Xiang, and C. Loy. Cumulative at-

tribute space for age and crowd density estimation. CVPR,

pages 2467–2474, 2013.

[8] T. Cootes, G. Edwards, and C. Taylor. Active appearance

models. ECCV, pages 484–498, 1998.

[9] K. Crammer and Y. Singer. Pranking with ranking. NIPS,

pages 641–647, 2002.

[10] E. Frank and M. Hall. A simple approach to ordinal classi-

fication. Lecture Notes in Artificial Intelligence, pages 145–

156, 2001.

[11] Y. Fu and T. Huang. Human age estimation with regres-

sion on discriminative aging manifold. IEEE Transactions

on Multimedia, pages 578–584, 2008.

[12] X. Geng, Z. Zhou, and K. Smith-Miles. Automatic age esti-

mation based on facial aging patterns. IEEE T-PAMI, pages

2234–2240, 2007.

[13] G. Guo and G. Mu. Simultaneous dimensionality reduction

and human age estimation via kernel partial least squares re-

gression. CVPR, pages 657–664, 2011.

[14] G. Guo and G. Mu. Joint estimation of age, gender and eth-

nicity: Cca vs. pls. FG, pages 1–6, 2013.

[15] G. Guo, G. Mu, Y. Fu, and T. Huang. Human age estimation

using bio-inspired features. CVPR, pages 112–119, 2009.

[16] R. Herbrich, T. Graepel, and K. Obermayer. support vector

learning for ordinal regression. Proc. Int. Conf. Artif. Neural

Netw, pages 97–102, 1999.

[17] R. Herbrich, T. Graepel, and K. Obermayer. Large margin

rank boundaries for ordinal regression. MIT Press, Cam-

bridge, 2000.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[19] A. Lanitis, C. Draganova, and C. Christodoulou. Compar-

ing different classifiers for automatic age estimation. IEEE

SMC-B, pages 621–628, 2004.

[20] C. Li, Q. Liu, J. Liu, and H. Lu. Learning ordinal discrimi-

native features for age estimation. CVPR, pages 2570–2577,

2012.

[21] L. Li and H. Lin. Ordinal regression by extended binary

classification. NIPS, pages 865–872, 2006.

[22] Z. Niu, G. Hua, X. Gao, and Q.Tian. Context-aware topic

model for scene recognition. CVPR, 2012.

[23] Z. Niu, G. Hua, X. Gao, and Q.Tian. Semi-supervised re-

lational topic model for weakly annotated image recognition

in social media. CVPR, 2014.

[24] Z. Niu, G. Hua, Q.Tian, and X. Gao. Visual topic network:

Building better image representations for images in social

media. CVIU, 2015.

[25] N. Ramanathan, R. Chellappa, and S. Biswas. Age progres-

sion in human faces: A survey. JVLC, 2009.

[26] K. Ricanek and T. Tesafaye. Morph: A longitudinal image

database of normal adult age-progression. IEEE Interna-

tional Conference on Automatic Face and Gesture Recog-

nition, pages 341–345, 2015.

[27] A. Shashua and A. Levin. Ranking with large margin princi-

ple: Two approaches. NIPS, pages 961–968, 2003.

[28] I. Shlizerman, S. Suwajanakorn, and S. Seitz. Illumination-

aware age progression. CVPR, 2014.

[29] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. CVPR, 2001.

[30] L. Wang, J. Xue, N. Zheng, and G. Hua. Automatic salient

object extraction with contextual cue. ICCV, 2011.

[31] X. Wang, R. Guo, and C. Kambhamettu. Deeply-learned

feature for age estimation. WACV, pages 534–541, 2015.

[32] P. Yang, L. Zhong, and D. Metaxas. Ranking model for facial

age estimation. ICPR, 2010.

[33] D. Yi, Z. Lei, and S. Li. Age estimation by multi-scale con-

volutional network. ACCV, pages 144–158, 2014.

4928


