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Abstract

The introduction of consumer RGB-D scanners set off a

major boost in 3D computer vision research. Yet, the preci-

sion of existing depth scanners is not accurate enough to re-

cover fine details of a scanned object. While modern shad-

ing based depth refinement methods have been proven to

work well with Lambertian objects, they break down in the

presence of specularities. We present a novel shape from

shading framework that addresses this issue and enhances

both diffuse and specular objects’ depth profiles. We take

advantage of the built-in monochromatic IR projector and

IR images of the RGB-D scanners and present a lighting

model that accounts for the specular regions in the input

image. Using this model, we reconstruct the depth map

in real-time. Both quantitative tests and visual evaluations

prove that the proposed method produces state of the art

depth reconstruction results.

1. Introduction

The introduction of commodity RGB-D scanners

marked the beginning of a new age for computer vision and

computer graphics. Despite their popularity, such scanners

can obtain only the rough geometry of scanned surfaces due

to limited depth sensing accuracy. One way to mitigate this

limitation is to refine the depth output of these scanners us-

ing the available RGB and IR images.

A popular approach to surface reconstruction from im-

age shading cues is the Shape from Shading (SfS). Shape

reconstruction from a single image is an ill-posed problem

since beside the surface geometry, the observed image also

depends on properties like the surface reflectance, the light-

ing conditions and the viewing direction. Incorporating data

from depth sensors has proved to be successful in eliminat-

ing some of these ambiguities [7, 22, 12]. However, many

of these efforts are based on the assumption that the scanned

surfaces are fully Lambertian, which limits the variety of

objects they can be applied to. Directly applying such meth-

ods to specular objects introduces artifacts to the surface in

highly specular regions due to the model’s inability to ac-

count for sudden changes in image intensity.

Here, we propose a novel real-time framework for depth

enhancement of non-diffuse surfaces. To that end, we use

the IR image supplied by the depth scanners. The narrow-

band nature of the IR projector and IR camera provides

a controlled lighting environment. Unlike previous ap-

proaches, we exploit this friendly environment to introduce

a new lighting model for depth refinement that accounts for

specular reflections as well as multiple albedos. To enable

our real-time method we directly enhance the depth map

by using an efficient optimization scheme which avoids the

traditional normals refinemet step.

The paper outline is as follows: Section 2 reviews pre-

vious efforts in the field. An overview of the problem is

presented in Section 3. The new method is introduced in

Section 4, with results in Section 5. Section 6 concludes the

paper.

2. Related Efforts

The classical SfS framework assumes a Lambertian ob-

ject with constant albedo and a single, distant, lighting

source with known direction. There are several notable

methods which solve the classical SfS problem. These can

be divided into two groups: propagation methods and vari-

ational ones. Both frameworks were extensively researched

during the last four decades. Representative papers from

each school of thought are covered in [24, 6].

The main practical drawback about classical shape from

shading, is that although a diffusive single albedo setup can

be easily designed in a laboratory, it can be rarely found

in more realistic environments. As such, modern SfS ap-

proaches attempt to reconstruct the surface without any as-

sumptions about the scene lighting and/or the object albe-

dos. In order to account for the unknown scene conditions,

these algorithms either use learning techniques to construct
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priors for the shape and scene parameters, or acquire a

rough depth map from a 3D scanner to initialize the surface.

Learning based methods. Barron and Malik [1] con-

structed priors from statistical data of multiple images to

recover the shape, albedo and illumination of a given input

image. Kar et al. [10] learn 3D deformable models from

2D annotations in order to recover detailed shapes. Richter

and Roth [15] extract color, textons and silhouette features

from a test image to estimate a reflectance map from which

patches of objects from a database are rendered and used

in a learning framework for regression of surface normals.

Although these methods produce excellent results, they de-

pend on the quality and size of their training data, whereas

the proposed axiomatic approach does not require a training

stage and is therefore applicable in more general settings.

Depth map based methods. Bohme et al. [3] find a MAP

estimate of an enhanced range map by imposing a shading

constraint on a probalistic image formation model. Yu et

al. [23] use mean shift clustering and second order spher-

ical harmonics to estimate the fdepth map scene albedos

and lighting from a color image. These estimations are

then combined together to improve the given depth map ac-

curacy. Han et al. [7] propose a quadratic global lighting

model along with a spatially varying local lighting model

to enhance the quality of the depth profile. Kadambi et

al. [9] fuse normals obtained from polarization cues with

rough depth maps to obtain accurate reconstructions. Even

though this method can handle specular surfaces, it requires

at least three photos to reconstruct the normals and it does

not run in real-time. Several IR based methods were in-

troduced in [8, 5, 4, 19]. The authors of [8, 4] suggest a

multi-shot photometric stereo approach to reconstruct the

object normals. Choe et al. [5] refine 3D meshes from

Kinect Fusion [11] using IR images captured during the

fusion pipeline. Although this method can handle uncali-

brated lighting, it is niether one-shot nor real-time since a

mesh must first be acquired before the refinement process

begins. Ti et al. [19] propose a simultaneous time-of flight

and photometric stereo algorithm that utilizes several light

sources to produce accurate surface and surface normals.

Although this method can be implemented in real time, it

requires four shots per frame for reconstruction as opposed

to our single shot approach. More inline with our approach,

Wu et al. [22] use second order spherical harmonics to es-

timate the global scene lighting, which is then followed by

efficient scheme to reconstruct the object. In [12] Or - El

et al. introduced a real-time framework for direct depth re-

finement that handles natural lighting and multiple albedo

objects. Both algorithms rely on shading cues from an RGB

image taken under uncalibrated illumination with possibly

multiple light sources. Correctly modeling image specular-

ities under such conditions is difficult. We propose to over-

come the light source ambiguity issue by using the avail-

ability of a single IR source with known configuration.

3. Overview

Shape from Shading (SfS) tries to relate an object’s ge-

ometry to its image irradiance. Like many other inverse

problems, SfS is also an ill-posed one because the per-pixel

image intensity is determined by several elements: the sur-

face geometry, its albedo, scene lighting, the camera param-

eters and the viewing direction.

When using depth maps from RGB-D scanners one

could recover the camera parameters and viewing direction,

yet, in order to obtain the correct surface, we first need to

account for the scene lighting and the surface albedos. Fail-

ing to do so would cause the algorithm to change the sur-

face geometry and introduce undesired deformations. Us-

ing cues from an RGB image under uncalibrated illumina-

tion like [7, 22, 12] requires an estimation of global lighting

parameters. Although such estimations work well for dif-

fuse objects, they usually fail when dealing with specular

ones and result in a distorted geometry. The reason is that

specularities are sparse outliers that are not accounted for

by classical lighting models. Furthermore, trying to use es-

timated lighting directions to model specularities is prone

to fail when there are multiple light sources in the scene.

In our scenario, the main lighting in the IR image comes

from the scanner’s projector, which can be treated as a point

light source. Observe that in this setting, we do not need to

estimate a global lighting direction, instead, we use a near

light field model to describe the per-pixel lighting direc-

tion. Subsequently, we can also account for specularities

and non-uniform albedo map.

In our setting, an initial depth estimation is given by

the scanner. We avoid the process of computing a refined

normal field and then fusing depth with normal estimates,

which is common to SfS methods, and solve directly for the

depth. This eliminates the need to enforce integrability and

reduces the problem size by half. We deal with the non-

linear part by calculating a first order approximation of the

cost functional and thereby achieve real-time performance.

4. Proposed Framework

A novel IR based real-time framework for depth en-

hancement is proposed. The suggested algorithm requires

a depth map and an IR image as inputs. We assume that

the IR camera and the depth camera have the same intrin-

sic parameters, as is usually the case with common depth

scanners. In addition, we also assume that the whole sys-

tem is calibrated and that the translation vector between the

scanner’s IR projector and IR camera is known.

Unfortunately, the raw depth map is usually quantized

and the surface geometry is highly distorted. Therefore, we

first smooth the raw depth map and estimate the surface nor-
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Figure 1: Algorithm’s flowchart

mals. We then move on to recover the scene lighting using a

near-field lighting model which explicitly accounts for ob-

ject albedos and specularities.

After we find the scene lighting along with albedo and

specular maps, we can directly update the surface geometry

by designing a cost functional that relates the depth and IR

intensity values at each pixel. We also show how the re-

construction process can be accelerated in order to obtain

real-time performance. Figure 1 shows a flowchart of the

proposed algorithm.

4.1. Near Field Lighting Model

Using an IR image as an input provides several advan-

tages to the reconstruction process. Unlike other methods

which require alignment between RGB and depth images,

in our case, the depth map and IR image are already aligned

as they were captured by the same camera. Moreover, the

narrowband nature of the IR camera means that the main

light source in the image is the scanner’s own IR projector

whose location relative to the camera is known. Therefore,

we can model the IR projector as a point light source and

use a near field lighting model to describe the given IR im-

age intensity at each pixel,

I =
aρd

d2p
Sdiff + ρdSamb +

aρs

d2p
Sspec. (1)

Here, a is the projector intensity which is assumed to be

constant throughout the image. dp is the distance of the

surface point from the projector. ρd and ρs are the diffuse

and specular albedos. Samb is the ambient lighting in the

scene, which is also assumed to be constant over the image.

Sdiff is the diffuse shading function of the image which is

given by the Lambertian reflectance model

Sdiff = ~N ·~lp. (2)

Depth

Scanner
Surface

~N

{~lc, dc}

{~lp, dp}

Projector

IR Camera

Figure 2: Scene lighting model

The specular shading function Sspec is set according to the

Phong reflectance model

Sspec =
((

2(~lp · ~N) ~N −~lp

)

·~lc

)α

, (3)

where ~N is the surface normal,~lp,~lc are the directions from

the surface point to the projector and camera respectively

and α is the shininess constant which we set to α = 2.

Figure 2 describes the scene lighting model. For ease of

notation, we define

S̃diff =
a

d2p
Sdiff, S̃spec =

a

d2p
Sspec. (4)

The intrinsic camera matrix and the relative location of

the projector with respect to camera are known. In addition,

the initial surface normals can be easily calculated from

the given rough surface. Therefore, ~lc,~lp, dp, Sdiff and Sspec
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(a) (b) (c) (d)

Figure 3: (a) Simulated IR image of the Armadillo mesh. (b) Recovered image of the diffuse and ambient shading S̃diff+Samb. (c) Residual

image for specular albedo estimation Isres. (d) Ground Truth specularity map of (a). Note that specularities in (d) are basically the sparse

representation of the residual image (c).

can be found directly whereas a, Samb, ρd and ρs need to

be recovered. Although we are using a rough depth nor-

mal field to compute ~lc,~lp, dp, Sdiff and Sspec we still get

accurate shading maps since the lighting is not sensitive

to minor changes in the depth or normal field as shown

in [2, 14]. Decomposing the IR image into its Lambertian

and Specular lighting components along with their respec-

tive albedo maps has no unique solution. To achieve ac-

curate results while maintaining real-time performance we

choose a greedy approach which first assumes Lambertian

lighting and gradually accounts for the lighting model from

Eq. 1. Every pixel in the IR image which has an assigned

normal can be used to recover a and Samb. Generally, most

of the light reflected back to the camera is related to the

diffuse component of the object whereas highly specular

areas usually have a more sparse nature. Thus, the spec-

ular areas can be treated as outliers in a parameter fitting

scheme as they have minimal effect on the outcome. This

allows us to assume that the object is fully Lambertian (i.e

ρd = 1, ρs = 0), which in turn, gives us the following

overdetermined linear system for n valid pixels (n ≫ 2),










S1

diff

(d1
p)

2 1

...
...

Sn
diff

(dn
p )

2 1











(

a

Samb

)

=







I1
...

In






. (5)

4.1.1 Specular Albedo Map

The specular shading map is important since it reveals the

object areas which are likely to produce specular reflections

in the IR image. Without it, bright diffuse objects can be

mistaken for specularities. Yet, since S̃spec was calculated

as if the object is purely specular, using it by itself will fail

to correctly represent the specular irradiance, as it would

falsely brighten non-specular areas. In order to obtain an

accurate representation of the specularities it is essential to

find the specular albedo map to attenuate the non-specular

areas of S̃spec.

We now show how we can take advantage of the sparse

nature of the specularities to recover ρs and get the correct

specular scene lighting. We will define a residual image

Isres as being a difference between the original image I and

our current diffuse approximation together with the ambient

lighting. Formally, we write this as

Isres = I − (S̃diff + Samb). (6)

As can be seen in Figure 3 (c), the sparse bright areas of

Isres are attributable to the true specularities in I . Specu-

lar areas have finite local support, therefore we choose to

model the residual image Isres as ρsS̃spec such that ρs will

be a sparse specular albedo map. This will yield an image

that contains just the bright areas of Isres. In addition, in or-

der to preserve the smooth nature of specularities we add a

smoothness term that minimizes the L1 Total-Variation of

ρs. To summarize, the energy minimization problem to es-

timate ρs can be written as

min
ρs

λs
1‖ρsS̃spec − Isres‖

2
2 + λs

2‖ρs‖1 + λs
3‖∇ρs‖1, (7)

where λs
1, λ

s
2, λ

s
3 are weighting terms for the fidelity, spar-

sity and smoothness terms, respectively. To minimize the

cost functional, we use a variation of the Augmented La-

grangian method suggested in [21] where we substitute the

frequency domain solution with a Gauss-Seidel scheme on

the GPU. We refer the reader to the above paper for addi-

tional details on the optimization procedure.

4.1.2 Recovering the Diffuse Albedo

As was the case with specular shading, the diffuse shading

map alone does not sufficiently explain the diffuse lighting.

This is due to the fact that the diffuse shading is calculated

as if there was only a single object with uniform albedo.

In reality however, most objects are composed of multiple

different materials with different reflectance properties that

need to be accounted for.

Using the estimated specular lighting from section 4.1.1

we can now compute a residual image between the original
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image I and the specular scene lighting which we write as

Idres = I − ρsS̃spec. (8)

Idres should now contain only the diffuse and ambient irra-

diance of the original image I . This can be used in a data

fidelity term for a cost functional designed to find the dif-

fuse albedo map ρd.

We also wish to preserve the piecewise-smoothness of

the diffuse albedo map. Otherwise, geometry distortions

will be mistaken for albedos and we will not be able to re-

cover the correct surface. The IR image and the rough depth

map provide us several cues that will help us to enforce

piecewise smoothness. Sharp changes in the intensity of the

IR image imply a change in the material reflectance. More-

over, depth discontinuities can also signal possible changes

in the albedo.

We now wish to fuse the cues from the initial depth pro-

file and the IR image together with the piecewise-smooth

albedo requirement. Past papers [7, 12] have used bilat-

eral smoothing. Here, instead, we base our scheme on the

geomtric Beltrami framework such as in [18, 17, 20] which

has the advantage of promoting alignment of the embedding

space channels. Let,

M(x, y) = {x, y, βII
d
res(x, y), βzz(x, y), βρρd(x, y)}

(9)

be a two dimensional manifold embedded in a 5D space

with the metric

G =

(

〈Mx,Mx〉 〈Mx,My〉
〈Mx,My〉 〈My,My〉

)

. (10)

The gradient of ρd with respect to the 5D manifold is

∇Gρd = G−1 · ∇ρd, (11)

By choosing large enough values of βI , βz and βρ and mini-

mizing the L1 Total-Variation of ρd with respect to the man-

ifold metric, we basically perform selective smoothing ac-

cording to the “feature” space (Idres, z, ρd). For instance, if

βI ≫ βz, βρ, 1, the manifold gradient would get small val-

ues when sharp edges are present in Idres since G−1 would

decrease the weight of the gradient at such locations.

To conclude, the minimization problem we should solve

in order to find the diffuse albedo map is

min
ρd

λd
1

∥

∥

∥ρd

(

S̃diff + Samb

)

− Idres

∥

∥

∥

2

2
+ λd

2‖∇Gρd‖1. (12)

Here, λd
1, λ

d
2 are weighting terms for the fidelity and

piecewise-smooth penalties. We can minimize this func-

tional using the Augmented Lagrangian method proposed

in [16]. The metric is calculated separately for each pixel,

therefore, it can be implemented very efficiently on a GPU

with limited effect on the algorithm’s runtime.

4.2. Surface Reconstruction

Once we account for the scene lighting, any differences

between the IR image and the image rendered with our

lighting model are attributed to geometry errors of the depth

profile. Usually, shading based reconstruction algorithms

opt to use the dual stage process of finding the correct sur-

face normals and then integrating them in order to obtain the

refined depth. Although this approach is widely used, it has

some significant shortcomings. Calculating the normal field

is an ill-posed problem with 2n unknowns if n is the number

of pixels. The abundance of variables can result in distorted

surfaces that are tilted away from the camera. In addition,

since the normal field is an implicit surface representation,

further regularization such as the integrability constraint is

needed to ensure that the resulting normals would represent

a valid surface. This additional energy minimization func-

tional can impact the performance of the algorithm.

Instead, we use the strategy suggested in [12, 22] and

take advantage of the rough depth profile acquired by the

scanner. Using the explicit depth values forces the surface

to move only in the direction of the camera rays, avoids

unwanted distortions, eliminates the need to use an integra-

bility constraint and saves computation time and memory

by reducing the number of variables.

In order to directly refine the surface, we relate the depth

values to the image intensity through the surface normals.

Assuming that the perspective camera intrinsic parameters

are known, the 3D position P (i, j) of each pixel is given by

P (z(i, j)) =

(

j − cx

fx
z(i, j),

i− cy

fy
z(i, j), z(i, j)

)T

,

(13)

where fx, fy are the focal lengths of the camera and (cx, cy)

is the camera’s principal point. The surface normal ~N at

each 3D point is then calculated by

~N (z(i, j)) =
Px × Py

‖Px × Py‖
. (14)

We can use Eqs. (1), (2) and (14) to write down a depth

based shading term written directly in terms of z,

Esh(z) =

∥

∥

∥

∥

aρd

d2p
( ~N(z) ·~lp) + ρdSamb + ρsS̃spec − I

∥

∥

∥

∥

2

2

.

(15)

This allows us to refine z by penalizing shading mismatch

with the original image I . We also use a fidelity term that

penalizes the distance from the initial 3D points

Ef (z) = ‖w(z − z0)‖
2
2,

w =

√

1 +

(

j − cx

fx

)2

+

(

i− cy

fy

)2

,
(16)

and a smoothness term that minimizes the second order TV-

L1 of the surface

Esm(z) = ‖Hz‖1, H =

(

Dxx

Dyy

)

. (17)

Here, Dxx, Dyy are the second derivatives of the surface.

Combining Eqs. (15), (16) and (17) into a cost functional
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Model IR NL - SH1 NL - SH2

Armadillo 2.018 12.813 11.631

Dragon 3.569 10.422 10.660

Greek Statue 2.960 7.241 9.067

Stone Lion 4.428 7.8294 8.640

Cheeseburger 9.517 17.881 19.346

Pumpkin 10.006 13.716 16.088

Table 1: Quantitative comparison of RMSE of the specular light-

ing estimation in IR and natural lighting scenarios. IR refers to

the lighting scenario described in Section 4.1, NL - SH1/2 repre-

sents a natural lighting scenario with first/second order spherical

harmonics used to recover the diffuse and ambient shading as well

as ~lp. All values are in gray intensity units [0, 255].

results in a non-linear optimization problem

min
z

λz
1Esh(z) + λz

2Ef (z) + λz
3Esm(z), (18)

where λz
1, λ

z
2, λ

z
3 are the weights for the shading, fidelity

and smoothness terms, respectively. Although there are sev-

eral possible methods to solve this problem, a fast scheme

is required for real-time performance. To accurately and

efficiently refine the surface we base our approach on the

iterative scheme suggested in [13]. Rewriting Eq. (15) as

a function of the discrete depth map z, and using forward

derivatives we have

Ii,j − ρdSamb − ρsS̃spec =
aρd

d2p
( ~N(z) ·~lp)

= f(zi,j , zi+1,j , zi,j+1).

(19)

At each iteration k we can approximate f using the first or-

der Taylor expansion about (zk−1
i,j , zk−1

i+1,j , z
k−1
i,j+1), such that

Ii,j − ρdSamb − ρsS̃spec = f(zki,j , z
k
i+1,j , z

k
i,j+1)

≈ f(zk−1
i,j , zk−1

i+1,j , z
k−1
i,j+1) +

∂f

∂zk−1
i,j

(zki,j − zk−1
i,j )

+
∂f

∂zk−1
i+1,j

(zki+1,j − zk−1
i+1,j) +

∂f

∂zk−1
i,j+1

(zki,j+1 − zk−1
i,j+1).

(20)

Rearranging terms to isolate terms including z from the cur-

rent iteration, we can define

Iz
k

res = Ii,j − ρdSamb − ρsS̃spec

− f(zk−1
i,j , zk−1

i+1,j , z
k−1
i,j+1) +

∂f

∂zk−1
i,j

zk−1
i,j

+
∂f

∂zk−1
i+1,j

zk−1
i+1,j +

∂f

∂zk−1
i,j+1

zk−1
i,j+1

, (21)

and therefore minimize

min
zk

λz
1‖Az

k−Iz
k

res‖
2
2+λz

2‖w(z
k−z0)‖

2
2+λz

3‖Hzk‖1 (22)

at each iteration with the Augmented Lagrangian method

of [21]. Here, A is a matrix that represents the linear opera-

tions performed on the vector zk. Finally, we note that this

pipeline was implemented on an Intel i7 3.4GHz proces-

(a) (b) (c)

(d) (e) (f) (g)

Figure 4: Greek Statue: (a) Single light source IR image. (b)

Ground truth specular irradiance map for (a). (c) Specular irra-

diance estimation error map. This is the absolute difference map

between our predicted specular irradiance and the ground truth.

(d) Multiple light source natural lighting (NL) image. (e) Specular

lighting ground truth of (d). (f,g) Specular irradiance error maps

of (d) as estimated using first (SH1) and second (SH2) order spher-

ical harmonics respectively. Note the reduced errors when using

a single known light source (c) as opposed to estimating multiple

unknown light sources using spherical harmonics lighting models

(f,g).

sor with 16GB of RAM and an NVIDIA GeForce GTX650

GPU. The runtime for a 640× 480 image is approximately

80 milliseconds.

5. Results

We preformed several tests in order to evaluate the qual-

ity and accuracy of the proposed algorithm. We show the

algorithm’s accuracy in recovering the specular lighting of

the scene and why it is vital to use an IR image instead of an

RGB image. In addition, we demonstrate that the proposed

framework is state of the art, both visually and qualitatively.

In order to test the specular lighting framework, we took

3D objects from the Stanford 3D1, 123D Gallery2 and

Blendswap3 repositories. For each model we assigned a

mix of diffuse and specular shaders and rendered them un-

der an IR lighting scenario described in Section 4.1 (single

light source) and natural lighting scenarios (multiple light

sources) using the Cycles renderer in Blender. To get a

ground truth specularity map for each lighting scenario, we

also captured each model without its specular shaders and

subtracted the resulting images.

We tested the accuracy of our model in recovering spec-

ularities for each lighting setup. We used Eqs. (2) and (5) to

1http://graphics.stanford.edu/data/3Dscanrep/
2http://www.123dapp.com/Gallery/content/all
3http://www.blendswap.com/
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Model Median Error (mm) 90th % (mm)

Wu et al. Or-El et al. Proposed Wu et al. Or-El et al. Proposed

Armadillo 0.335 0.318 0.294 1.005 0.821 0.655

Dragon 0.337 0.344 0.324 0.971 0.917 0.870

Greek Statue 0.306 0.281 0.265 0.988 0.806 0.737

Stone Lion 0.375 0.376 0.355 0.874 0.966 0.949

Cheeseburger 0.191 0.186 0.168 0.894 0.756 0.783

Pumpkin 0.299 0.272 0.242 0.942 0.700 0.671

Table 2: Quantitative comparison of depth accuracy in specular areas. All values are in millimeters.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Results for the simulated Armadillo scene, (a) Input IR

image. (b) Ground truth model. (c) Initial Depth. (d)-(f) Recon-

structions of Wu et al., Or - El et al. and our proposed method

respectively. (g)-(i) Magnifications of a specular area. Note how

our surface is free from distortions in specular areas unlike the

other methods.

get the diffuse and ambient shading maps under IR lighting.

For natural lighting, the diffuse and ambient shading were

recovered using first and second order spherical harmon-

ics in order to have two models for comparison. In both

lighting scenarios the surface normals were calculated from

the ground truth depth map. The specular lighting is recov-

ered using Eqs. (3) and (7), where the IR lighting direction
~lp is calculated using the camera-projector calibration pa-

rameters. In the natural lighting scene we use the relevant

normalized coefficients of the first and second order spher-

ical harmonics in order to compute the general lighting di-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Results for the simulated Pumpkin scene, (a) Input IR

image. (b) Ground truth model. (c) Initial Depth. (d)-(f) Recon-

structions of Wu et al., Or - El et al. and our proposed method

respectively. (g)-(i) Magnifications of a specular area. Note the

lack of hallucinated features in our method.

rection. From the results in Table 1 we can infer that the

specular irradiance can be accurately estimated in our pro-

posed lighting model as opposed to the natural lighting (NL

SH1/2) where estimation errors are much larger. The rea-

son for large differences is that, as opposed to our lighting

model, under natural illumination there are usually multiple

light sources that cause specularities whose directions can-

not be recovered accurately. An example of this can be seen

in Figure 4.

To measure the depth reconstruction accuracy of the pro-

posed method we performed experiments using both syn-

thetic and real data. In the first experiment, we used the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Results for the lab conditions experiment, (a) Input IR

image. (b) Initial Depth. (c) Result after bilateral smoothing. (d)-

(f) Reconstructions of Wu et al., Or - El et al. and the proposed

method, respectively. (g)-(i) Magnifications of a specular region.

3D models with mixed diffuse and specular shaders and

rendered their IR image and ground truth depth maps in

Blender. We then quantized the ground truth depth map

to 1.5mm units in order to simulate the noise of a depth

sensor. We applied our method to the data and defined

the reconstruction error as the absolute difference between

the result and the ground truth depth maps. We com-

pared our method’s performance with the methods proposed

in [12, 22]. The comparisons were performed in the specu-

lar regions of the objects according to the ground truth spec-

ularity maps. The results are shown in Table. 2. A qualita-

tive evaluation of the accuracy when the method is applied

to the synthetic data can be seen in Figures. 5 and 6.

In the second experiment we tested our method under

laboratory conditions using a structured-light 3D scanner to

capture the depth of several objects. The camera-projector

system was calibrated according to the method suggested

in [25]. We reduced the number of projected patterns in

order to obtain a noisy depth profile. To approximate an IR

lighting scenario, we used a monochromatic projector and

camera with dim ambient illumination.

We also tested the algorithm with an Intel Real-Sense

depth scanner, using the IR image and depth map as inputs.

The camera-projector calibration parameters were acquired

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Results from Intel’s Real-Sense depth scanner, (a) Input

IR image. (b) Initial Depth. (c) Result after bilateral smoothing.

(d)-(f) Reconstructions of Wu et al., Or - El et al. and the proposed

method, respectively. (g)-(i) Magnifications of a specular region.

from the Real-Sense SDK platform. Although no accurate

ground-truth data was available for these experiments, we

note that while all methods exhibit sufficient accuracy in

diffuse areas, the proposed method is the only one that per-

forms qualitatively well in highly specular areas as can be

seen in Figures 7 and 8.

6. Conclusions

We presented a new framework for depth refinement of

specular objects based on shading cues from an IR image.

To the best of our knowledge, the proposed method is the

first depth refinement framework to explicitly account for

specular lighting. An efficient optimization scheme enables

our system to produce state of the art results at real-time

rates.
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